fbpx
Wikipedia

Isotopes of astatine

Astatine (85At) has 41 known isotopes, all of which are radioactive; their mass numbers range from 188 to 229 (though 189At is undiscovered).[2] There are also 24 known metastable excited states. The longest-lived isotope is 210At, which has a half-life of 8.1 hours; the longest-lived isotope existing in naturally occurring decay chains is 219At with a half-life of 56 seconds.

Isotopes of astatine (85At)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
209At synth 5.41 h β+ 209Po
α 205Bi
210At synth 8.1 h β+ 210Po
α 206Bi
211At synth 7.21 h ε 211Po
α 207Bi

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
Decay
mode

[n 4]
Daughter
isotope

[n 5]
Spin and
parity
[n 6][n 7]
Isotopic
abundance
Excitation energy[n 7]
188At[2] 85 103 190+350
−80
 μs
α (~50%) 184Bi
p (~50%) 187Po
190At[2] 85 105 1.0+14
−4
 ms
α 186Bi (10−)
191At[3] 85 106 1.7+11
−5
 ms
α 187Bi (1/2+)
191mAt 50(30) keV 2.1+4
−3
 ms
α 187Bi (7/2−)
192At[4] 85 107 192.00314(28) 11.5(6) ms α 188Bi 3+#
β+ (rare) 192Po
β+, SF (0.42%) (various)
192mAt 0(40) keV 88(6) ms α 188mBi (9−, 10−)
β+ (rare) 192Po
β+, SF (0.42%) (various)
193At[4] 85 108 192.99984(6) 28+5
−4
 ms
α 189Bi (1/2+)
193m1At 8(9) keV 21(5) ms α 189m1Bi (7/2−)
193m2At 42(9) keV 27+4
−3
 ms
IT (76%) 193At (13/2+)
α (24%) 189m2Bi
194At[4] 85 109 193.99873(20) 286(7) ms α (91.7%#) 190Bi (5-)
β+ (8.3%#) 194Po
β+, SF (0.032%#) (various)
194mAt -20(40) keV 323(7) ms α (91.7%#) 190Bi (10-)
β+ (8.3%#) 194Po
β+, SF (0.032%#) (various)
195At[4] 85 110 194.996268(10) 290(20) ms α 191mBi (1/2+)
β+? 195Po
195mAt 29(7) keV 143(3) ms α (88%) 191Bi (7/2-)
IT (12%) 195At
β+? 195Po
196At[4] 85 111 195.99579(6) 377(4) ms α (97.5%) 192Bi (3+)
β+ (2.5%) 196Po
196m1At −40(40) keV 20# ms α 192mBi (10−)
196m2At 157.9(1) keV 11(2) μs IT 196At (5+)
197At[4] 85 112 196.99319(5) 388.2(5.6) ms α (96.1%) 193Bi (9/2−)
β+ (3.9%) 197Po
197m1At 45(8) keV 2.0(2) s α 193m1Bi (1/2+)
IT (<0.004%) 197At
β+? 197Po
197m2At 310.7(2) keV 1.3(2) μs IT 197At (13/2+)
198At 85 113 197.99284(5) 4.2(3) s α (94%) 194Bi (3+)
β+ (6%) 198Po
198mAt 330(90)# keV 1.0(2) s (10−)
199At 85 114 198.99053(5) 6.92(13) s α (89%) 195Bi (9/2−)
β+ (11%) 199Po
200At 85 115 199.990351(26) 43.2(9) s α (57%) 196Bi (3+)
β+ (43%) 200Po
200m1At 112.7(30) keV 47(1) s α (43%) 196Bi (7+)
IT 200At
β+ 200Po
200m2At 344(3) keV 3.5(2) s (10−)
201At 85 116 200.988417(9) 85(3) s α (71%) 197Bi (9/2−)
β+ (29%) 201Po
202At 85 117 201.98863(3) 184(1) s β+ (88%) 202Po (2, 3)+
α (12%) 198Bi
202m1At 190(40) keV 182(2) s (7+)
202m2At 580(40) keV 460(50) ms (10−)
203At 85 118 202.986942(13) 7.37(13) min β+ (69%) 203Po 9/2−
α (31%) 199Bi
204At 85 119 203.987251(26) 9.2(2) min β+ (96%) 204Po 7+
α (3.8%) 200Bi
204mAt 587.30(20) keV 108(10) ms IT 204At (10−)
205At 85 120 204.986074(16) 26.2(5) min β+ (90%) 205Po 9/2−
α (10%) 201Bi
205mAt 2339.65(23) keV 7.76(14) μs 29/2+
206At 85 121 205.986667(22) 30.6(13) min β+ (99.11%) 206Po (5)+
α (0.9%) 202Bi
206mAt 807(3) keV 410(80) ns (10)−
207At 85 122 206.985784(23) 1.80(4) h β+ (91%) 207Po 9/2−
α (8.6%) 203Bi
208At 85 123 207.986590(28) 1.63(3) h β+ (99.5%) 208Po 6+
α (0.55%) 204Bi
209At 85 124 208.986173(8) 5.41(5) h β+ (96%) 209Po 9/2−
α (4.0%) 205Bi
210At 85 125 209.987148(8) 8.1(4) h β+ (99.8%) 210Po (5)+
α (0.18%) 206Bi
210m1At 2549.6(2) keV 482(6) μs (15)−
210m2At 4027.7(2) keV 5.66(7) μs (19)+
211At 85 126 210.9874963(30) 7.214(7) h EC (58.2%) 211Po 9/2−
α (42%) 207Bi
212At 85 127 211.990745(8) 0.314(2) s α (99.95%) 208Bi (1−)
β+ (0.05%) 212Po
β (2×10−6%) 212Rn
212m1At 223(7) keV 0.119(3) s α (99%) 208Bi (9−)
IT (1%) 212At
212m2At 4771.6(11) keV 152(5) μs (25−)
213At 85 128 212.992937(5) 125(6) ns α 209Bi 9/2−
214At 85 129 213.996372(5) 558(10) ns α 210Bi 1−
214m1At 59(9) keV 265(30) ns
214m2At 231(6) keV 760(15) ns 9−
215At 85 130 214.998653(7) 0.10(2) ms α 211Bi 9/2− Trace[n 8]
216At 85 131 216.002423(4) 0.30(3) ms α (99.99%) 212Bi 1−
β (.006%) 216Rn
EC (3×10−7%) 216Po
216mAt 413(5) keV 100# μs (9−)
217At 85 132 217.004719(5) 32.3(4) ms α (99.98%) 213Bi 9/2− Trace[n 9]
β (.012%) 217Rn
218At 85 133 218.008694(12) 1.27(6) s[5] α (99.9%) 214Bi 1−# Trace[n 10]
β (0.10%) 218Rn
219At 85 134 219.011162(4) 56(3) s α (97%) 215Bi (9/2−) Trace[n 8]
β (3.0%) 219Rn
220At 85 135 220.015433(15) 3.71(4) min β (92%) 220Rn 3(−#)
α (8.0%) 216Bi
221At 85 136 221.018017(15) 2.3(2) min β 221Rn 3/2−#
222At 85 137 222.022494(17) 54(10) s β 222Rn
223At 85 138 223.025151(15) 50(7) s β 223Rn 3/2−#
224At 85 139 224.029749(24) 2.5(1.5) min β 224Rn 2+#
225At 85 140 225.03253(32)# 3# s β 225Rn 1/2+#
226At 85 141 226.03721(32)# 7# min β 226Rn 2+#
227At 85 142 227.04018(32)# 5# s β 227Rn 1/2+#
228At 85 143 228.04496(43)# 1# min β 228Rn 3+#
229At 85 144 229.04819(43)# 1# s β 229Rn 1/2+#
This table header & footer:
  1. ^ mAt – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Modes of decay:
  5. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^ a b Intermediate decay product of 235U
  9. ^ Intermediate decay product of 237Np
  10. ^ Intermediate decay product of 238U

Alpha decay edit

Alpha decay characteristics for sample astatine isotopes[a]
Mass
number
Mass
excess
[6]
Mass
excess of
daughter[6]
Average
energy of
alpha
decay
Half-life[6] Probability
of alpha
decay[6]
Alpha
decay
half-life
207 −13.243 MeV −19.116 MeV 5.873 MeV 1.80 h 8.6% 20.9 h
208 −12.491 MeV −18.243 MeV 5.752 MeV 1.63 h 0.55% 12.3 d
209 −12.880 MeV −18.638 MeV 5.758 MeV 5.41 h 4.1% 5.5 d
210 −11.972 MeV −17.604 MeV 5.632 MeV 8.1 h 0.175% 193 d
211 −11.647 MeV −17.630 MeV 5.983 MeV 7.21 h 41.8% 17.2 h
212 −8.621 MeV −16.436 MeV 7.825 MeV 0.31 s ≈100% 0.31 s
213 −6.579 MeV −15.834 MeV 9.255 MeV 125 ns 100% 125 ns
214 −3.380 MeV −12.366 MeV 8.986 MeV 558 ns 100% 558 ns
219 10.397 MeV 4.073 MeV 6.324 MeV 56 s 97% 58 s
220 14.350 MeV 8.298 MeV 6.052 MeV 3.71 min 8% 46.4 min
221[b] 16.810 MeV 11.244 MeV 5.566 MeV 2.3 min experimentally
alpha stable

Astatine has 23 nuclear isomers (nuclei with one or more nucleons – protons or neutrons – in an excited state). A nuclear isomer may also be called a "meta-state"; this means the system has more internal energy than the "ground state" (the state with the lowest possible internal energy), making the former likely to decay into the latter. There may be more than one isomer for each isotope. The most stable of them is astatine-202m1,[c] which has a half-life of about 3 minutes; this is longer than those of all ground states except those of isotopes 203–211 and 220. The least stable one is astatine-214m1; its half-life of 265 ns is shorter than those of all ground states except that of astatine-213.[6]

Alpha decay energy follows the same trend as for other heavy elements.[7] Lighter astatine isotopes have quite high energies of alpha decay, which become lower as the nuclei become heavier. However, astatine-211 has a significantly higher energy than the previous isotope; it has a nucleus with 126 neutrons, and 126 is a magic number (corresponding to a filled neutron shell). Despite having a similar half-life time as the previous isotope (8.1 hours for astatine-210 and 7.2 hours for astatine-211), the alpha decay probability is much higher for the latter: 41.8 percent versus just 0.18 percent.[6][d] The two following isotopes release even more energy, with astatine-213 releasing the highest amount of energy of all astatine isotopes. For this reason, it is the shortest-lived astatine isotope.[7] Even though heavier astatine isotopes release less energy, no long-lived astatine isotope exists; this happens due to the increasing role of beta decay.[7] This decay mode is especially important for astatine: as early as 1950, it was postulated that the element has no beta-stable isotopes (i.e. ones that do not undergo beta decay at all),[8] though nuclear mass measurements reveal that 215At is in fact beta-stable, as it has the lowest mass of all isobars with A = 215.[9] A beta decay mode has been found for all other astatine isotopes except for astatine-213, astatine-214, and astatine-216m.[6] Among other isotopes: astatine-210 and the lighter isotopes decay by positron emission; astatine-216 and the heavier isotopes undergo beta decay; astatine-212 can decay either way; and astatine-211 decays by electron capture instead.[6]

The most stable isotope of astatine is astatine-210, which has a half-life of about 8.1 hours. This isotope's primary decay mode is positron emission to the relatively long-lived alpha emitter, polonium-210. In total, only five isotopes of astatine have half-lives exceeding one hour: those between 207 and 211. The least stable ground state isotope is astatine-213, with a half-life of about 125 nanoseconds. It undergoes alpha decay to the extremely long-lived (in practice, stable) isotope bismuth-209.[6]

See also edit

  1. ^ In the table, under the words "mass excess", the energy equivalents are given rather than the real mass excesses; "mass excess daughter" stands for the energy equivalent of the mass excess sum of the daughter of the isotope and the alpha particle; "alpha decay half-life" refers to the half-life if decay modes other than alpha are omitted.
  2. ^ Since astatine-221 has not been shown to undergo alpha decay, the alpha decay energy is theoretical. The value for mass excess is calculated rather than measured.
  3. ^ "m1" means that this state of the isotope is the next possible one above – energy greater than – the ground state. "m2" and similar designations refer to further higher energy states. The number may be dropped if there is only one well-established meta state, such as astatine-216m. Note that other designation techniques exist.
  4. ^ This means that if decay modes other than alpha are omitted, then astatine-210 has an alpha half-life of 4,628.6 hours (128.9 days) and astatine-211 has one of 17.2 hours (0.9 days). Therefore, astatine-211 is less stable toward alpha decay than the lighter isotope, and is more likely to undergo alpha decay in the same time period.

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ a b c Kokkonen, Henna. "Decay properties of the new isotopes 188At and 190At" (PDF). University of Jyväskylä. Retrieved 8 June 2023.
  3. ^ Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (1 August 2003). "Alpha-decay studies of the new isotopes 191At and 193At" (PDF). The European Physical Journal A - Hadrons and Nuclei. 17 (4): 537–558. Bibcode:2003EPJA...17..537K. doi:10.1140/epja/i2002-10162-1. ISSN 1434-601X. S2CID 122384851. Retrieved 23 June 2023.
  4. ^ a b c d e f Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641. S2CID 233794940.
  5. ^ Cubiss, J. G.; Andreyev, A. N.; Barzakh, A. E.; Andel, B.; Antalic, S.; Cocolios, T. E.; Goodacre, T. Day; Fedorov, D. V.; Fedosseev, V. N.; Ferrer, R.; Fink, D. A.; Gaffney, L. P.; Ghys, L.; Huyse, M.; Kalaninová, Z.; Köster, U.; Marsh, B. A.; Molkanov, P. L.; Rossel, R. E.; Rothe, S.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Stryjczyk, M.; L.Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wilson, G. L. (2019-06-14). "Fine structure in the α decay of At218". Physical Review C. American Physical Society (APS). 99 (6): 064317. doi:10.1103/physrevc.99.064317. ISSN 2469-9985. S2CID 197508141.
  6. ^ a b c d e f g h i Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  7. ^ a b c Lavrukhina & Pozdnyakov 1966, p. 232.
  8. ^ Rankama, Kalervo (1956). Isotope geology (2nd ed.). Pergamon Press. p. 403. ISBN 978-0-470-70800-2.
  9. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  • Lavrukhina, Avgusta Konstantinovna; Pozdnyakov, Aleksandr Aleksandrovich (1966). Аналитическая химия технеция, прометия, астатина и франция [Analytical Chemistry of Technetium, Promethium, Astatine, and Francium] (in Russian). Nauka.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, astatine, astatine, 85at, known, isotopes, which, radioactive, their, mass, numbers, range, from, though, 189at, undiscovered, there, also, known, metastable, excited, states, longest, lived, isotope, 210at, which, half, life, hours, longest, lived, . Astatine 85At has 41 known isotopes all of which are radioactive their mass numbers range from 188 to 229 though 189At is undiscovered 2 There are also 24 known metastable excited states The longest lived isotope is 210At which has a half life of 8 1 hours the longest lived isotope existing in naturally occurring decay chains is 219At with a half life of 56 seconds Isotopes of astatine 85At Main isotopes 1 Decayabun dance half life t1 2 mode pro duct209At synth 5 41 h b 209Poa 205Bi210At synth 8 1 h b 210Poa 206Bi211At synth 7 21 h e 211Poa 207Biviewtalkedit Contents 1 List of isotopes 2 Alpha decay 3 See also 4 ReferencesList of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life Decaymode n 4 Daughterisotope n 5 Spin andparity n 6 n 7 IsotopicabundanceExcitation energy n 7 188At 2 85 103 190 350 80 ms a 50 184Bip 50 187Po190At 2 85 105 1 0 14 4 ms a 186Bi 10 191At 3 85 106 1 7 11 5 ms a 187Bi 1 2 191mAt 50 30 keV 2 1 4 3 ms a 187Bi 7 2 192At 4 85 107 192 00314 28 11 5 6 ms a 188Bi 3 b rare 192Pob SF 0 42 various 192mAt 0 40 keV 88 6 ms a 188mBi 9 10 b rare 192Pob SF 0 42 various 193At 4 85 108 192 99984 6 28 5 4 ms a 189Bi 1 2 193m1At 8 9 keV 21 5 ms a 189m1Bi 7 2 193m2At 42 9 keV 27 4 3 ms IT 76 193At 13 2 a 24 189m2Bi194At 4 85 109 193 99873 20 286 7 ms a 91 7 190Bi 5 b 8 3 194Pob SF 0 032 various 194mAt 20 40 keV 323 7 ms a 91 7 190Bi 10 b 8 3 194Pob SF 0 032 various 195At 4 85 110 194 996268 10 290 20 ms a 191mBi 1 2 b 195Po195mAt 29 7 keV 143 3 ms a 88 191Bi 7 2 IT 12 195Atb 195Po196At 4 85 111 195 99579 6 377 4 ms a 97 5 192Bi 3 b 2 5 196Po196m1At 40 40 keV 20 ms a 192mBi 10 196m2At 157 9 1 keV 11 2 ms IT 196At 5 197At 4 85 112 196 99319 5 388 2 5 6 ms a 96 1 193Bi 9 2 b 3 9 197Po197m1At 45 8 keV 2 0 2 s a 193m1Bi 1 2 IT lt 0 004 197Atb 197Po197m2At 310 7 2 keV 1 3 2 ms IT 197At 13 2 198At 85 113 197 99284 5 4 2 3 s a 94 194Bi 3 b 6 198Po198mAt 330 90 keV 1 0 2 s 10 199At 85 114 198 99053 5 6 92 13 s a 89 195Bi 9 2 b 11 199Po200At 85 115 199 990351 26 43 2 9 s a 57 196Bi 3 b 43 200Po200m1At 112 7 30 keV 47 1 s a 43 196Bi 7 IT 200Atb 200Po200m2At 344 3 keV 3 5 2 s 10 201At 85 116 200 988417 9 85 3 s a 71 197Bi 9 2 b 29 201Po202At 85 117 201 98863 3 184 1 s b 88 202Po 2 3 a 12 198Bi202m1At 190 40 keV 182 2 s 7 202m2At 580 40 keV 460 50 ms 10 203At 85 118 202 986942 13 7 37 13 min b 69 203Po 9 2 a 31 199Bi204At 85 119 203 987251 26 9 2 2 min b 96 204Po 7 a 3 8 200Bi204mAt 587 30 20 keV 108 10 ms IT 204At 10 205At 85 120 204 986074 16 26 2 5 min b 90 205Po 9 2 a 10 201Bi205mAt 2339 65 23 keV 7 76 14 ms 29 2 206At 85 121 205 986667 22 30 6 13 min b 99 11 206Po 5 a 0 9 202Bi206mAt 807 3 keV 410 80 ns 10 207At 85 122 206 985784 23 1 80 4 h b 91 207Po 9 2 a 8 6 203Bi208At 85 123 207 986590 28 1 63 3 h b 99 5 208Po 6 a 0 55 204Bi209At 85 124 208 986173 8 5 41 5 h b 96 209Po 9 2 a 4 0 205Bi210At 85 125 209 987148 8 8 1 4 h b 99 8 210Po 5 a 0 18 206Bi210m1At 2549 6 2 keV 482 6 ms 15 210m2At 4027 7 2 keV 5 66 7 ms 19 211At 85 126 210 9874963 30 7 214 7 h EC 58 2 211Po 9 2 a 42 207Bi212At 85 127 211 990745 8 0 314 2 s a 99 95 208Bi 1 b 0 05 212Pob 2 10 6 212Rn212m1At 223 7 keV 0 119 3 s a 99 208Bi 9 IT 1 212At212m2At 4771 6 11 keV 152 5 ms 25 213At 85 128 212 992937 5 125 6 ns a 209Bi 9 2 214At 85 129 213 996372 5 558 10 ns a 210Bi 1 214m1At 59 9 keV 265 30 ns214m2At 231 6 keV 760 15 ns 9 215At 85 130 214 998653 7 0 10 2 ms a 211Bi 9 2 Trace n 8 216At 85 131 216 002423 4 0 30 3 ms a 99 99 212Bi 1 b 006 216RnEC 3 10 7 216Po216mAt 413 5 keV 100 ms 9 217At 85 132 217 004719 5 32 3 4 ms a 99 98 213Bi 9 2 Trace n 9 b 012 217Rn218At 85 133 218 008694 12 1 27 6 s 5 a 99 9 214Bi 1 Trace n 10 b 0 10 218Rn219At 85 134 219 011162 4 56 3 s a 97 215Bi 9 2 Trace n 8 b 3 0 219Rn220At 85 135 220 015433 15 3 71 4 min b 92 220Rn 3 a 8 0 216Bi221At 85 136 221 018017 15 2 3 2 min b 221Rn 3 2 222At 85 137 222 022494 17 54 10 s b 222Rn223At 85 138 223 025151 15 50 7 s b 223Rn 3 2 224At 85 139 224 029749 24 2 5 1 5 min b 224Rn 2 225At 85 140 225 03253 32 3 s b 225Rn 1 2 226At 85 141 226 03721 32 7 min b 226Rn 2 227At 85 142 227 04018 32 5 s b 227Rn 1 2 228At 85 143 228 04496 43 1 min b 228Rn 3 229At 85 144 229 04819 43 1 s b 229Rn 1 2 This table header amp footer view mAt Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Modes of decay EC Electron captureIT Isomeric transition Bold italics symbol as daughter Daughter product is nearly stable spin value Indicates spin with weak assignment arguments a b Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN a b Intermediate decay product of 235U Intermediate decay product of 237Np Intermediate decay product of 238UAlpha decay editAlpha decay characteristics for sample astatine isotopes a Massnumber Massexcess 6 Massexcess ofdaughter 6 Averageenergy ofalphadecay Half life 6 Probabilityof alphadecay 6 Alphadecayhalf life207 13 243 MeV 19 116 MeV 5 873 MeV 1 80 h 8 6 20 9 h208 12 491 MeV 18 243 MeV 5 752 MeV 1 63 h 0 55 12 3 d209 12 880 MeV 18 638 MeV 5 758 MeV 5 41 h 4 1 5 5 d210 11 972 MeV 17 604 MeV 5 632 MeV 8 1 h 0 175 193 d211 11 647 MeV 17 630 MeV 5 983 MeV 7 21 h 41 8 17 2 h212 8 621 MeV 16 436 MeV 7 825 MeV 0 31 s 100 0 31 s213 6 579 MeV 15 834 MeV 9 255 MeV 125 ns 100 125 ns214 3 380 MeV 12 366 MeV 8 986 MeV 558 ns 100 558 ns219 10 397 MeV 4 073 MeV 6 324 MeV 56 s 97 58 s220 14 350 MeV 8 298 MeV 6 052 MeV 3 71 min 8 46 4 min221 b 16 810 MeV 11 244 MeV 5 566 MeV 2 3 min experimentallyalpha stable Astatine has 23 nuclear isomers nuclei with one or more nucleons protons or neutrons in an excited state A nuclear isomer may also be called a meta state this means the system has more internal energy than the ground state the state with the lowest possible internal energy making the former likely to decay into the latter There may be more than one isomer for each isotope The most stable of them is astatine 202m1 c which has a half life of about 3 minutes this is longer than those of all ground states except those of isotopes 203 211 and 220 The least stable one is astatine 214m1 its half life of 265 ns is shorter than those of all ground states except that of astatine 213 6 Alpha decay energy follows the same trend as for other heavy elements 7 Lighter astatine isotopes have quite high energies of alpha decay which become lower as the nuclei become heavier However astatine 211 has a significantly higher energy than the previous isotope it has a nucleus with 126 neutrons and 126 is a magic number corresponding to a filled neutron shell Despite having a similar half life time as the previous isotope 8 1 hours for astatine 210 and 7 2 hours for astatine 211 the alpha decay probability is much higher for the latter 41 8 percent versus just 0 18 percent 6 d The two following isotopes release even more energy with astatine 213 releasing the highest amount of energy of all astatine isotopes For this reason it is the shortest lived astatine isotope 7 Even though heavier astatine isotopes release less energy no long lived astatine isotope exists this happens due to the increasing role of beta decay 7 This decay mode is especially important for astatine as early as 1950 it was postulated that the element has no beta stable isotopes i e ones that do not undergo beta decay at all 8 though nuclear mass measurements reveal that 215At is in fact beta stable as it has the lowest mass of all isobars with A 215 9 A beta decay mode has been found for all other astatine isotopes except for astatine 213 astatine 214 and astatine 216m 6 Among other isotopes astatine 210 and the lighter isotopes decay by positron emission astatine 216 and the heavier isotopes undergo beta decay astatine 212 can decay either way and astatine 211 decays by electron capture instead 6 The most stable isotope of astatine is astatine 210 which has a half life of about 8 1 hours This isotope s primary decay mode is positron emission to the relatively long lived alpha emitter polonium 210 In total only five isotopes of astatine have half lives exceeding one hour those between 207 and 211 The least stable ground state isotope is astatine 213 with a half life of about 125 nanoseconds It undergoes alpha decay to the extremely long lived in practice stable isotope bismuth 209 6 See also edit In the table under the words mass excess the energy equivalents are given rather than the real mass excesses mass excess daughter stands for the energy equivalent of the mass excess sum of the daughter of the isotope and the alpha particle alpha decay half life refers to the half life if decay modes other than alpha are omitted Since astatine 221 has not been shown to undergo alpha decay the alpha decay energy is theoretical The value for mass excess is calculated rather than measured m1 means that this state of the isotope is the next possible one above energy greater than the ground state m2 and similar designations refer to further higher energy states The number may be dropped if there is only one well established meta state such as astatine 216m Note that other designation techniques exist This means that if decay modes other than alpha are omitted then astatine 210 has an alpha half life of 4 628 6 hours 128 9 days and astatine 211 has one of 17 2 hours 0 9 days Therefore astatine 211 is less stable toward alpha decay than the lighter isotope and is more likely to undergo alpha decay in the same time period References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae a b c Kokkonen Henna Decay properties of the new isotopes 188At and 190At PDF University of Jyvaskyla Retrieved 8 June 2023 Kettunen H Enqvist T Grahn T Greenlees P T Jones P Julin R Juutinen S Keenan A Kuusiniemi P Leino M Leppanen A P Nieminen P Pakarinen J Rahkila P Uusitalo J 1 August 2003 Alpha decay studies of the new isotopes 191At and 193At PDF The European Physical Journal A Hadrons and Nuclei 17 4 537 558 Bibcode 2003EPJA 17 537K doi 10 1140 epja i2002 10162 1 ISSN 1434 601X S2CID 122384851 Retrieved 23 June 2023 a b c d e f Kondev F G Wang M Huang W J Naimi S Audi G 1 March 2021 The NUBASE2020 evaluation of nuclear physics properties Chinese Physics C High Energy Physics and Nuclear Physics 45 3 030001 Bibcode 2021ChPhC 45c0001K doi 10 1088 1674 1137 abddae ISSN 1674 1137 OSTI 1774641 S2CID 233794940 Cubiss J G Andreyev A N Barzakh A E Andel B Antalic S Cocolios T E Goodacre T Day Fedorov D V Fedosseev V N Ferrer R Fink D A Gaffney L P Ghys L Huyse M Kalaninova Z Koster U Marsh B A Molkanov P L Rossel R E Rothe S Seliverstov M D Sels S Sjodin A M Stryjczyk M L Truesdale V Van Beveren C Van Duppen P Wilson G L 2019 06 14 Fine structure in the a decay of At218 Physical Review C American Physical Society APS 99 6 064317 doi 10 1103 physrevc 99 064317 ISSN 2469 9985 S2CID 197508141 a b c d e f g h i Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 a b c Lavrukhina amp Pozdnyakov 1966 p 232 Rankama Kalervo 1956 Isotope geology 2nd ed Pergamon Press p 403 ISBN 978 0 470 70800 2 Audi G Kondev F G Wang M Huang W J Naimi S 2017 The NUBASE2016 evaluation of nuclear properties PDF Chinese Physics C 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 Lavrukhina Avgusta Konstantinovna Pozdnyakov Aleksandr Aleksandrovich 1966 Analiticheskaya himiya tehneciya prometiya astatina i franciya Analytical Chemistry of Technetium Promethium Astatine and Francium in Russian Nauka Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of astatine amp oldid 1188196277 Astatine 218, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.