fbpx
Wikipedia

Constant of integration

In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant.[1][2][3] This constant expresses an ambiguity inherent in the construction of antiderivatives.

More specifically, if a function is defined on an interval, and is an antiderivative of then the set of all antiderivatives of is given by the functions where is an arbitrary constant (meaning that any value of would make a valid antiderivative). For that reason, the indefinite integral is often written as [4] although the constant of integration might be sometimes omitted in lists of integrals for simplicity.

Origin Edit

The derivative of any constant function is zero. Once one has found one antiderivative   for a function   adding or subtracting any constant   will give us another antiderivative, because   The constant is a way of expressing that every function with at least one antiderivative will have an infinite number of them.

Let   and   be two everywhere differentiable functions. Suppose that   for every real number x. Then there exists a real number   such that   for every real number x.

To prove this, notice that   So   can be replaced by   and   by the constant function   making the goal to prove that an everywhere differentiable function whose derivative is always zero must be constant:

Choose a real number   and let   For any x, the fundamental theorem of calculus, together with the assumption that the derivative of   vanishes, implying that

 

thereby showing that   is a constant function.

Two facts are crucial in this proof. First, the real line is connected. If the real line were not connected, we would not always be able to integrate from our fixed a to any given x. For example, if we were to ask for functions defined on the union of intervals [0,1] and [2,3], and if a were 0, then it would not be possible to integrate from 0 to 3, because the function is not defined between 1 and 2. Here, there will be two constants, one for each connected component of the domain. In general, by replacing constants with locally constant functions, we can extend this theorem to disconnected domains. For example, there are two constants of integration for   and infinitely many for   so for example, the general form for the integral of 1/x is:[5][6]

 

Second,   and   were assumed to be everywhere differentiable. If   and   are not differentiable at even one point, then the theorem might fail. As an example, let   be the Heaviside step function, which is zero for negative values of x and one for non-negative values of x, and let   Then the derivative of   is zero where it is defined, and the derivative of   is always zero. Yet it's clear that   and   do not differ by a constant, even if it is assumed that   and   are everywhere continuous and almost everywhere differentiable the theorem still fails. As an example, take   to be the Cantor function and again let  

For example, suppose one wants to find antiderivatives of   One such antiderivative is   Another one is   A third is   Each of these has derivative   so they are all antiderivatives of  

It turns out that adding and subtracting constants is the only flexibility we have in finding different antiderivatives of the same function. That is, all antiderivatives are the same up to a constant. To express this fact for   we write:

 
Replacing   by a number will produce an antiderivative. By writing   instead of a number, however, a compact description of all the possible antiderivatives of   is obtained.   is called the constant of integration. It is easily determined that all of these functions are indeed antiderivatives of  :
 

Necessity Edit

At first glance, it may seem that the constant is unnecessary, since it can be set to zero. Furthermore, when evaluating definite integrals using the fundamental theorem of calculus, the constant will always cancel with itself.

However, trying to set the constant to zero does not always make sense. For example,   can be integrated in at least three different ways:

 

So setting   to zero can still leave a constant. This means that, for a given function, there is not necessarily any "simplest antiderivative".

Another problem with setting   equal to zero is that sometimes we want to find an antiderivative that has a given value at a given point (as in an initial value problem). For example, to obtain the antiderivative of   that has the value 100 at x = π, then only one value of   will work (in this case  ).

This restriction can be rephrased in the language of differential equations. Finding an indefinite integral of a function   is the same as solving the differential equation   Any differential equation will have many solutions, and each constant represents the unique solution of a well-posed initial value problem. Imposing the condition that our antiderivative takes the value 100 at x = π is an initial condition. Each initial condition corresponds to one and only one value of   so without   it would be impossible to solve the problem.

There is another justification, coming from abstract algebra. The space of all (suitable) real-valued functions on the real numbers is a vector space, and the differential operator   is a linear operator. The operator   maps a function to zero if and only if that function is constant. Consequently, the kernel of   is the space of all constant functions. The process of indefinite integration amounts to finding a pre-image of a given function. There is no canonical pre-image for a given function, but the set of all such pre-images forms a coset. Choosing a constant is the same as choosing an element of the coset. In this context, solving an initial value problem is interpreted as lying in the hyperplane given by the initial conditions.

References Edit

  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 0-495-01166-5.
  2. ^ Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 0-547-16702-4.
  3. ^ "Definition of constant of integration | Dictionary.com". www.dictionary.com. Retrieved 2020-08-14.
  4. ^ Weisstein, Eric W. "Constant of Integration". mathworld.wolfram.com. Retrieved 2020-08-14.
  5. ^ "Reader Survey: log|x| + C", Tom Leinster, The n-category Café, March 19, 2012
  6. ^ Banner, Adrian (2007). The calculus lifesaver : all the tools you need to excel at calculus. Princeton [u.a.]: Princeton University Press. p. 380. ISBN 978-0-691-13088-0.

constant, integration, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, augu. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Constant of integration news newspapers books scholar JSTOR August 2020 Learn how and when to remove this template message In calculus the constant of integration often denoted by C displaystyle C or c displaystyle c is a constant term added to an antiderivative of a function f x displaystyle f x to indicate that the indefinite integral of f x displaystyle f x i e the set of all antiderivatives of f x displaystyle f x on a connected domain is only defined up to an additive constant 1 2 3 This constant expresses an ambiguity inherent in the construction of antiderivatives More specifically if a function f x displaystyle f x is defined on an interval and F x displaystyle F x is an antiderivative of f x displaystyle f x then the set of all antiderivatives of f x displaystyle f x is given by the functions F x C displaystyle F x C where C displaystyle C is an arbitrary constant meaning that any value of C displaystyle C would make F x C displaystyle F x C a valid antiderivative For that reason the indefinite integral is often written as f x d x F x C textstyle int f x dx F x C 4 although the constant of integration might be sometimes omitted in lists of integrals for simplicity Origin EditThe derivative of any constant function is zero Once one has found one antiderivative F x displaystyle F x nbsp for a function f x displaystyle f x nbsp adding or subtracting any constant C displaystyle C nbsp will give us another antiderivative because d d x F x C d d x F x d d x C F x f x textstyle frac d dx F x C frac d dx F x frac d dx C F x f x nbsp The constant is a way of expressing that every function with at least one antiderivative will have an infinite number of them Let F R R displaystyle F mathbb R to mathbb R nbsp and G R R displaystyle G mathbb R to mathbb R nbsp be two everywhere differentiable functions Suppose that F x G x displaystyle F x G x nbsp for every real number x Then there exists a real number C displaystyle C nbsp such that F x G x C displaystyle F x G x C nbsp for every real number x To prove this notice that F x G x 0 displaystyle F x G x 0 nbsp So F displaystyle F nbsp can be replaced by F G displaystyle F G nbsp and G displaystyle G nbsp by the constant function 0 displaystyle 0 nbsp making the goal to prove that an everywhere differentiable function whose derivative is always zero must be constant Choose a real number a displaystyle a nbsp and let C F a displaystyle C F a nbsp For any x the fundamental theorem of calculus together with the assumption that the derivative of F displaystyle F nbsp vanishes implying that0 a x F t d t 0 F x F a 0 F x C F x C displaystyle begin aligned amp 0 int a x F t dt amp 0 F x F a amp 0 F x C amp F x C end aligned nbsp thereby showing that F displaystyle F nbsp is a constant function Two facts are crucial in this proof First the real line is connected If the real line were not connected we would not always be able to integrate from our fixed a to any given x For example if we were to ask for functions defined on the union of intervals 0 1 and 2 3 and if a were 0 then it would not be possible to integrate from 0 to 3 because the function is not defined between 1 and 2 Here there will be two constants one for each connected component of the domain In general by replacing constants with locally constant functions we can extend this theorem to disconnected domains For example there are two constants of integration for d x x textstyle int dx x nbsp and infinitely many for tan x d x textstyle int tan x dx nbsp so for example the general form for the integral of 1 x is 5 6 d x x ln x C x lt 0 ln x C x gt 0 displaystyle int frac dx x begin cases ln left x right C amp x lt 0 ln left x right C amp x gt 0 end cases nbsp Second F displaystyle F nbsp and G displaystyle G nbsp were assumed to be everywhere differentiable If F displaystyle F nbsp and G displaystyle G nbsp are not differentiable at even one point then the theorem might fail As an example let F x displaystyle F x nbsp be the Heaviside step function which is zero for negative values of x and one for non negative values of x and let G x 0 displaystyle G x 0 nbsp Then the derivative of F displaystyle F nbsp is zero where it is defined and the derivative of G displaystyle G nbsp is always zero Yet it s clear that F displaystyle F nbsp and G displaystyle G nbsp do not differ by a constant even if it is assumed that F displaystyle F nbsp and G displaystyle G nbsp are everywhere continuous and almost everywhere differentiable the theorem still fails As an example take F displaystyle F nbsp to be the Cantor function and again let G 0 displaystyle G 0 nbsp For example suppose one wants to find antiderivatives of cos x displaystyle cos x nbsp One such antiderivative is sin x displaystyle sin x nbsp Another one is sin x 1 displaystyle sin x 1 nbsp A third is sin x p displaystyle sin x pi nbsp Each of these has derivative cos x displaystyle cos x nbsp so they are all antiderivatives of cos x displaystyle cos x nbsp It turns out that adding and subtracting constants is the only flexibility we have in finding different antiderivatives of the same function That is all antiderivatives are the same up to a constant To express this fact for cos x displaystyle cos x nbsp we write cos x d x sin x C displaystyle int cos x dx sin x C nbsp Replacing C displaystyle C nbsp by a number will produce an antiderivative By writing C displaystyle C nbsp instead of a number however a compact description of all the possible antiderivatives of cos x displaystyle cos x nbsp is obtained C displaystyle C nbsp is called the constant of integration It is easily determined that all of these functions are indeed antiderivatives of cos x displaystyle cos x nbsp d d x sin x C d d x sin x d d x C cos x 0 cos x displaystyle begin aligned frac d dx sin x C amp frac d dx sin x frac d dx C amp cos x 0 amp cos x end aligned nbsp Necessity EditAt first glance it may seem that the constant is unnecessary since it can be set to zero Furthermore when evaluating definite integrals using the fundamental theorem of calculus the constant will always cancel with itself However trying to set the constant to zero does not always make sense For example 2 sin x cos x displaystyle 2 sin x cos x nbsp can be integrated in at least three different ways 2 sin x cos x d x sin 2 x C cos 2 x 1 C 1 2 cos 2 x 1 2 C 2 sin x cos x d x cos 2 x C sin 2 x 1 C 1 2 cos 2 x 1 2 C 2 sin x cos x d x 1 2 cos 2 x C sin 2 x C cos 2 x C displaystyle begin alignedat 4 int 2 sin x cos x dx amp amp sin 2 x C amp amp cos 2 x 1 C amp amp frac 1 2 cos 2x frac 1 2 C int 2 sin x cos x dx amp amp cos 2 x C amp amp sin 2 x 1 C amp amp frac 1 2 cos 2x frac 1 2 C int 2 sin x cos x dx amp amp frac 1 2 cos 2x C amp amp sin 2 x C amp amp cos 2 x C end alignedat nbsp So setting C displaystyle C nbsp to zero can still leave a constant This means that for a given function there is not necessarily any simplest antiderivative Another problem with setting C displaystyle C nbsp equal to zero is that sometimes we want to find an antiderivative that has a given value at a given point as in an initial value problem For example to obtain the antiderivative of cos x displaystyle cos x nbsp that has the value 100 at x p then only one value of C displaystyle C nbsp will work in this case C 100 displaystyle C 100 nbsp This restriction can be rephrased in the language of differential equations Finding an indefinite integral of a function f x displaystyle f x nbsp is the same as solving the differential equation d y d x f x textstyle frac dy dx f x nbsp Any differential equation will have many solutions and each constant represents the unique solution of a well posed initial value problem Imposing the condition that our antiderivative takes the value 100 at x p is an initial condition Each initial condition corresponds to one and only one value of C displaystyle C nbsp so without C displaystyle C nbsp it would be impossible to solve the problem There is another justification coming from abstract algebra The space of all suitable real valued functions on the real numbers is a vector space and the differential operator d d x textstyle frac d dx nbsp is a linear operator The operator d d x textstyle frac d dx nbsp maps a function to zero if and only if that function is constant Consequently the kernel of d d x textstyle frac d dx nbsp is the space of all constant functions The process of indefinite integration amounts to finding a pre image of a given function There is no canonical pre image for a given function but the set of all such pre images forms a coset Choosing a constant is the same as choosing an element of the coset In this context solving an initial value problem is interpreted as lying in the hyperplane given by the initial conditions References Edit Stewart James 2008 Calculus Early Transcendentals 6th ed Brooks Cole ISBN 0 495 01166 5 Larson Ron Edwards Bruce H 2009 Calculus 9th ed Brooks Cole ISBN 0 547 16702 4 Definition of constant of integration Dictionary com www dictionary com Retrieved 2020 08 14 Weisstein Eric W Constant of Integration mathworld wolfram com Retrieved 2020 08 14 Reader Survey log x C Tom Leinster Then category Cafe March 19 2012 Banner Adrian 2007 The calculus lifesaver all the tools you need to excel at calculus Princeton u a Princeton University Press p 380 ISBN 978 0 691 13088 0 Retrieved from https en wikipedia org w index php title Constant of integration amp oldid 1158426840, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.