fbpx
Wikipedia

Ampère's circuital law

In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law)[1] relates the integrated magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell (not Ampère) derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force"[2] In 1865 he generalized the equation to apply to time-varying currents by adding the displacement current term, resulting in the modern form of the law, sometimes called the Ampère–Maxwell law,[3][4][5] which is one of Maxwell's equations which form the basis of classical electromagnetism.

Maxwell's original circuital law

In 1820 Danish physicist Hans Christian Ørsted discovered that an electric current creates a magnetic field around it, when he noticed that the needle of a compass next to a wire carrying current turned so that the needle was perpendicular to the wire.[6][7] He investigated and discovered the rules which govern the field around a straight current-carrying wire:[8]

  • The magnetic field lines encircle the current-carrying wire.
  • The magnetic field lines lie in a plane perpendicular to the wire.
  • If the direction of the current is reversed, the direction of the magnetic field reverses.
  • The strength of the field is directly proportional to the magnitude of the current.
  • The strength of the field at any point is inversely proportional to the distance of the point from the wire.

This sparked a great deal of research into the relation between electricity and magnetism. André-Marie Ampère investigated the magnetic force between two current-carrying wires, discovering Ampère's force law. In the 1850s Scottish mathematical physicist James Clerk Maxwell generalized these results and others into a single mathematical law. The original form of Maxwell's circuital law, which he derived as early as 1855 in his paper "On Faraday's Lines of Force"[9] based on an analogy to hydrodynamics, relates magnetic fields to electric currents that produce them. It determines the magnetic field associated with a given current, or the current associated with a given magnetic field.

The original circuital law only applies to a magnetostatic situation, to continuous steady currents flowing in a closed circuit. For systems with electric fields that change over time, the original law (as given in this section) must be modified to include a term known as Maxwell's correction (see below).

Equivalent forms

The original circuital law can be written in several different forms, which are all ultimately equivalent:

  • An "integral form" and a "differential form". The forms are exactly equivalent, and related by the Kelvin–Stokes theorem (see the "proof" section below).
  • Forms using SI units, and those using cgs units. Other units are possible, but rare. This section will use SI units, with cgs units discussed later.
  • Forms using either B or H magnetic fields. These two forms use the total current density and free current density, respectively. The B and H fields are related by the constitutive equation: B = μ0H in non-magnetic materials where μ0 is the magnetic constant.

Explanation

The integral form of the original circuital law is a line integral of the magnetic field around some closed curve C (arbitrary but must be closed). The curve C in turn bounds both a surface S which the electric current passes through (again arbitrary but not closed—since no three-dimensional volume is enclosed by S), and encloses the current. The mathematical statement of the law is a relation between the total amount of magnetic field around some path (line integral) due to the current which passes through that enclosed path (surface integral).[10][11]

In terms of total current, (which is the sum of both free current and bound current) the line integral of the magnetic B-field (in teslas, T) around closed curve C is proportional to the total current Ienc passing through a surface S (enclosed by C). In terms of free current, the line integral of the magnetic H-field (in amperes per metre, A·m−1) around closed curve C equals the free current If,enc through a surface S.[clarification needed]

Forms of the original circuital law written in SI units
Integral form Differential form
Using B-field and total current    
Using H-field and free current    
  • J is the total current density (in amperes per square metre, A·m−2),
  • Jf is the free current density only,
  • C is the closed line integral around the closed curve C,
  • S denotes a 2-D surface integral over S enclosed by C,
  • · is the vector dot product,
  • dl is an infinitesimal element (a differential) of the curve C (i.e. a vector with magnitude equal to the length of the infinitesimal line element, and direction given by the tangent to the curve C)
  • dS is the vector area of an infinitesimal element of surface S (that is, a vector with magnitude equal to the area of the infinitesimal surface element, and direction normal to surface S. The direction of the normal must correspond with the orientation of C by the right hand rule), see below for further explanation of the curve C and surface S.
  • ∇ × is the curl operator.

Ambiguities and sign conventions

There are a number of ambiguities in the above definitions that require clarification and a choice of convention.

  1. First, three of these terms are associated with sign ambiguities: the line integral C could go around the loop in either direction (clockwise or counterclockwise); the vector area dS could point in either of the two directions normal to the surface; and Ienc is the net current passing through the surface S, meaning the current passing through in one direction, minus the current in the other direction—but either direction could be chosen as positive. These ambiguities are resolved by the right-hand rule: With the palm of the right-hand toward the area of integration, and the index-finger pointing along the direction of line-integration, the outstretched thumb points in the direction that must be chosen for the vector area dS. Also the current passing in the same direction as dS must be counted as positive. The right hand grip rule can also be used to determine the signs.
  2. Second, there are infinitely many possible surfaces S that have the curve C as their border. (Imagine a soap film on a wire loop, which can be deformed by moving the wire). Which of those surfaces is to be chosen? If the loop does not lie in a single plane, for example, there is no one obvious choice. The answer is that it does not matter; by Stokes' theorem, the integral is the same for any surface with boundary C, since the integrand is the curl of a smooth field (i.e. exact). In practice, one usually chooses the most convenient surface (with the given boundary) to integrate over.

Free current versus bound current

The electric current that arises in the simplest textbook situations would be classified as "free current"—for example, the current that passes through a wire or battery. In contrast, "bound current" arises in the context of bulk materials that can be magnetized and/or polarized. (All materials can to some extent.)

When a material is magnetized (for example, by placing it in an external magnetic field), the electrons remain bound to their respective atoms, but behave as if they were orbiting the nucleus in a particular direction, creating a microscopic current. When the currents from all these atoms are put together, they create the same effect as a macroscopic current, circulating perpetually around the magnetized object. This magnetization current JM is one contribution to "bound current".

The other source of bound current is bound charge. When an electric field is applied, the positive and negative bound charges can separate over atomic distances in polarizable materials, and when the bound charges move, the polarization changes, creating another contribution to the "bound current", the polarization current JP.

The total current density J due to free and bound charges is then:

 

with Jf  the "free" or "conduction" current density.

All current is fundamentally the same, microscopically. Nevertheless, there are often practical reasons for wanting to treat bound current differently from free current. For example, the bound current usually originates over atomic dimensions, and one may wish to take advantage of a simpler theory intended for larger dimensions. The result is that the more microscopic Ampère's circuital law, expressed in terms of B and the microscopic current (which includes free, magnetization and polarization currents), is sometimes put into the equivalent form below in terms of H and the free current only. For a detailed definition of free current and bound current, and the proof that the two formulations are equivalent, see the "proof" section below.

Shortcomings of the original formulation of the circuital law

There are two important issues regarding the circuital law that require closer scrutiny. First, there is an issue regarding the continuity equation for electrical charge. In vector calculus, the identity for the divergence of a curl states that the divergence of the curl of a vector field must always be zero. Hence

 

and so the original Ampère's circuital law implies that

 

But in general, reality follows the continuity equation for electric charge:

 

which is nonzero for a time-varying charge density. An example occurs in a capacitor circuit where time-varying charge densities exist on the plates.[12][13][14][15][16]

Second, there is an issue regarding the propagation of electromagnetic waves. For example, in free space, where

 

The circuital law implies that

 

but to maintain consistency with the continuity equation for electric charge, we must have

 

To treat these situations, the contribution of displacement current must be added to the current term in the circuital law.

James Clerk Maxwell conceived of displacement current as a polarization current in the dielectric vortex sea, which he used to model the magnetic field hydrodynamically and mechanically.[17] He added this displacement current to Ampère's circuital law at equation 112 in his 1861 paper "On Physical Lines of Force".[18]

Displacement current

In free space, the displacement current is related to the time rate of change of electric field.

In a dielectric the above contribution to displacement current is present too, but a major contribution to the displacement current is related to the polarization of the individual molecules of the dielectric material. Even though charges cannot flow freely in a dielectric, the charges in molecules can move a little under the influence of an electric field. The positive and negative charges in molecules separate under the applied field, causing an increase in the state of polarization, expressed as the polarization density P. A changing state of polarization is equivalent to a current.

Both contributions to the displacement current are combined by defining the displacement current as:[12]

 

where the electric displacement field is defined as:

 

where ε0 is the electric constant, εr the relative static permittivity, and P is the polarization density. Substituting this form for D in the expression for displacement current, it has two components:

 

The first term on the right hand side is present everywhere, even in a vacuum. It doesn't involve any actual movement of charge, but it nevertheless has an associated magnetic field, as if it were an actual current. Some authors apply the name displacement current to only this contribution.[19]

The second term on the right hand side is the displacement current as originally conceived by Maxwell, associated with the polarization of the individual molecules of the dielectric material.

Maxwell's original explanation for displacement current focused upon the situation that occurs in dielectric media. In the modern post-aether era, the concept has been extended to apply to situations with no material media present, for example, to the vacuum between the plates of a charging vacuum capacitor. The displacement current is justified today because it serves several requirements of an electromagnetic theory: correct prediction of magnetic fields in regions where no free current flows; prediction of wave propagation of electromagnetic fields; and conservation of electric charge in cases where charge density is time-varying. For greater discussion see Displacement current.

Extending the original law: the Ampère–Maxwell equation

Next, the circuital equation is extended by including the polarization current, thereby remedying the limited applicability of the original circuital law.

Treating free charges separately from bound charges, the equation including Maxwell's correction in terms of the H-field is (the H-field is used because it includes the magnetization currents, so JM does not appear explicitly, see H-field and also Note):[20]

 

(integral form), where H is the magnetic H field (also called "auxiliary magnetic field", "magnetic field intensity", or just "magnetic field"), D is the electric displacement field, and Jf is the enclosed conduction current or free current density. In differential form,

 

On the other hand, treating all charges on the same footing (disregarding whether they are bound or free charges), the generalized Ampère's equation, also called the Maxwell–Ampère equation, is in integral form (see the "proof" section below):

 

In differential form,

 

In both forms J includes magnetization current density[21] as well as conduction and polarization current densities. That is, the current density on the right side of the Ampère–Maxwell equation is:

 

where current density JD is the displacement current, and J is the current density contribution actually due to movement of charges, both free and bound. Because ∇ ⋅ D = ρ, the charge continuity issue with Ampère's original formulation is no longer a problem.[22] Because of the term in ε0E/t, wave propagation in free space now is possible.

With the addition of the displacement current, Maxwell was able to hypothesize (correctly) that light was a form of electromagnetic wave. See electromagnetic wave equation for a discussion of this important discovery.

Proof of equivalence

Proof that the formulations of the circuital law in terms of free current are equivalent to the formulations involving total current

In this proof, we will show that the equation

 

is equivalent to the equation

 

Note that we are only dealing with the differential forms, not the integral forms, but that is sufficient since the differential and integral forms are equivalent in each case, by the Kelvin–Stokes theorem.

We introduce the polarization density P, which has the following relation to E and D:

 

Next, we introduce the magnetization density M, which has the following relation to B and H:

 

and the following relation to the bound current:

 

where

 

is called the magnetization current density, and

 

is the polarization current density. Taking the equation for B:

 

Consequently, referring to the definition of the bound current:

 

as was to be shown.

Ampère's circuital law in cgs units

In cgs units, the integral form of the equation, including Maxwell's correction, reads

 

where c is the speed of light.

The differential form of the equation (again, including Maxwell's correction) is

 

See also

Notes

  1. ^ Ampère never utilized the field concept in any of his works; cf. Assis, André Koch Torres; Chaib, J. P. M. C; Ampère, André-Marie (2015). Ampère's electrodynamics: analysis of the meaning and evolution of Ampère's force between current elements, together with a complete translation of his masterpiece: Theory of electrodynamic phenomena, uniquely deduced from experience (PDF). Montreal, QC: Apeiron. ch. 15 p. 221. ISBN 978-1-987980-03-5. The "Ampère circuital law" is thus more properly termed the "Ampère–Maxwell law." It is named after Ampère because of his contributions to understanding electric current. Maxwell does not take Ampère's force law as a starting point in deriving any of his equations, although he mentions Ampère's force law in his A Treatise on Electricity and Magnetism vol. 2, part 4, ch. 2 (§§502-527) & 23 (§§845-866).
  2. ^ Clerk Maxwell, James (1890). "On Physical Lines of Force". New York, Dover Publications.
  3. ^ Fleisch, Daniel (2008). A Student's Guide to Maxwell's Equations. Cambridge University Press. p. 83. ISBN 9781139468473.
  4. ^ Garg, Anupam (2012). Classical Electromagnetism in a Nutshell. Princeton University Press. p. 125. ISBN 9780691130187.
  5. ^ Katz, Debora M. (2016). Physics for Scientists and Engineers: Foundations and Connections, Extended Version. Cengage Learning. p. 1093. ISBN 9781337364300.
  6. ^ Oersted, H. C. (1820). "Experiments on the effect of a current of electricity on the magnetic needles". Annals of Philosophy. London: Baldwin, Craddock, Joy. 16: 273.
  7. ^ H. A. M. Snelders, "Oersted's discovery of electromagnetism" in Cunningham, Andrew Cunningham; Nicholas Jardine (1990). Romanticism and the Sciences. CUP Archive. p. 228. ISBN 0521356857.
  8. ^ Dhogal (1986). Basic Electrical Engineering, Vol. 1. Tata McGraw-Hill. p. 96. ISBN 0074515861.
  9. ^ Clerk Maxwell, James (1890). "On Faraday's Lines of Force". New York, Dover Publications.
  10. ^ Knoepfel, Heinz E. (2000). Magnetic Fields: A comprehensive theoretical treatise for practical use. Wiley. p. 4. ISBN 0-471-32205-9.
  11. ^ Owen, George E. (2003). Electromagnetic Theory (Reprint of 1963 ed.). Courier-Dover Publications. p. 213. ISBN 0-486-42830-3.
  12. ^ a b Jackson, John David (1999). Classical Electrodynamics (3rd ed.). Wiley. p. 238. ISBN 0-471-30932-X.
  13. ^ Griffiths, David J. (1999). Introduction to Electrodynamics (3rd ed.). Pearson/Addison-Wesley. pp. 322–323. ISBN 0-13-805326-X.
  14. ^ Owen, George E. (2003). Electromagnetic Theory. Mineola, NY: Dover Publications. p. 285. ISBN 0-486-42830-3.
  15. ^ Billingham, J.; King, A. C. (2006). Wave Motion. Cambridge University Press. p. 179. ISBN 0-521-63450-4.
  16. ^ Slater, J. C.; Frank, N. H. (1969). Electromagnetism (Reprint of 1947 ed.). Courier Dover Publications. p. 83. ISBN 0-486-62263-0.
  17. ^ Siegel, Daniel M. (2003). Innovation in Maxwell's Electromagnetic Theory: Molecular Vortices, Displacement Current, and Light. Cambridge University Press. pp. 96–98. ISBN 0-521-53329-5.
  18. ^ Clerk Maxwell, James (1861). "On Physical Lines of Force" (PDF). Philosophical Magazine and Journal of Science.
  19. ^ For example, see Griffiths, David J. (1999). Introduction to Electrodynamics. Upper Saddle River, NJ: Prentice Hall. p. 323. ISBN 0-13-805326-X. and Tai L. Chow (2006). Introduction to Electromagnetic Theory. Jones & Bartlett. p. 204. ISBN 0-7637-3827-1.
  20. ^ Rogalski, Mircea S.; Palmer, Stuart B. (2006). Advanced University Physics. CRC Press. p. 267. ISBN 1-58488-511-4.
  21. ^ Rogalski, Mircea S.; Palmer, Stuart B. (2006). Advanced University Physics. CRC Press. p. 251. ISBN 1-58488-511-4.
  22. ^ The magnetization current can be expressed as the curl of the magnetization, so its divergence is zero and it does not contribute to the continuity equation. See magnetization current.

Further reading

  • Griffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 0-13-805326-X.
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W. H. Freeman. ISBN 0-7167-0810-8.

External links

  •   Media related to Ampere's law at Wikimedia Commons
  • MISN-0-138 Ampere's Law (PDF file) by Kirby Morgan for Project PHYSNET.
  • MISN-0-145 The Ampere–Maxwell Equation; Displacement Current (PDF file) by J. S. Kovacs for Project PHYSNET.
  • A Dynamical Theory of the Electromagnetic Field Maxwell's paper of 1864

ampère, circuital, ampère, redirects, here, describing, forces, between, current, carrying, wires, ampère, force, classical, electromagnetism, confused, with, ampère, force, relates, integrated, magnetic, field, around, closed, loop, electric, current, passing. Ampere s law redirects here For the law describing forces between current carrying wires see Ampere s force law In classical electromagnetism Ampere s circuital law not to be confused with Ampere s force law 1 relates the integrated magnetic field around a closed loop to the electric current passing through the loop James Clerk Maxwell not Ampere derived it using hydrodynamics in his 1861 published paper On Physical Lines of Force 2 In 1865 he generalized the equation to apply to time varying currents by adding the displacement current term resulting in the modern form of the law sometimes called the Ampere Maxwell law 3 4 5 which is one of Maxwell s equations which form the basis of classical electromagnetism Contents 1 Maxwell s original circuital law 1 1 Equivalent forms 1 2 Explanation 1 3 Ambiguities and sign conventions 2 Free current versus bound current 3 Shortcomings of the original formulation of the circuital law 3 1 Displacement current 4 Extending the original law the Ampere Maxwell equation 4 1 Proof of equivalence 5 Ampere s circuital law in cgs units 6 See also 7 Notes 8 Further reading 9 External linksMaxwell s original circuital law EditIn 1820 Danish physicist Hans Christian Orsted discovered that an electric current creates a magnetic field around it when he noticed that the needle of a compass next to a wire carrying current turned so that the needle was perpendicular to the wire 6 7 He investigated and discovered the rules which govern the field around a straight current carrying wire 8 The magnetic field lines encircle the current carrying wire The magnetic field lines lie in a plane perpendicular to the wire If the direction of the current is reversed the direction of the magnetic field reverses The strength of the field is directly proportional to the magnitude of the current The strength of the field at any point is inversely proportional to the distance of the point from the wire This sparked a great deal of research into the relation between electricity and magnetism Andre Marie Ampere investigated the magnetic force between two current carrying wires discovering Ampere s force law In the 1850s Scottish mathematical physicist James Clerk Maxwell generalized these results and others into a single mathematical law The original form of Maxwell s circuital law which he derived as early as 1855 in his paper On Faraday s Lines of Force 9 based on an analogy to hydrodynamics relates magnetic fields to electric currents that produce them It determines the magnetic field associated with a given current or the current associated with a given magnetic field The original circuital law only applies to a magnetostatic situation to continuous steady currents flowing in a closed circuit For systems with electric fields that change over time the original law as given in this section must be modified to include a term known as Maxwell s correction see below Equivalent forms Edit The original circuital law can be written in several different forms which are all ultimately equivalent An integral form and a differential form The forms are exactly equivalent and related by the Kelvin Stokes theorem see the proof section below Forms using SI units and those using cgs units Other units are possible but rare This section will use SI units with cgs units discussed later Forms using either B or H magnetic fields These two forms use the total current density and free current density respectively The B and H fields are related by the constitutive equation B m0H in non magnetic materials where m0 is the magnetic constant Explanation Edit The integral form of the original circuital law is a line integral of the magnetic field around some closed curve C arbitrary but must be closed The curve C in turn bounds both a surface S which the electric current passes through again arbitrary but not closed since no three dimensional volume is enclosed by S and encloses the current The mathematical statement of the law is a relation between the total amount of magnetic field around some path line integral due to the current which passes through that enclosed path surface integral 10 11 In terms of total current which is the sum of both free current and bound current the line integral of the magnetic B field in teslas T around closed curve C is proportional to the total current Ienc passing through a surface S enclosed by C In terms of free current the line integral of the magnetic H field in amperes per metre A m 1 around closed curve C equals the free current If enc through a surface S clarification needed Forms of the original circuital law written in SI units Integral form Differential formUsing B field and total current C B d l m 0 S J d S m 0 I e n c displaystyle oint C mathbf B cdot mathrm d boldsymbol l mu 0 iint S mathbf J cdot mathrm d mathbf S mu 0 I mathrm enc B m 0 J displaystyle mathbf nabla times mathbf B mu 0 mathbf J Using H field and free current C H d l S J f d S I f e n c displaystyle oint C mathbf H cdot mathrm d boldsymbol l iint S mathbf J mathrm f cdot mathrm d mathbf S I mathrm f enc H J f displaystyle mathbf nabla times mathbf H mathbf J mathrm f J is the total current density in amperes per square metre A m 2 Jf is the free current density only C is the closed line integral around the closed curve C S denotes a 2 D surface integral over S enclosed by C is the vector dot product dl is an infinitesimal element a differential of the curve C i e a vector with magnitude equal to the length of the infinitesimal line element and direction given by the tangent to the curve C dS is the vector area of an infinitesimal element of surface S that is a vector with magnitude equal to the area of the infinitesimal surface element and direction normal to surface S The direction of the normal must correspond with the orientation of C by the right hand rule see below for further explanation of the curve C and surface S is the curl operator Ambiguities and sign conventions Edit There are a number of ambiguities in the above definitions that require clarification and a choice of convention First three of these terms are associated with sign ambiguities the line integral C could go around the loop in either direction clockwise or counterclockwise the vector area dS could point in either of the two directions normal to the surface and Ienc is the net current passing through the surface S meaning the current passing through in one direction minus the current in the other direction but either direction could be chosen as positive These ambiguities are resolved by the right hand rule With the palm of the right hand toward the area of integration and the index finger pointing along the direction of line integration the outstretched thumb points in the direction that must be chosen for the vector area dS Also the current passing in the same direction as dS must be counted as positive The right hand grip rule can also be used to determine the signs Second there are infinitely many possible surfaces S that have the curve C as their border Imagine a soap film on a wire loop which can be deformed by moving the wire Which of those surfaces is to be chosen If the loop does not lie in a single plane for example there is no one obvious choice The answer is that it does not matter by Stokes theorem the integral is the same for any surface with boundary C since the integrand is the curl of a smooth field i e exact In practice one usually chooses the most convenient surface with the given boundary to integrate over Free current versus bound current EditThe electric current that arises in the simplest textbook situations would be classified as free current for example the current that passes through a wire or battery In contrast bound current arises in the context of bulk materials that can be magnetized and or polarized All materials can to some extent When a material is magnetized for example by placing it in an external magnetic field the electrons remain bound to their respective atoms but behave as if they were orbiting the nucleus in a particular direction creating a microscopic current When the currents from all these atoms are put together they create the same effect as a macroscopic current circulating perpetually around the magnetized object This magnetization current JM is one contribution to bound current The other source of bound current is bound charge When an electric field is applied the positive and negative bound charges can separate over atomic distances in polarizable materials and when the bound charges move the polarization changes creating another contribution to the bound current the polarization current JP The total current density J due to free and bound charges is then J J f J M J P displaystyle mathbf J mathbf J mathrm f mathbf J mathrm M mathbf J mathrm P with Jf the free or conduction current density All current is fundamentally the same microscopically Nevertheless there are often practical reasons for wanting to treat bound current differently from free current For example the bound current usually originates over atomic dimensions and one may wish to take advantage of a simpler theory intended for larger dimensions The result is that the more microscopic Ampere s circuital law expressed in terms of B and the microscopic current which includes free magnetization and polarization currents is sometimes put into the equivalent form below in terms of H and the free current only For a detailed definition of free current and bound current and the proof that the two formulations are equivalent see the proof section below Shortcomings of the original formulation of the circuital law EditThere are two important issues regarding the circuital law that require closer scrutiny First there is an issue regarding the continuity equation for electrical charge In vector calculus the identity for the divergence of a curl states that the divergence of the curl of a vector field must always be zero Hence B 0 displaystyle nabla cdot nabla times mathbf B 0 and so the original Ampere s circuital law implies that J 0 displaystyle nabla cdot mathbf J 0 But in general reality follows the continuity equation for electric charge J r t displaystyle nabla cdot mathbf J frac partial rho partial t which is nonzero for a time varying charge density An example occurs in a capacitor circuit where time varying charge densities exist on the plates 12 13 14 15 16 Second there is an issue regarding the propagation of electromagnetic waves For example in free space where J 0 displaystyle mathbf J mathbf 0 The circuital law implies that B 0 displaystyle nabla times mathbf B mathbf 0 but to maintain consistency with the continuity equation for electric charge we must have B 1 c 2 E t displaystyle nabla times mathbf B frac 1 c 2 frac partial mathbf E partial t To treat these situations the contribution of displacement current must be added to the current term in the circuital law James Clerk Maxwell conceived of displacement current as a polarization current in the dielectric vortex sea which he used to model the magnetic field hydrodynamically and mechanically 17 He added this displacement current to Ampere s circuital law at equation 112 in his 1861 paper On Physical Lines of Force 18 Displacement current Edit Main article Displacement current In free space the displacement current is related to the time rate of change of electric field In a dielectric the above contribution to displacement current is present too but a major contribution to the displacement current is related to the polarization of the individual molecules of the dielectric material Even though charges cannot flow freely in a dielectric the charges in molecules can move a little under the influence of an electric field The positive and negative charges in molecules separate under the applied field causing an increase in the state of polarization expressed as the polarization density P A changing state of polarization is equivalent to a current Both contributions to the displacement current are combined by defining the displacement current as 12 J D t D r t displaystyle mathbf J mathrm D frac partial partial t mathbf D mathbf r t where the electric displacement field is defined as D e 0 E P e 0 e r E displaystyle mathbf D varepsilon 0 mathbf E mathbf P varepsilon 0 varepsilon mathrm r mathbf E where e0 is the electric constant er the relative static permittivity and P is the polarization density Substituting this form for D in the expression for displacement current it has two components J D e 0 E t P t displaystyle mathbf J mathrm D varepsilon 0 frac partial mathbf E partial t frac partial mathbf P partial t The first term on the right hand side is present everywhere even in a vacuum It doesn t involve any actual movement of charge but it nevertheless has an associated magnetic field as if it were an actual current Some authors apply the name displacement current to only this contribution 19 The second term on the right hand side is the displacement current as originally conceived by Maxwell associated with the polarization of the individual molecules of the dielectric material Maxwell s original explanation for displacement current focused upon the situation that occurs in dielectric media In the modern post aether era the concept has been extended to apply to situations with no material media present for example to the vacuum between the plates of a charging vacuum capacitor The displacement current is justified today because it serves several requirements of an electromagnetic theory correct prediction of magnetic fields in regions where no free current flows prediction of wave propagation of electromagnetic fields and conservation of electric charge in cases where charge density is time varying For greater discussion see Displacement current Extending the original law the Ampere Maxwell equation EditNext the circuital equation is extended by including the polarization current thereby remedying the limited applicability of the original circuital law Treating free charges separately from bound charges the equation including Maxwell s correction in terms of the H field is the H field is used because it includes the magnetization currents so JM does not appear explicitly see H field and also Note 20 C H d l S J f D t d S displaystyle oint C mathbf H cdot mathrm d boldsymbol l iint S left mathbf J mathrm f frac partial mathbf D partial t right cdot mathrm d mathbf S integral form where H is the magnetic H field also called auxiliary magnetic field magnetic field intensity or just magnetic field D is the electric displacement field and Jf is the enclosed conduction current or free current density In differential form H J f D t displaystyle mathbf nabla times mathbf H mathbf J mathrm f frac partial mathbf D partial t On the other hand treating all charges on the same footing disregarding whether they are bound or free charges the generalized Ampere s equation also called the Maxwell Ampere equation is in integral form see the proof section below C B d l S m 0 J m 0 e 0 E t d S displaystyle oint C mathbf B cdot mathrm d boldsymbol l iint S left mu 0 mathbf J mu 0 varepsilon 0 frac partial mathbf E partial t right cdot mathrm d mathbf S In differential form B m 0 J m 0 e 0 E t displaystyle mathbf nabla times mathbf B mu 0 mathbf J mu 0 varepsilon 0 frac partial mathbf E partial t In both forms J includes magnetization current density 21 as well as conduction and polarization current densities That is the current density on the right side of the Ampere Maxwell equation is J f J D J M J f J P J M e 0 E t J e 0 E t displaystyle mathbf J mathrm f mathbf J mathrm D mathbf J mathrm M mathbf J mathrm f mathbf J mathrm P mathbf J mathrm M varepsilon 0 frac partial mathbf E partial t mathbf J varepsilon 0 frac partial mathbf E partial t where current density JD is the displacement current and J is the current density contribution actually due to movement of charges both free and bound Because D r the charge continuity issue with Ampere s original formulation is no longer a problem 22 Because of the term in e0 E t wave propagation in free space now is possible With the addition of the displacement current Maxwell was able to hypothesize correctly that light was a form of electromagnetic wave See electromagnetic wave equation for a discussion of this important discovery Proof of equivalence Edit Proof that the formulations of the circuital law in terms of free current are equivalent to the formulations involving total currentIn this proof we will show that the equation H J f D t displaystyle nabla times mathbf H mathbf J mathrm f frac partial mathbf D partial t is equivalent to the equation 1 m 0 B J e 0 E t displaystyle frac 1 mu 0 mathbf nabla times mathbf B mathbf J varepsilon 0 frac partial mathbf E partial t Note that we are only dealing with the differential forms not the integral forms but that is sufficient since the differential and integral forms are equivalent in each case by the Kelvin Stokes theorem We introduce the polarization density P which has the following relation to E and D D e 0 E P displaystyle mathbf D varepsilon 0 mathbf E mathbf P Next we introduce the magnetization density M which has the following relation to B and H 1 m 0 B H M displaystyle frac 1 mu 0 mathbf B mathbf H mathbf M and the following relation to the bound current J b o u n d M P t J M J P displaystyle begin aligned mathbf J mathrm bound amp nabla times mathbf M frac partial mathbf P partial t amp mathbf J mathrm M mathbf J mathrm P end aligned where J M M displaystyle mathbf J mathrm M nabla times mathbf M is called the magnetization current density and J P P t displaystyle mathbf J mathrm P frac partial mathbf P partial t is the polarization current density Taking the equation for B 1 m 0 B H M H J M J f J P e 0 E t J M displaystyle begin aligned frac 1 mu 0 mathbf nabla times mathbf B amp mathbf nabla times left mathbf H mathbf M right amp mathbf nabla times mathbf H mathbf J mathrm M amp mathbf J mathrm f mathbf J mathrm P varepsilon 0 frac partial mathbf E partial t mathbf J mathrm M end aligned Consequently referring to the definition of the bound current 1 m 0 B J f J b o u n d e 0 E t J e 0 E t displaystyle begin aligned frac 1 mu 0 mathbf nabla times mathbf B amp mathbf J mathrm f mathbf J mathrm bound varepsilon 0 frac partial mathbf E partial t amp mathbf J varepsilon 0 frac partial mathbf E partial t end aligned as was to be shown Ampere s circuital law in cgs units EditIn cgs units the integral form of the equation including Maxwell s correction reads C B d l 1 c S 4 p J E t d S displaystyle oint C mathbf B cdot mathrm d boldsymbol l frac 1 c iint S left 4 pi mathbf J frac partial mathbf E partial t right cdot mathrm d mathbf S where c is the speed of light The differential form of the equation again including Maxwell s correction is B 1 c 4 p J E t displaystyle mathbf nabla times mathbf B frac 1 c left 4 pi mathbf J frac partial mathbf E partial t right See also EditBiot Savart law Displacement current Capacitance Amperian magnetic dipole model Electromagnetic wave equation Maxwell s equations Faraday s law of induction Bound charge Electric current Vector calculus Stokes theoremNotes Edit Ampere never utilized the field concept in any of his works cf Assis Andre Koch Torres Chaib J P M C Ampere Andre Marie 2015 Ampere s electrodynamics analysis of the meaning and evolution of Ampere s force between current elements together with a complete translation of his masterpiece Theory of electrodynamic phenomena uniquely deduced from experience PDF Montreal QC Apeiron ch 15 p 221 ISBN 978 1 987980 03 5 The Ampere circuital law is thus more properly termed the Ampere Maxwell law It is named after Ampere because of his contributions to understanding electric current Maxwell does not take Ampere s force law as a starting point in deriving any of his equations although he mentions Ampere s force law in his A Treatise on Electricity and Magnetism vol 2 part 4 ch 2 502 527 amp 23 845 866 Clerk Maxwell James 1890 On Physical Lines of Force New York Dover Publications Fleisch Daniel 2008 A Student s Guide to Maxwell s Equations Cambridge University Press p 83 ISBN 9781139468473 Garg Anupam 2012 Classical Electromagnetism in a Nutshell Princeton University Press p 125 ISBN 9780691130187 Katz Debora M 2016 Physics for Scientists and Engineers Foundations and Connections Extended Version Cengage Learning p 1093 ISBN 9781337364300 Oersted H C 1820 Experiments on the effect of a current of electricity on the magnetic needles Annals of Philosophy London Baldwin Craddock Joy 16 273 H A M Snelders Oersted s discovery of electromagnetism in Cunningham Andrew Cunningham Nicholas Jardine 1990 Romanticism and the Sciences CUP Archive p 228 ISBN 0521356857 Dhogal 1986 Basic Electrical Engineering Vol 1 Tata McGraw Hill p 96 ISBN 0074515861 Clerk Maxwell James 1890 On Faraday s Lines of Force New York Dover Publications Knoepfel Heinz E 2000 Magnetic Fields A comprehensive theoretical treatise for practical use Wiley p 4 ISBN 0 471 32205 9 Owen George E 2003 Electromagnetic Theory Reprint of 1963 ed Courier Dover Publications p 213 ISBN 0 486 42830 3 a b Jackson John David 1999 Classical Electrodynamics 3rd ed Wiley p 238 ISBN 0 471 30932 X Griffiths David J 1999 Introduction to Electrodynamics 3rd ed Pearson Addison Wesley pp 322 323 ISBN 0 13 805326 X Owen George E 2003 Electromagnetic Theory Mineola NY Dover Publications p 285 ISBN 0 486 42830 3 Billingham J King A C 2006 Wave Motion Cambridge University Press p 179 ISBN 0 521 63450 4 Slater J C Frank N H 1969 Electromagnetism Reprint of 1947 ed Courier Dover Publications p 83 ISBN 0 486 62263 0 Siegel Daniel M 2003 Innovation in Maxwell s Electromagnetic Theory Molecular Vortices Displacement Current and Light Cambridge University Press pp 96 98 ISBN 0 521 53329 5 Clerk Maxwell James 1861 On Physical Lines of Force PDF Philosophical Magazine and Journal of Science For example see Griffiths David J 1999 Introduction to Electrodynamics Upper Saddle River NJ Prentice Hall p 323 ISBN 0 13 805326 X and Tai L Chow 2006 Introduction to Electromagnetic Theory Jones amp Bartlett p 204 ISBN 0 7637 3827 1 Rogalski Mircea S Palmer Stuart B 2006 Advanced University Physics CRC Press p 267 ISBN 1 58488 511 4 Rogalski Mircea S Palmer Stuart B 2006 Advanced University Physics CRC Press p 251 ISBN 1 58488 511 4 The magnetization current can be expressed as the curl of the magnetization so its divergence is zero and it does not contribute to the continuity equation See magnetization current Further reading EditGriffiths David J 1998 Introduction to Electrodynamics 3rd ed Prentice Hall ISBN 0 13 805326 X Tipler Paul 2004 Physics for Scientists and Engineers Electricity Magnetism Light and Elementary Modern Physics 5th ed W H Freeman ISBN 0 7167 0810 8 External links Edit Media related to Ampere s law at Wikimedia Commons MISN 0 138 Ampere s Law PDF file by Kirby Morgan for Project PHYSNET MISN 0 145 The Ampere Maxwell Equation Displacement Current PDF file by J S Kovacs for Project PHYSNET A Dynamical Theory of the Electromagnetic Field Maxwell s paper of 1864 Retrieved from https en wikipedia org w index php title Ampere 27s circuital law amp oldid 1120858379, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.