fbpx
Wikipedia

Bose–Einstein condensation of quasiparticles

Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.

Properties edit

BECs form when low temperatures cause nearly all particles to occupy the lowest quantum state. Condensation of quasiparticles occurs in ultracold gases and materials. The lower masses of material quasiparticles relative to atoms lead to higher BEC temperatures. An ideal Bose gas has a phase transitions when inter-particle spacing approaches the thermal De-Broglie wavelength:  . The critical concentration is then  , leading to a critical temperature:  . The particles obey the Bose–Einstein distribution and all occupy the ground state:

The Bose gas can be considered in a harmonic trap,  , with the ground state occupancy fraction as a function of temperature:

 

This can be achieved by cooling and magnetic or optical control of the system. Spectroscopy can detect shifts in peaks indicating thermodynamic phases with condensation. Quasiparticle BEC can be superfluids. Signs of such states include spatial and temporal coherence and polarization changes. Observation for excitons in solids was seen in 2005 and for magnons in materials and polaritons in microcavities in 2006. Graphene is another important solid state system for studies of condensed matter including quasi particles; It's a 2D electron gas, similar to other thin films.[1][2]

Excitons edit

Excitons are electron-hole pairs. Similar to helium-4 superfluidity[3] at the  -point (2.17K);[4][5] a condensate was proposed by Böer et al. in 1961.[6] Experimental phenomenon were predicted leading to various pulsed laser searches that failed to produce evidence. Signs were first seen by Fuzukawa et al. in 1990, but definite detection was published later in the 2000s. Condensed excitons are a superfluid and will not interact with phonons. While the normal exciton absorption is broadened by phonons, in the superfluid absorption degenerates to a line.

Theory edit

Excitons results from photons exciting electrons creating holes, which are then attracted and can form bound states. The 1s paraexciton and orthoexciton are possible. The 1s triplet spin state, 12.1meV below the degenerate orthoexciton states(lifetime ~ns), is decoupled and has a long lifetime to an optical decay. Dilute gas densities (n~1014cm−3) are possible, but paraexciton generation scales poorly, so significant heating occurs in creating high densities(1017cm−3) preventing BECs. Assuming a thermodynamic phase occurs when separation reaches the de Broglie wavelength( ) gives:

 

 

 

 

 

()

Where,   is the exciton density, effective mass(of electron mass order)  , and  ,  are the Planck and Boltzmann constants. Density depends on the optical generation   and lifetime as:  . Tuned lasers create excitons which efficiently self-annihilate at a rate:  , preventing a high density paraexciton BEC.[7] A potential well limits diffusion, damps exciton decay, and lowers the critical number, yielding an improved critical temperature versus the T3/2 scaling of free particles:

 

Experiments edit

In an ultrapure Cu2O crystal:   = 10s. For an achievable T = 0.01K, a manageable optical pumping rate of 105/s should produce a condensate.[8] More detailed calculations by J. Keldysh[9] and later by D. Snoke et al.[10] started a large number of experimental searches into the 1990s that failed to detect signs.[11][12][13] Pulse methods led to overheating, preventing condensate states. Helium cooling allows mili-kelvin setups and continuous wave optics improves on pulsed searches. Relaxation explosion of a condensate at lattice temperature 354 mK was seen by Yoshioka et al. in 2011.[14] Recent experiments by Stolz et al. using a potential trap have given more evidence at ultralow temperature 37 mK.[7] In a parabolic trap with exciton temperature 200 mK and lifetime broadened to 650ns, the dependence of luminescence on laser intensity has a kink which indicates condensation. The theory of a Bose gas is extended to a mean field interacting gas by a Bogoliubov approach to predict the exciton spectrum; The kink is considered a sign of transition to BEC. Signs were seen for a dense gas BEC in a GaAs quantum well.[15]

Magnons edit

Magnons, electron spin waves, can be controlled by a magnetic field. Densities from the limit of a dilute gas to a strongly interacting Bose liquid are possible. Magnetic ordering is the analog of superfluidity. The condensate appears as the emission of monochromatic microwaves, which are tunable with the applied magnetic field.

In 1999 condensation was demonstrated in antiferromagnetic TlCuCl3,[16] at temperatures as large as 14 K. The high transition temperature (relative to atomic gases) is due to the small mass (near an electron) and greater density. In 2006, condensation in a ferromagnetic Yttrium-iron-garnet thin film was seen even at room temperature[17][18] with optical pumping. Condensation was reported in gadolinium in 2011.[19] Magnon BECs have been considered as qubits for quantum computing.[20]

Polaritons edit

Polaritons, caused by light coupling to excitons, occur in optical cavities and condensation of exciton-polaritons in an optical microcavity was first published in Nature in 2006.[21] Semiconductor cavity polariton gases transition to ground state occupation at 19K.[21] Bogoliubov excitations were seen polariton BECs in 2008.[22] The signatures of BEC were observed at room temperature for the first time in 2013, in a large exciton energy semiconductor device [23][24] and in a polymer microcavity.[25]

Other quasiparticles edit

Rotons, an elementary excitation in superfluid 4He introduced by Landau,[26] were discussed by Feynman[27] and others.[28] Rotons condense at low temperature. Experiments have been proposed and the expected spectrum has been studied,[29][30][31] but roton condensates have not been detected. Phonons were first observed in a condensate in 2004 by ultrashort pulses in a bismuth crystal at 7K.[32]

See also edit

Important publications edit

  • Ando, Tsuneya; Fowler, Alan B.; Stern, Frank (1 March 1982). "Electronic properties of two-dimensional systems". Reviews of Modern Physics. American Physical Society (APS). 54 (2): 437–672. Bibcode:1982RvMP...54..437A. doi:10.1103/revmodphys.54.437. ISSN 0034-6861.
  • Dalfovo, Franco; Giorgini, Stefano; Pitaevskii, Lev P.; Stringari, Sandro (1 March 1999). "Theory of Bose-Einstein condensation in trapped gases". Reviews of Modern Physics. American Physical Society (APS). 71 (3): 463–512. arXiv:cond-mat/9806038. Bibcode:1999RvMP...71..463D. doi:10.1103/revmodphys.71.463. ISSN 0034-6861. S2CID 55787701.
  • Bloch, Immanuel; Dalibard, Jean; Zwerger, Wilhelm (18 July 2008). "Many-body physics with ultracold gases". Reviews of Modern Physics. 80 (3): 885–964. arXiv:0704.3011. Bibcode:2008RvMP...80..885B. doi:10.1103/revmodphys.80.885. ISSN 0034-6861. S2CID 119618473.
  • Bugrij, A. I.; Loktev, V. M. (2007). "On the theory of Bose–Einstein condensation of quasiparticles: On the possibility of condensation of ferromagnons at high temperatures". Low Temperature Physics. AIP Publishing. 33 (1): 37–50. Bibcode:2007LTP....33...37B. doi:10.1063/1.2409633. ISSN 1063-777X. S2CID 119340633.
  • Butov, L. V.; Lai, C. W.; Ivanov, A. L.; Gossard, A. C.; Chemla, D. S. (2002). "Towards Bose–Einstein condensation of excitons in potential traps". Nature. Springer Nature. 417 (6884): 47–52. Bibcode:2002Natur.417...47B. doi:10.1038/417047a. ISSN 0028-0836. PMID 11986661. S2CID 4373555.

References edit

  1. ^ Eisenstein, JP; Macdonald, AH (9 December 2004). "Bose–Einstein condensation of excitons in bilayer electron systems". Nature. 432 (7018): 691–694. arXiv:cond-mat/0404113. Bibcode:2004Natur.432..691E. doi:10.1038/nature03081. PMID 15592403. S2CID 1538354.
  2. ^ Berman, OL; Kezerashvili, RY; Lozovik, YE; Snoke, DW (1 November 2010). "Bose–Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity". Philosophical Transactions of the Royal Society A. 368 (1932): 5459–82. Bibcode:2010RSPTA.368.5459B. doi:10.1098/rsta.2010.0208. PMID 21041225.
  3. ^ London, F (1938). "The  -Point of Liquid Helium and the Bose–Einstein Condensation". Nature. 141 (3571): 643–644. Bibcode:1938Natur.141..643L. doi:10.1038/141643a0. S2CID 4143290.
  4. ^ Einstein, A. (1920) Proc. Berlin Acad. Science
  5. ^ Kapiza, P (1938). "Viscosity of Liquid Helium below the λ-Point". Nature. 141 (3558): 74. Bibcode:1938Natur.141...74K. doi:10.1038/141074a0.
  6. ^ Blatt, J.M., K.W. Boer, and W. Brandt, (1962) Bose–Einstein Condensation of excitons, Phys. Rev. 126.5, 1691
  7. ^ a b Heinrich Stolz; et al. (2012). "Condensation of excitons in Cu2O at ultracold temperatures: Experiment and theory". New Journal of Physics. 14 (10): 105007. arXiv:1206.7029. Bibcode:2012NJPh...14j5007S. doi:10.1088/1367-2630/14/10/105007. S2CID 118415141.
  8. ^ Aurora, C.P. (2001) Thermodynamics, McGraw-Hill
  9. ^ Keldysh, L.V. (1965). "Diagram Technique for Nonequilibrium Processes" (PDF). Sov. Phys. JETP. 20: 1018.
  10. ^ Snoke, D.W.; Wolfe, J.P.; Mysyrovicz, A. (1990). "Evidence for Bose-Einstein condensation of excitons inCu2O". Phys. Rev. B. 41 (16): 11171–11184. Bibcode:1990PhRvB..4111171S. doi:10.1103/physrevb.41.11171. PMID 9993538.
  11. ^ Naka, N.; Nagasawa, N. (2005). "Bosonic stimulation of cold excitons in a harmonic potential trap in CuO". Journal of Luminescence. 112 (1–4): 11–16. Bibcode:2005JLum..112...11N. doi:10.1016/j.jlumin.2004.09.035.
  12. ^ Joshioka, K.; Ideguchi, T.; Mysyrovicz, A; Kuwata-Gonokami, M. (2010). "Quantum inelastic collisions between paraexcitons inCu2O". Phys. Rev. B. 82 (4): 041201. Bibcode:2010PhRvB..82d1201Y. doi:10.1103/physrevb.82.041201.
  13. ^ Stolz, H.; Semkat, D. (2010). "Unique signatures for Bose-Einstein condensation in the decay luminescence lineshape of weakly interacting excitons in a potential trap". Phys. Rev. B. 81 (8): 081302. arXiv:0912.2010. Bibcode:2010PhRvB..81h1302S. doi:10.1103/physrevb.81.081302. S2CID 119242758.
  14. ^ Yoshioka, Kosuke; Chae, Eunmi; Kuwata-Gonokami, Makoto (May 31, 2011). "Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures". Nature Communications. 2 (328): 328–. arXiv:1008.2431. Bibcode:2011NatCo...2..328Y. doi:10.1038/ncomms1335. PMC 3113234. S2CID 16493054.
  15. ^ Alloing, Mathieu; Beian, Mussie; Lewenstein, Maciej; Fuster, David; González, Yolanda; González, Luisa; Combescot, Roland; Combescot, Monique; Dubin, François (July 2014). "Evidence for a Bose–Einstein condensate of excitons". EPL. 107 (1): 10012. arXiv:1304.4101. Bibcode:2014EL....10710012A. CiteSeerX 10.1.1.771.3531. doi:10.1209/0295-5075/107/10012. S2CID 119194298.
  16. ^ Nikuni, T.; Oshikawa, M.; Oosawa, A.; Tanaka, H. (1999). "Bose–Einstein Condensation of Dilute Magnons in TlCuCl3". Physical Review Letters. 84 (25): 5868–71. arXiv:cond-mat/9908118. Bibcode:2000PhRvL..84.5868N. doi:10.1103/PhysRevLett.84.5868. PMID 10991075. S2CID 1500529.
  17. ^ Demokritov, S.O.; Demidov, VE; Dzyapko, O; Melkov, GA; Serga, AA; Hillebrands, B; Slavin, AN (2006). "Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping". Nature. 443 (7110): 430–433. Bibcode:2006Natur.443..430D. doi:10.1038/nature05117. PMID 17006509. S2CID 4421089.
  18. ^ Magnon Bose Einstein Condensation made simple. Website of the "Westfählische Wilhelms Universität Münster" Prof.Demokritov. Retrieved 25 June 2012.
  19. ^ Mathew, SP; Kaul, SN (Jul 6, 2011). "Bose–Einstein condensation of magnons in polycrystalline gadolinium with nano-size grains". J Phys Condens Matter. 23 (26): 266003. Bibcode:2011JPCM...23z6003M. doi:10.1088/0953-8984/23/26/266003. PMID 21673396. S2CID 23487383.
  20. ^ Andrianov, S. N; Moiseev, S. A (2 October 2014). "Magnon qubit and quantum computing on magnon Bose–Einstein condensates". Phys. Rev. A. 90 (4): 042303. Bibcode:2014PhRvA..90d2303A. doi:10.1103/PhysRevA.90.042303.
  21. ^ a b Kasprzak, J; Richard, M; Kundermann, S; Baas, A; Jeambrun, P; Keeling, JM; Marchetti, FM; Szymańska, MH; André, R; Staehli, JL; Savona, V; Littlewood, PB; Deveaud, B; Dang (28 September 2006). "Bose–Einstein condensation of exciton polaritons". Nature. 443 (7110): 409–414. Bibcode:2006Natur.443..409K. doi:10.1038/nature05131. PMID 17006506. S2CID 854066.
  22. ^ Utsunomiya, S; Tian, L; Roumpos, G; Lai, C. W; Kumada, N; Fujisawa, T; Kuwata-Gonokami, M; Löffler, A; Höfling, S; Forchel, A; Yamamoto, Y (2008). "Observation of Bogoliubov excitations in exciton-polariton condensates". Nature Physics. 4 (9): 700–705. Bibcode:2008NatPh...4..673U. doi:10.1038/nphys1034.
  23. ^ Das, A; Bhattacharya, P; Heo, J; Banerjee, A; Guo, W (February 19, 2013). "Polariton Bose–Einstein condensate at room temperature in an Al(Ga)N nanowire–dielectric microcavity with a spatial potential trap". Proceedings of the National Academy of Sciences. 110 (8): 2735–2740. arXiv:1208.2723. Bibcode:2013PNAS..110.2735D. doi:10.1073/pnas.1210842110. PMC 3581885. PMID 23382183.
  24. ^ Francis, Matthew (Feb 6, 2013). "SCIENTIFIC METHOD / SCIENCE & EXPLORATION Bose–Einstein condensate created at room temperature". Ars Technica.
  25. ^ Plumhof, JD; Stöferle, T; Mai, L; Scherf, U; Mahrt, RF (8 December 2013). "Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer". Nature Materials. 13 (3): 247–252. Bibcode:2014NatMa..13..247P. doi:10.1038/nmat3825. PMID 24317189.
  26. ^ L. Landau (1941). J. Phys. USSR. 5: 71. {{cite journal}}: Missing or empty |title= (help)
  27. ^ Feynman, R. P (1954). "R. P. Feynman" (PDF). Phys. Rev. 94 (2): 262–277. Bibcode:1954PhRv...94..262F. doi:10.1103/PhysRev.94.262.
  28. ^ Iordanskiĭ, S. V; Pitaevskiĭ, Lev P (1980). "Bose condensation of moving rotons". Soviet Physics Uspekhi. 23 (6): 317–318. Bibcode:1980SvPhU..23..317I. doi:10.1070/PU1980v023n06ABEH004937.
  29. ^ L. A. Melnikovsky (22 July 2011). "Bose–Einstein condensation of rotons". Phys. Rev. B. 84 (2): 024525. arXiv:1009.4114. Bibcode:2011PhRvB..84b4525M. doi:10.1103/PhysRevB.84.024525. S2CID 119032713.
  30. ^ Blakie, P. B; Baillie, D; Bisset, R. N (15 August 2012). "Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate". Phys. Rev. A. 86 (2): 021604. arXiv:1206.2770. Bibcode:2012PhRvA..86b1604B. doi:10.1103/PhysRevA.86.021604. S2CID 119285430.
  31. ^ Galli, D. E; Reatto, L; Rossi, M (2014). "Quantum Monte Carlo study of a vortex in superfluid He4 and search for a vortex state in the solid". Phys. Rev. B. 89 (22): 224516. arXiv:1405.7589. Bibcode:2014PhRvB..89v4516G. doi:10.1103/PhysRevB.89.224516. S2CID 118837214.
  32. ^ Misochko, O. V; Hase, Muneaki; Ishioka, K; Kitajima, M (16 February 2004). "Transient Bose–Einstein condensation of phonons". Physics Letters A. 321 (5–6): 381–387. Bibcode:2004PhLA..321..381M. doi:10.1016/j.physleta.2003.11.063.

bose, einstein, condensation, quasiparticles, bose, einstein, condensation, occur, quasiparticles, particles, that, effective, descriptions, collective, excitations, materials, some, have, integer, spins, expected, obey, bose, einstein, statistics, like, tradi. Bose Einstein condensation can occur in quasiparticles particles that are effective descriptions of collective excitations in materials Some have integer spins and can be expected to obey Bose Einstein statistics like traditional particles Conditions for condensation of various quasiparticles have been predicted and observed The topic continues to be an active field of study Contents 1 Properties 2 Excitons 2 1 Theory 2 2 Experiments 3 Magnons 4 Polaritons 5 Other quasiparticles 6 See also 7 Important publications 8 ReferencesProperties editBECs form when low temperatures cause nearly all particles to occupy the lowest quantum state Condensation of quasiparticles occurs in ultracold gases and materials The lower masses of material quasiparticles relative to atoms lead to higher BEC temperatures An ideal Bose gas has a phase transitions when inter particle spacing approaches the thermal De Broglie wavelength k B T ℏ 2 n 2 3 M displaystyle k B T hbar 2 n 2 3 M nbsp The critical concentration is then N T 2 p 3 u 1 2 P v ℏ 3 displaystyle N propto T 2 pi 3 u 1 2 P v hbar 3 nbsp leading to a critical temperature T c lt 32 p 3 ℏ 6 V 2 u 0 P 2 displaystyle T c lt 32 pi 3 hbar 6 V 2 u 0 P 2 nbsp The particles obey the Bose Einstein distribution and all occupy the ground state The Bose gas can be considered in a harmonic trap V r M w 2 2 displaystyle V r M omega 2 2 nbsp with the ground state occupancy fraction as a function of temperature f 0 N 0 t N 1 T T c 3 displaystyle f 0 frac N 0 t N 1 left frac T T c right 3 nbsp This can be achieved by cooling and magnetic or optical control of the system Spectroscopy can detect shifts in peaks indicating thermodynamic phases with condensation Quasiparticle BEC can be superfluids Signs of such states include spatial and temporal coherence and polarization changes Observation for excitons in solids was seen in 2005 and for magnons in materials and polaritons in microcavities in 2006 Graphene is another important solid state system for studies of condensed matter including quasi particles It s a 2D electron gas similar to other thin films 1 2 Excitons editExcitons are electron hole pairs Similar to helium 4 superfluidity 3 at the l displaystyle lambda nbsp point 2 17K 4 5 a condensate was proposed by Boer et al in 1961 6 Experimental phenomenon were predicted leading to various pulsed laser searches that failed to produce evidence Signs were first seen by Fuzukawa et al in 1990 but definite detection was published later in the 2000s Condensed excitons are a superfluid and will not interact with phonons While the normal exciton absorption is broadened by phonons in the superfluid absorption degenerates to a line Theory edit Excitons results from photons exciting electrons creating holes which are then attracted and can form bound states The 1s paraexciton and orthoexciton are possible The 1s triplet spin state 12 1meV below the degenerate orthoexciton states lifetime ns is decoupled and has a long lifetime to an optical decay Dilute gas densities n 1014cm 3 are possible but paraexciton generation scales poorly so significant heating occurs in creating high densities 1017cm 3 preventing BECs Assuming a thermodynamic phase occurs when separation reaches the de Broglie wavelength l d B displaystyle lambda dB nbsp gives n 1 3 ℏ 1 m eff k T c r 1 2 T c n 2 3 ℏ 2 k m eff displaystyle n 1 3 hbar 1 m text eff kT cr 1 2 longrightarrow T c frac n 2 3 hbar 2 km text eff nbsp Where n displaystyle n nbsp is the exciton density effective mass of electron mass order m eff displaystyle m text eff nbsp and ℏ displaystyle hbar nbsp k displaystyle k nbsp are the Planck and Boltzmann constants Density depends on the optical generation g displaystyle g nbsp and lifetime as n g t displaystyle n g tau nbsp Tuned lasers create excitons which efficiently self annihilate at a rate d n d t a n 2 displaystyle dn dt an 2 nbsp preventing a high density paraexciton BEC 7 A potential well limits diffusion damps exciton decay and lowers the critical number yielding an improved critical temperature versus the T3 2 scaling of free particles N c z 3 k T ℏ w 3 displaystyle N c zeta 3 left frac kT hbar omega right 3 nbsp Experiments edit In an ultrapure Cu2O crystal t displaystyle tau nbsp 10s For an achievable T 0 01K a manageable optical pumping rate of 105 s should produce a condensate 8 More detailed calculations by J Keldysh 9 and later by D Snoke et al 10 started a large number of experimental searches into the 1990s that failed to detect signs 11 12 13 Pulse methods led to overheating preventing condensate states Helium cooling allows mili kelvin setups and continuous wave optics improves on pulsed searches Relaxation explosion of a condensate at lattice temperature 354 mK was seen by Yoshioka et al in 2011 14 Recent experiments by Stolz et al using a potential trap have given more evidence at ultralow temperature 37 mK 7 In a parabolic trap with exciton temperature 200 mK and lifetime broadened to 650ns the dependence of luminescence on laser intensity has a kink which indicates condensation The theory of a Bose gas is extended to a mean field interacting gas by a Bogoliubov approach to predict the exciton spectrum The kink is considered a sign of transition to BEC Signs were seen for a dense gas BEC in a GaAs quantum well 15 Magnons editMagnons electron spin waves can be controlled by a magnetic field Densities from the limit of a dilute gas to a strongly interacting Bose liquid are possible Magnetic ordering is the analog of superfluidity The condensate appears as the emission of monochromatic microwaves which are tunable with the applied magnetic field In 1999 condensation was demonstrated in antiferromagnetic TlCuCl3 16 at temperatures as large as 14 K The high transition temperature relative to atomic gases is due to the small mass near an electron and greater density In 2006 condensation in a ferromagnetic Yttrium iron garnet thin film was seen even at room temperature 17 18 with optical pumping Condensation was reported in gadolinium in 2011 19 Magnon BECs have been considered as qubits for quantum computing 20 Polaritons editPolaritons caused by light coupling to excitons occur in optical cavities and condensation of exciton polaritons in an optical microcavity was first published in Nature in 2006 21 Semiconductor cavity polariton gases transition to ground state occupation at 19K 21 Bogoliubov excitations were seen polariton BECs in 2008 22 The signatures of BEC were observed at room temperature for the first time in 2013 in a large exciton energy semiconductor device 23 24 and in a polymer microcavity 25 Other quasiparticles editRotons an elementary excitation in superfluid 4He introduced by Landau 26 were discussed by Feynman 27 and others 28 Rotons condense at low temperature Experiments have been proposed and the expected spectrum has been studied 29 30 31 but roton condensates have not been detected Phonons were first observed in a condensate in 2004 by ultrashort pulses in a bismuth crystal at 7K 32 See also editBose Einstein condensate Bose Einstein condensation of polaritonsImportant publications editAndo Tsuneya Fowler Alan B Stern Frank 1 March 1982 Electronic properties of two dimensional systems Reviews of Modern Physics American Physical Society APS 54 2 437 672 Bibcode 1982RvMP 54 437A doi 10 1103 revmodphys 54 437 ISSN 0034 6861 Dalfovo Franco Giorgini Stefano Pitaevskii Lev P Stringari Sandro 1 March 1999 Theory of Bose Einstein condensation in trapped gases Reviews of Modern Physics American Physical Society APS 71 3 463 512 arXiv cond mat 9806038 Bibcode 1999RvMP 71 463D doi 10 1103 revmodphys 71 463 ISSN 0034 6861 S2CID 55787701 Bloch Immanuel Dalibard Jean Zwerger Wilhelm 18 July 2008 Many body physics with ultracold gases Reviews of Modern Physics 80 3 885 964 arXiv 0704 3011 Bibcode 2008RvMP 80 885B doi 10 1103 revmodphys 80 885 ISSN 0034 6861 S2CID 119618473 Bugrij A I Loktev V M 2007 On the theory of Bose Einstein condensation of quasiparticles On the possibility of condensation of ferromagnons at high temperatures Low Temperature Physics AIP Publishing 33 1 37 50 Bibcode 2007LTP 33 37B doi 10 1063 1 2409633 ISSN 1063 777X S2CID 119340633 Butov L V Lai C W Ivanov A L Gossard A C Chemla D S 2002 Towards Bose Einstein condensation of excitons in potential traps Nature Springer Nature 417 6884 47 52 Bibcode 2002Natur 417 47B doi 10 1038 417047a ISSN 0028 0836 PMID 11986661 S2CID 4373555 References edit Eisenstein JP Macdonald AH 9 December 2004 Bose Einstein condensation of excitons in bilayer electron systems Nature 432 7018 691 694 arXiv cond mat 0404113 Bibcode 2004Natur 432 691E doi 10 1038 nature03081 PMID 15592403 S2CID 1538354 Berman OL Kezerashvili RY Lozovik YE Snoke DW 1 November 2010 Bose Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity Philosophical Transactions of the Royal Society A 368 1932 5459 82 Bibcode 2010RSPTA 368 5459B doi 10 1098 rsta 2010 0208 PMID 21041225 London F 1938 The l displaystyle lambda nbsp Point of Liquid Helium and the Bose Einstein Condensation Nature 141 3571 643 644 Bibcode 1938Natur 141 643L doi 10 1038 141643a0 S2CID 4143290 Einstein A 1920 Proc Berlin Acad Science Kapiza P 1938 Viscosity of Liquid Helium below the l Point Nature 141 3558 74 Bibcode 1938Natur 141 74K doi 10 1038 141074a0 Blatt J M K W Boer and W Brandt 1962 Bose Einstein Condensation of excitons Phys Rev 126 5 1691 a b Heinrich Stolz et al 2012 Condensation of excitons in Cu2O at ultracold temperatures Experiment and theory New Journal of Physics 14 10 105007 arXiv 1206 7029 Bibcode 2012NJPh 14j5007S doi 10 1088 1367 2630 14 10 105007 S2CID 118415141 Aurora C P 2001 Thermodynamics McGraw Hill Keldysh L V 1965 Diagram Technique for Nonequilibrium Processes PDF Sov Phys JETP 20 1018 Snoke D W Wolfe J P Mysyrovicz A 1990 Evidence for Bose Einstein condensation of excitons inCu2O Phys Rev B 41 16 11171 11184 Bibcode 1990PhRvB 4111171S doi 10 1103 physrevb 41 11171 PMID 9993538 Naka N Nagasawa N 2005 Bosonic stimulation of cold excitons in a harmonic potential trap in CuO Journal of Luminescence 112 1 4 11 16 Bibcode 2005JLum 112 11N doi 10 1016 j jlumin 2004 09 035 Joshioka K Ideguchi T Mysyrovicz A Kuwata Gonokami M 2010 Quantum inelastic collisions between paraexcitons inCu2O Phys Rev B 82 4 041201 Bibcode 2010PhRvB 82d1201Y doi 10 1103 physrevb 82 041201 Stolz H Semkat D 2010 Unique signatures for Bose Einstein condensation in the decay luminescence lineshape of weakly interacting excitons in a potential trap Phys Rev B 81 8 081302 arXiv 0912 2010 Bibcode 2010PhRvB 81h1302S doi 10 1103 physrevb 81 081302 S2CID 119242758 Yoshioka Kosuke Chae Eunmi Kuwata Gonokami Makoto May 31 2011 Transition to a Bose Einstein condensate and relaxation explosion of excitons at sub Kelvin temperatures Nature Communications 2 328 328 arXiv 1008 2431 Bibcode 2011NatCo 2 328Y doi 10 1038 ncomms1335 PMC 3113234 S2CID 16493054 Alloing Mathieu Beian Mussie Lewenstein Maciej Fuster David Gonzalez Yolanda Gonzalez Luisa Combescot Roland Combescot Monique Dubin Francois July 2014 Evidence for a Bose Einstein condensate of excitons EPL 107 1 10012 arXiv 1304 4101 Bibcode 2014EL 10710012A CiteSeerX 10 1 1 771 3531 doi 10 1209 0295 5075 107 10012 S2CID 119194298 Nikuni T Oshikawa M Oosawa A Tanaka H 1999 Bose Einstein Condensation of Dilute Magnons in TlCuCl3 Physical Review Letters 84 25 5868 71 arXiv cond mat 9908118 Bibcode 2000PhRvL 84 5868N doi 10 1103 PhysRevLett 84 5868 PMID 10991075 S2CID 1500529 Demokritov S O Demidov VE Dzyapko O Melkov GA Serga AA Hillebrands B Slavin AN 2006 Bose Einstein condensation of quasi equilibrium magnons at room temperature under pumping Nature 443 7110 430 433 Bibcode 2006Natur 443 430D doi 10 1038 nature05117 PMID 17006509 S2CID 4421089 Magnon Bose Einstein Condensation made simple Website of the Westfahlische Wilhelms Universitat Munster Prof Demokritov Retrieved 25 June 2012 Mathew SP Kaul SN Jul 6 2011 Bose Einstein condensation of magnons in polycrystalline gadolinium with nano size grains J Phys Condens Matter 23 26 266003 Bibcode 2011JPCM 23z6003M doi 10 1088 0953 8984 23 26 266003 PMID 21673396 S2CID 23487383 Andrianov S N Moiseev S A 2 October 2014 Magnon qubit and quantum computing on magnon Bose Einstein condensates Phys Rev A 90 4 042303 Bibcode 2014PhRvA 90d2303A doi 10 1103 PhysRevA 90 042303 a b Kasprzak J Richard M Kundermann S Baas A Jeambrun P Keeling JM Marchetti FM Szymanska MH Andre R Staehli JL Savona V Littlewood PB Deveaud B Dang 28 September 2006 Bose Einstein condensation of exciton polaritons Nature 443 7110 409 414 Bibcode 2006Natur 443 409K doi 10 1038 nature05131 PMID 17006506 S2CID 854066 Utsunomiya S Tian L Roumpos G Lai C W Kumada N Fujisawa T Kuwata Gonokami M Loffler A Hofling S Forchel A Yamamoto Y 2008 Observation of Bogoliubov excitations in exciton polariton condensates Nature Physics 4 9 700 705 Bibcode 2008NatPh 4 673U doi 10 1038 nphys1034 Das A Bhattacharya P Heo J Banerjee A Guo W February 19 2013 Polariton Bose Einstein condensate at room temperature in an Al Ga N nanowire dielectric microcavity with a spatial potential trap Proceedings of the National Academy of Sciences 110 8 2735 2740 arXiv 1208 2723 Bibcode 2013PNAS 110 2735D doi 10 1073 pnas 1210842110 PMC 3581885 PMID 23382183 Francis Matthew Feb 6 2013 SCIENTIFIC METHOD SCIENCE amp EXPLORATION Bose Einstein condensate created at room temperature Ars Technica Plumhof JD Stoferle T Mai L Scherf U Mahrt RF 8 December 2013 Room temperature Bose Einstein condensation of cavity exciton polaritons in a polymer Nature Materials 13 3 247 252 Bibcode 2014NatMa 13 247P doi 10 1038 nmat3825 PMID 24317189 L Landau 1941 J Phys USSR 5 71 a href Template Cite journal html title Template Cite journal cite journal a Missing or empty title help Feynman R P 1954 R P Feynman PDF Phys Rev 94 2 262 277 Bibcode 1954PhRv 94 262F doi 10 1103 PhysRev 94 262 Iordanskiĭ S V Pitaevskiĭ Lev P 1980 Bose condensation of moving rotons Soviet Physics Uspekhi 23 6 317 318 Bibcode 1980SvPhU 23 317I doi 10 1070 PU1980v023n06ABEH004937 L A Melnikovsky 22 July 2011 Bose Einstein condensation of rotons Phys Rev B 84 2 024525 arXiv 1009 4114 Bibcode 2011PhRvB 84b4525M doi 10 1103 PhysRevB 84 024525 S2CID 119032713 Blakie P B Baillie D Bisset R N 15 August 2012 Roton spectroscopy in a harmonically trapped dipolar Bose Einstein condensate Phys Rev A 86 2 021604 arXiv 1206 2770 Bibcode 2012PhRvA 86b1604B doi 10 1103 PhysRevA 86 021604 S2CID 119285430 Galli D E Reatto L Rossi M 2014 Quantum Monte Carlo study of a vortex in superfluid He4 and search for a vortex state in the solid Phys Rev B 89 22 224516 arXiv 1405 7589 Bibcode 2014PhRvB 89v4516G doi 10 1103 PhysRevB 89 224516 S2CID 118837214 Misochko O V Hase Muneaki Ishioka K Kitajima M 16 February 2004 Transient Bose Einstein condensation of phonons Physics Letters A 321 5 6 381 387 Bibcode 2004PhLA 321 381M doi 10 1016 j physleta 2003 11 063 Retrieved from https en wikipedia org w index php title Bose Einstein condensation of quasiparticles amp oldid 1178883133, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.