fbpx
Wikipedia

Alfvén wave

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.[1]

A cluster of double layers forming in an Alfvén wave, about a sixth of the distance from the left. Red = electrons, Green = ions, Yellow = electric potential, Orange = parallel electric field, Pink = charge density, Blue = magnetic field
Kinetic Alfvén wave

Definition edit

An Alfvén wave is a low-frequency (compared to the ion gyrofrequency) travelling oscillation of the ions and magnetic field in a plasma. The ion mass density provides the inertia and the magnetic field line tension provides the restoring force. Alfvén waves propagate in the direction of the magnetic field, and the motion of the ions and the perturbation of the magnetic field are transverse to the direction of propagation. However, Alfvén waves existing at oblique incidences will smoothly change into magnetosonic waves when the propagation is perpendicular to the magnetic field.

Alfvén waves are dispersionless.

Alfvén velocity edit

The low-frequency relative permittivity   of a magnetized plasma is given by[2]

 
where B is the magnetic flux density,   is the speed of light,   is the permeability of the vacuum, and the mass density is the sum
 
over all species of charged plasma particles (electrons as well as all types of ions). Here species   has number density   and mass per particle  .

The phase velocity of an electromagnetic wave in such a medium is

 
For the case of an Alfvén wave
 
where
 
is the Alfvén wave group velocity. (The formula for the phase velocity assumes that the plasma particles are moving at non-relativistic speeds, the mass-weighted particle velocity is zero in the frame of reference, and the wave is propagating parallel to the magnetic field vector.)

If  , then  . On the other hand, when  ,  . That is, at high field or low density, the group velocity of the Alfvén wave approaches the speed of light, and the Alfvén wave becomes an ordinary electromagnetic wave.

Neglecting the contribution of the electrons to the mass density,  , where   is the ion number density and   is the mean ion mass per particle, so that

 

Alfvén time edit

In plasma physics, the Alfvén time   is an important timescale for wave phenomena. It is related to the Alfvén velocity by:

 
where   denotes the characteristic scale of the system. For example,   could be the minor radius of the torus in a tokamak.

Relativistic case edit

The Alfvén wave velocity in relativistic magnetohydrodynamics is[3]

 
where e is the total energy density of plasma particles,   is the total plasma pressure, and
 
is the magnetic pressure. In the non-relativistic limit, where  , this formula reduces to the one given previously.

History edit

 
Magnetic waves, called Alfvén S-waves, flow from the base of black hole jets.

The coronal heating problem edit

The study of Alfvén waves began from the coronal heating problem, a longstanding question in heliophysics. It was unclear why the temperature of the solar corona is hot (about one million kelvins) compared to its surface (the photosphere), which is only a few thousand kelvins. Intuitively, it would make sense to see a decrease in temperature when moving away from a heat source, but this does not seem to be the case even though the photosphere is denser and would generate more heat than the corona.

In 1942, Hannes Alfvén proposed in Nature the existence of an electromagnetic-hydrodynamic wave which would carry energy from the photosphere to heat up the corona and the solar wind. He claimed that the sun had all the necessary criteria to support these waves and they may in turn be responsible for sun spots. He stated:

If a conducting liquid is placed in a constant magnetic field, every motion of the liquid gives rise to an E.M.F. which produces electric currents. Owing to the magnetic field, these currents give mechanical forces which change the state of motion of the liquid. Thus a kind of combined electromagnetic–hydrodynamic wave is produced.[4]

This would eventually turn out to be Alfvén waves. He received the 1970 Nobel Prize in Physics for this discovery.

Experimental studies and observations edit

The convection zone of the sun, the region beneath the photosphere in which energy is transported primarily by convection, is sensitive to the motion of the core due to the rotation of the sun. Together with varying pressure gradients beneath the surface, electromagnetic fluctuations produced in the convection zone induce random motion on the photospheric surface and produce Alfvén waves. The waves then leave the surface, travel through the chromosphere and transition zone, and interact with the ionized plasma. The wave itself carries energy and some of the electrically charged plasma.

In the early 1990s, de Pontieu[5] and Haerendel[6] suggested that Alfvén waves may also be associated with the plasma jets known as spicules. It was theorized these brief spurts of superheated gas were carried by the combined energy and momentum of their own upward velocity, as well as the oscillating transverse motion of the Alfvén waves.

In 2007, Alfvén waves were reportedly observed for the first time traveling towards the corona by Tomczyk et al., but their predictions could not conclude that the energy carried by the Alfvén waves was sufficient to heat the corona to its enormous temperatures, for the observed amplitudes of the waves were not high enough.[7] However, in 2011, McIntosh et al. reported the observation of highly energetic Alfvén waves combined with energetic spicules which could sustain heating the corona to its million-kelvin temperature. These observed amplitudes (20.0 km/s against 2007's observed 0.5 km/s) contained over one hundred times more energy than the ones observed in 2007.[8] The short period of the waves also allowed more energy transfer into the coronal atmosphere. The 50,000 km-long spicules may also play a part in accelerating the solar wind past the corona.[9] Alfvén waves are routinely observed in solar wind, in particular in fast solar wind streams. The role of Alfvénic oscillations in the interaction between fast solar wind and the Earth's magnetosphere is currently under debate.[10][11]

However, the above-mentioned discoveries of Alfvén waves in the complex Sun's atmosphere, starting from the Hinode era in 2007 for the next 10 years, mostly fall in the realm of Alfvénic waves essentially generated as a mixed mode due to transverse structuring of the magnetic and plasma properties in the localized flux tubes. In 2009, Jess et al.[12] reported the periodic variation of H-alpha line-width as observed by Swedish Solar Telescope (SST) above chromospheric bright-points. They claimed first direct detection of the long-period (126–700 s), incompressible, torsional Alfvén waves in the lower solar atmosphere.

After the seminal work of Jess et al. (2009), in 2017 Srivastava et al.[13] detected the existence of high-frequency torsional Alfvén waves in the Sun's chromospheric fine-structured flux tubes. They discovered that these high-frequency waves carry substantial energy capable of heating the Sun's corona and also in originating the supersonic solar wind. In 2018, using spectral imaging observations, non-LTE (local thermodynamic equilibrium) inversions and magnetic field extrapolations of sunspot atmospheres, Grant et al.[14] found evidence for elliptically polarized Alfvén waves forming fast-mode shocks in the outer regions of the chromospheric umbral atmosphere. They provided quantification of the degree of physical heat provided by the dissipation of such Alfvén wave modes above active region spots.

Historical timeline edit

  • 1942: Alfvén suggests the existence of electromagnetic-hydromagnetic waves in a paper published in Nature 150, 405–406 (1942).
  • 1949: Laboratory experiments by S. Lundquist produce such waves in magnetized mercury, with a velocity that approximated Alfvén's formula.
  • 1949: Enrico Fermi uses Alfvén waves in his theory of cosmic rays.
  • 1950: Alfvén publishes the first edition of his book, Cosmical Electrodynamics, detailing hydromagnetic waves, and discussing their application to both laboratory and space plasmas.
  • 1952: Additional confirmation appears in experiments by Winston Bostick and Morton Levine with ionized helium.
  • 1954: Bo Lehnert produces Alfvén waves in liquid sodium.[15]
  • 1958: Eugene Parker suggests hydromagnetic waves in the interstellar medium.
  • 1958: Berthold, Harris, and Hope detect Alfvén waves in the ionosphere after the Argus nuclear test, generated by the explosion, and traveling at speeds predicted by Alfvén formula.
  • 1958: Eugene Parker suggests hydromagnetic waves in the Solar corona extending into the Solar wind.
  • 1959: D. F. Jephcott produces Alfvén waves in a gas discharge.[16]
  • 1959: C. H. Kelley and J. Yenser produce Alfvén waves in the ambient atmosphere.
  • 1960: Coleman et al. report the measurement of Alfvén waves by the magnetometer aboard the Pioneer and Explorer satellites.[17]
  • 1961: Sugiura suggests evidence of hydromagnetic waves in the Earth's magnetic field.[18]
  • 1961: Normal Alfvén modes and resonances in liquid sodium are studied by Jameson.
  • 1966: R. O. Motz generates and observes Alfvén waves in mercury.[19]
  • 1970: Hannes Alfvén wins the 1970 Nobel Prize in physics for "fundamental work and discoveries in magneto-hydrodynamics with fruitful applications in different parts of plasma physics".
  • 1973: Eugene Parker suggests hydromagnetic waves in the intergalactic medium.
  • 1974: J. V. Hollweg suggests the existence of hydromagnetic waves in interplanetary space.[20]
  • 1977: Mendis and Ip suggest the existence of hydromagnetic waves in the coma of Comet Kohoutek.[21]
  • 1984: Roberts et al. predict the presence of standing MHD waves in the solar corona[22] and opens the field of coronal seismology.
  • 1999: Aschwanden et al.[23] and Nakariakov et al. report the detection of damped transverse oscillations of solar coronal loops observed with the extreme ultraviolet (EUV) imager on board the Transition Region And Coronal Explorer (TRACE), interpreted as standing kink (or "Alfvénic") oscillations of the loops. This confirms the theoretical prediction of Roberts et al. (1984).
  • 2007: Tomczyk et al. reported the detection of Alfvénic waves in images of the solar corona with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico.[24] However, these observations turned out to be kink waves of coronal plasma structures.[25]doi:10.1051/0004-6361/200911840
  • 2007: A special issue on the Hinode space observatory was released in the journal Science.[26] Alfvén wave signatures in the coronal atmosphere were observed by Cirtain et al.,[27] Okamoto et al.,[28] and De Pontieu et al.[29] By estimating the observed waves' energy density, De Pontieu et al. have shown that the energy associated with the waves is sufficient to heat the corona and accelerate the solar wind.
  • 2008: Kaghashvili et al. uses driven wave fluctuations as a diagnostic tool to detect Alfvén waves in the solar corona.[30]
  • 2009: Jess et al. detect torsional Alfvén waves in the structured Sun's chromosphere using the Swedish Solar Telescope.[12]
  • 2011: Alfvén waves are shown to propagate in a liquid metal alloy made of Gallium.[31]
  • 2017: 3D numerical modelling performed by Srivastava et al. show that the high-frequency (12–42 mHz) Alfvén waves detected by the Swedish Solar Telescope can carry substantial energy to heat the Sun's inner corona.[13]
  • 2018: Using spectral imaging observations, non-LTE inversions and magnetic field extrapolations of sunspot atmospheres, Grant et al. found evidence for elliptically polarized Alfvén waves forming fast-mode shocks in the outer regions of the chromospheric umbral atmosphere. For the first time, these authors provided quantification of the degree of physical heat provided by the dissipation of such Alfvén wave modes.[14]

See also edit

References edit

  1. ^ Iwai, K; Shinya, K,; Takashi, K. and Moreau, R. (2003) "Pressure change accompanying Alfvén waves in a liquid metal" Magnetohydrodynamics 39(3): pp. 245-250, page 245
  2. ^ Chen, F.F. (2016). Introduction to Plasma Physics and Controlled Fusion (3rd ed.). Switzerland: Springer International Publishing. pp. 55, 126–131.
  3. ^ Gedalin, M. (1993). "Linear waves in relativistic anisotropic magnetohydrodynamics". Physical Review E. 47 (6): 4354–4357. Bibcode:1993PhRvE..47.4354G. doi:10.1103/PhysRevE.47.4354. PMID 9960513.
  4. ^ Alfvén, Hannes (1942). "Existence of electromagnetic–hydrodynamic waves". Nature. 150 (3805): 405–406. Bibcode:1942Natur.150..405A. doi:10.1038/150405d0. S2CID 4072220.
  5. ^ Bart de Pontieu (18 December 1997). . Max-Planck-Institut für extraterrestrische Physik. Archived from the original on 16 July 2002. Retrieved 1 April 2012.
  6. ^ Gerhard Haerendel (1992). "Weakly damped Alfven waves as drivers of solar chromospheric spicules". Nature. 360 (6401): 241–243. Bibcode:1992Natur.360..241H. doi:10.1038/360241a0. S2CID 44454309.
  7. ^ Tomczyk, S.; McIntosh, S.W.; Keil, S.L.; Judge, P.G.; Schad, T.; Seeley, D.H.; Edmondson, J. (2007). "Alfven waves in the solar corona". Science. 317 (5842): 1192–1196. Bibcode:2007Sci...317.1192T. doi:10.1126/science.1143304. PMID 17761876. S2CID 45840582.
  8. ^ McIntosh; et al. (2011). "Alfvenic waves with sufficient energy to power the quiet solar corona and fast solar wind". Nature. 475 (7357): 477–480. Bibcode:2011Natur.475..477M. doi:10.1038/nature10235. PMID 21796206. S2CID 4336248.
  9. ^ Karen Fox (27 July 2011). "SDO spots extra energy in the Sun's corona". NASA. Retrieved 2 April 2012.
  10. ^ Pokhotelov, D.; Rae, I.J.; Murphy, K.R.; Mann, I.R. (8 June 2015). "The influence of solar wind variability on magnetospheric ULF wave power". Annales Geophysicae. 33 (6): 697–701. doi:10.5194/angeo-33-697-2015.
  11. ^ Borovsky, J.E. (5 January 2023). "Further investigation of the effect of upstream solar-wind fluctuations on solar-wind/magnetosphere coupling: Is the effect real?". Frontiers in Astronomy and Space Sciences. 9: 1–18. doi:10.3389/fspas.2022.975135.
  12. ^ a b Jess, David B.; Mathioudakis, Mihalis; Erdélyi, Robert; Crockett, Philip J.; Keenan, Francis P.; Christian, Damian J. (20 March 2009). "Alfvén Waves in the Lower Solar Atmosphere". Science. 323 (5921): 1582–1585. arXiv:0903.3546. Bibcode:2009Sci...323.1582J. doi:10.1126/science.1168680. hdl:10211.3/172550. ISSN 0036-8075. PMID 19299614. S2CID 14522616.
  13. ^ a b Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N. (3 March 2017). "High-frequency torsional Alfvén waves as an energy source for coronal heating". Scientific Reports. 7 (1): 43147. Bibcode:2017NatSR...743147S. doi:10.1038/srep43147. ISSN 2045-2322. PMC 5335648. PMID 28256538.
  14. ^ a b Grant, Samuel D. T.; Jess, David B.; Zaqarashvili, Teimuraz V.; Beck, Christian; Socas-Navarro, Hector; Aschwanden, Markus J.; Keys, Peter H.; Christian, Damian J.; Houston, Scott J.; Hewitt, Rebecca L. (2018), "Alfvén Wave Dissipation in the Solar Chromosphere", Nature Physics, 14 (5): 480–483, arXiv:1810.07712, Bibcode:2018NatPh..14..480G, doi:10.1038/s41567-018-0058-3, S2CID 119089600
  15. ^ Lehnert, Bo (15 May 1954). "Magneto-Hydrodynamic Waves in Liquid Sodium". Physical Review. 94 (4): 815–824. Bibcode:1954PhRv...94..815L. doi:10.1103/PhysRev.94.815.
  16. ^ JEPHCOTT, D. F. (13 June 1959). "Alfvén Waves in a Gas Discharge". Nature. 183 (4676): 1652–1654. Bibcode:1959Natur.183.1652J. doi:10.1038/1831652a0. ISSN 0028-0836. S2CID 11487078.
  17. ^ Sonett, C. P.; Smith, E. J.; Judge, D. L.; Coleman, P. J. (15 February 1960). "Current Systems in the Vestigial Geomagnetic Field: Explorer VI". Physical Review Letters. 4 (4): 161–163. Bibcode:1960PhRvL...4..161S. doi:10.1103/PhysRevLett.4.161.
  18. ^ Sugiura, Masahisa (December 1961). "Evidence of low-frequency hydromagnetic waves in the exosphere". Journal of Geophysical Research. 66 (12): 4087–4095. Bibcode:1961JGR....66.4087S. doi:10.1029/jz066i012p04087. ISSN 0148-0227.
  19. ^ Motz, Robin O. (1966). "Alfvén Wave Generation in a Spherical System". Physics of Fluids. 9 (2): 411. Bibcode:1966PhFl....9..411M. doi:10.1063/1.1761687. ISSN 0031-9171.
  20. ^ Hollweg, J. V. (1974). "Hydromagnetic Waves in Interplanetary Space". Publications of the Astronomical Society of the Pacific. 86 (513): 561. Bibcode:1974PASP...86..561H. doi:10.1086/129646. ISSN 1538-3873.
  21. ^ Mendis, D. A.; Ip, W. -H. (March 1977). "The ionospheres and plasma tails of comets". Space Science Reviews. 20 (2): 145–190. Bibcode:1977SSRv...20..145M. doi:10.1007/bf02186863. ISSN 0038-6308. S2CID 119883598.
  22. ^ Roberts, B.; Edwin, P. M.; Benz, A. O. (1984). "Coronal oscillations". The Astrophysical Journal. 279 (2): 857–865. Bibcode:1984ApJ...279..857R. doi:10.1086/161956. ISSN 0004-637X.
  23. ^ Aschwanden, Markus J.; Fletcher, Lyndsay; Schrijver, Carolus J.; Alexander, David (1999). "Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer" (PDF). The Astrophysical Journal. 520 (2): 880. Bibcode:1999ApJ...520..880A. doi:10.1086/307502. ISSN 0004-637X. S2CID 122698505.
  24. ^ Tomczyk, S.; McIntosh, S. W.; Keil, S. L.; Judge, P. G.; Schad, T.; Seeley, D. H.; Edmondson, J. (31 August 2007). "Alfvén Waves in the Solar Corona". Science. 317 (5842): 1192–1196. Bibcode:2007Sci...317.1192T. doi:10.1126/science.1143304. ISSN 0036-8075. PMID 17761876. S2CID 45840582.
  25. ^ Doorsselaere, T. Van; Nakariakov, V. M.; Verwichte, E. (2008). "Detection of Waves in the Solar Corona: Kink or Alfvén?". The Astrophysical Journal Letters. 676 (1): L73. Bibcode:2008ApJ...676L..73V. doi:10.1086/587029. ISSN 1538-4357.
  26. ^ "Science: 318 (5856)". Science. 318 (5856). 7 December 2007. ISSN 0036-8075.
  27. ^ Cirtain, J. W.; Golub, L.; Lundquist, L.; Ballegooijen, A. van; Savcheva, A.; Shimojo, M.; DeLuca, E.; Tsuneta, S.; Sakao, T. (7 December 2007). "Evidence for Alfvén Waves in Solar X-ray Jets". Science. 318 (5856): 1580–1582. Bibcode:2007Sci...318.1580C. doi:10.1126/science.1147050. ISSN 0036-8075. PMID 18063786. S2CID 39318753.
  28. ^ Okamoto, T. J.; Tsuneta, S.; Berger, T. E.; Ichimoto, K.; Katsukawa, Y.; Lites, B. W.; Nagata, S.; Shibata, K.; Shimizu, T. (7 December 2007). "Coronal Transverse Magnetohydrodynamic Waves in a Solar Prominence". Science. 318 (5856): 1577–1580. arXiv:0801.1958. Bibcode:2007Sci...318.1577O. doi:10.1126/science.1145447. ISSN 0036-8075. PMID 18063785. S2CID 121422620.
  29. ^ Pontieu, B. De; McIntosh, S. W.; Carlsson, M.; Hansteen, V. H.; Tarbell, T. D.; Schrijver, C. J.; Title, A. M.; Shine, R. A.; Tsuneta, S. (7 December 2007). "Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind". Science. 318 (5856): 1574–1577. Bibcode:2007Sci...318.1574D. doi:10.1126/science.1151747. ISSN 0036-8075. PMID 18063784. S2CID 33655095.
  30. ^ Kaghashvili, Edisher Kh.; Quinn, Richard A.; Hollweg, Joseph V. (2009). "Driven Waves as a Diagnostics Tool in the Solar Corona". The Astrophysical Journal. 703 (2): 1318. Bibcode:2009ApJ...703.1318K. doi:10.1088/0004-637x/703/2/1318. S2CID 120848530.
  31. ^ Thierry Alboussière; Philippe Cardin; François Debray; Patrick La Rizza; Jean-Paul Masson; Franck Plunian; Adolfo Ribeiro; Denys Schmitt (2011). "Experimental evidence of Alfvén wave propagation in a Gallium alloy". Phys. Fluids. 23 (9): 096601. arXiv:1106.4727. Bibcode:2011PhFl...23i6601A. doi:10.1063/1.3633090. S2CID 2234120.

Further reading edit

  • Alfvén, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150 (3805): 405–406, Bibcode:1942Natur.150..405A, doi:10.1038/150405d0, S2CID 4072220
  • Alfvén, H. (1981), Cosmic Plasma, Holland: Reidel, ISBN 978-90-277-1151-9
  • Aschwanden, M. J.; Fletcher, L.; Schrijver, C. J.; Alexander, D. (1999), "Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer" (PDF), The Astrophysical Journal, 520 (2): 880–894, Bibcode:1999ApJ...520..880A, doi:10.1086/307502, S2CID 122698505
  • Berthold, W. K.; Harris, A. K.; Hope, H. J. (1960), "World-Wide Effects of Hydromagnetic Waves Due to Argus", Journal of Geophysical Research, 65 (8): 2233–2239, Bibcode:1960JGR....65.2233B, doi:10.1029/JZ065i008p02233
  • Bostick, Winston H.; Levine, Morton A. (1952), "Experimental Demonstration in the Laboratory of the Existence of Magneto-Hydrodynamic Waves in Ionized Helium", Physical Review, 87 (4): 671, Bibcode:1952PhRv...87..671B, doi:10.1103/PhysRev.87.671
  • Coleman, P. J. Jr.; Sonett, C. P.; Judge, D. L.; Smith, E. J. (1960), "Some Preliminary Results of the Pioneer V Magnetometer Experiment", Journal of Geophysical Research, 65 (6): 1856–1857, Bibcode:1960JGR....65.1856C, doi:10.1029/JZ065i006p01856
  • Cramer, N. F.; Vladimirov, S. V. (1997), "Alfvén Waves in Dusty Interstellar Clouds", Publications of the Astronomical Society of Australia, 14 (2): 170–178, Bibcode:1997PASA...14..170C, doi:10.1071/AS97170
  • Dessler, A. J. (1970), "Swedish iconoclast recognized after many years of rejection and obscurity", Science, 170 (3958): 604–606, Bibcode:1970Sci...170..604D, doi:10.1126/science.170.3958.604, PMID 17799293
  • Falceta-Gonçalves, D.; Jatenco-Pereira, V. (2002), "The Effects of Alfvén Waves and Radiation Pressure in Dust Winds of Late-Type Stars", The Astrophysical Journal, 576 (2): 976–981, arXiv:astro-ph/0207342, Bibcode:2002ApJ...576..976F, doi:10.1086/341794, S2CID 429332
  • Fermi, E. (1949), "On the Origin of the Cosmic Radiation", Physical Review, 75 (8): 1169–1174, Bibcode:1949PhRv...75.1169F, doi:10.1103/PhysRev.75.1169, S2CID 7070907
  • Galtier, S. (2000), "A weak turbulence theory for incompressible magnetohydrodynamics", J. Plasma Physics, 63 (5): 447–488, arXiv:astro-ph/0008148, Bibcode:2000JPlPh..63..447G, doi:10.1017/S0022377899008284, S2CID 15528846
  • Hollweg, J. V. (1974), "Hydromagnetic waves in interplanetary space", Publications of the Astronomical Society of the Pacific, 86 (October 1974): 561–594, Bibcode:1974PASP...86..561H, doi:10.1086/129646
  • Ip, W.-H.; Mendis, D. A. (1975), "The cometary magnetic field and its associated electric currents", Icarus, 26 (4): 457–461, Bibcode:1975Icar...26..457I, doi:10.1016/0019-1035(75)90115-3
  • Jephcott, D. F. (1959), "Alfvén waves in a gas discharge", Nature, 183 (4676): 1652–1654, Bibcode:1959Natur.183.1652J, doi:10.1038/1831652a0, S2CID 11487078
  • Lehnert, Bo (1954), "Magneto-Hydrodynamic Waves in Liquid Sodium", Physical Review, 94 (4): 815–824, Bibcode:1954PhRv...94..815L, doi:10.1103/PhysRev.94.815
  • Lundquist, S. (1949), "Experimental Investigations of Magneto-Hydrodynamic Waves", Physical Review, 76 (12): 1805–1809, Bibcode:1949PhRv...76.1805L, doi:10.1103/PhysRev.76.1805
  • Mancuso, S.; Spangler, S. R. (1999), "Coronal Faraday Rotation Observations: Measurements and Limits on Plasma Inhomogeneities", The Astrophysical Journal, 525 (1): 195–208, Bibcode:1999ApJ...525..195M, doi:10.1086/307896, S2CID 122721188
  • Motz, R. O. (1966), "Alfven Wave Generation in a Spherical System", Physics of Fluids, 9 (2): 411–412, Bibcode:1966PhFl....9..411M, doi:10.1063/1.1761687
  • Nakariakov, V. M.; Ofman, L.; Deluca, E. E.; Roberts, B.; Davila, J. M. (1999), "TRACE observation of damped coronal loop oscillations: Implications for coronal heating", Science, 285 (5429): 862–864, Bibcode:1999Sci...285..862N, doi:10.1126/science.285.5429.862, PMID 10436148
  • Ofman, L.; Wang, T. J. (2008), "Hinode observations of transverse waves with flows in coronal loops", Astronomy and Astrophysics, 482 (2): L9–L12, Bibcode:2008A&A...482L...9O, doi:10.1051/0004-6361:20079340
  • Otani, N. F. (1988a), "The Alfvén ion-cyclotron instability, simulation theory and techniques", Journal of Computational Physics, 78 (2): 251–277, Bibcode:1988JCoPh..78..251O, doi:10.1016/0021-9991(88)90049-6
  • Otani, N. F. (1988b), "Application of Nonlinear Dynamical Invariants in a Single Electromagnetic Wave to the Study of the Alfvén-Ion-Cyclotron Instability", Physics of Fluids, 31 (6): 1456–1464, Bibcode:1988PhFl...31.1456O, doi:10.1063/1.866736
  • Parker, E. N. (1955), "Hydromagnetic Waves and the Acceleration of Cosmic Rays", Physical Review, 99 (1): 241–253, Bibcode:1955PhRv...99..241P, doi:10.1103/PhysRev.99.241
  • Parker, E. N. (1958), "Suprathermal Particle Generation in the Solar Corona", The Astrophysical Journal, 128: 677, Bibcode:1958ApJ...128..677P, doi:10.1086/146580
  • Parker, E. N. (1973), "Extragalactic Cosmic Rays and the Galactic Magnetic Field", Astrophysics and Space Science, 24 (1): 279–288, Bibcode:1973Ap&SS..24..279P, doi:10.1007/BF00648691, S2CID 119623745
  • Silberstein, M.; Otani, N. F. (1994), "Computer simulation of Alfvén waves and double layers along auroral magnetic field lines" (PDF), Journal of Geophysical Research, 99 (A4): 6351–6365, Bibcode:1994JGR....99.6351S, doi:10.1029/93JA02963
  • Sugiura, Masahisa (1961), "Some Evidence of Hydromagnetic Waves in the Earth's Magnetic Field", Physical Review Letters, 6 (6): 255–257, Bibcode:1961PhRvL...6..255S, doi:10.1103/PhysRevLett.6.255
  • Tomczyk, S.; McIntosh, S. W.; Keil, S. L.; Judge, P. G.; Schad, T.; Seeley, D. H.; Edmondson, J. (2007), "Waves in the Solar Corona", Science, 317 (5842): 1192–1196, Bibcode:2007Sci...317.1192T, doi:10.1126/science.1143304, PMID 17761876, S2CID 45840582
  • Van Doorsselaere, T.; Nakariakov, V. M.; Verwichte, E. (2008), "Detection of Waves in the Solar Corona: Kink or Alfvén?", The Astrophysical Journal, 676 (1): L73–L75, Bibcode:2008ApJ...676L..73V, CiteSeerX 10.1.1.460.1896, doi:10.1086/587029, S2CID 22933645
  • Vasheghani Farahani, S.; Van Doorsselaere, T.; Verwichte, E.; Nakariakov, V. M. (2009), "Propagating transverse waves in soft X-ray coronal jets", Astronomy and Astrophysics, 498 (2): L29–L32, Bibcode:2009A&A...498L..29V, doi:10.1051/0004-6361/200911840
  • Jess, David B.; Mathioudakis, Mihalis; Erdélyi, Robert; Crockett, Philip J.; Keenan, Francis P.; Christian, Damian J. (2009), "Alfvén Waves in the Lower Solar Atmosphere", Science, 323 (5921): 1582–1585, arXiv:0903.3546, Bibcode:2009Sci...323.1582J, doi:10.1126/science.1168680, hdl:10211.3/172550, PMID 19299614, S2CID 14522616
  • Srivastava, Abhishek K.; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N. (2017), "High-frequency torsional Alfvén waves as an energy source for coronal heating", Scientific Reports, 7: id.43147, Bibcode:2017NatSR...743147S, doi:10.1038/srep43147, PMC 5335648, PMID 28256538
  • Grant, Samuel D. T.; Jess, David B.; Zaqarashvili, Teimuraz V.; Beck, Christian; Socas-Navarro, Hector; Aschwanden, Markus J.; Keys, Peter H.; Christian, Damian J.; Houston, Scott J.; Hewitt, Rebecca L. (2018), "Alfvén Wave Dissipation in the Solar Chromosphere", Nature Physics, 14 (5): 480–483, arXiv:1810.07712, Bibcode:2018NatPh..14..480G, doi:10.1038/s41567-018-0058-3, S2CID 119089600
  • Murtaza, Ghulam. "Alfven wave propagation in dusty atoms" (PDF). NCP. Retrieved 9 May 2020.

External links edit

  • Mysterious Solar Ripples Detected Dave Mosher 2 September 2007 Space.com
  • EurekAlert! notification of 7 December 2007 Science special issue
  • EurekAlert! notification: "Scientists find solution to solar puzzle"

alfvén, wave, this, article, missing, information, about, modes, inertial, kinetic, modes, alfvén, mach, number, please, expand, article, include, this, information, further, details, exist, talk, page, september, 2022, plasma, physics, named, after, hannes, a. This article is missing information about Alfven wave modes e g inertial and kinetic modes and the Alfven Mach number Please expand the article to include this information Further details may exist on the talk page September 2022 In plasma physics an Alfven wave named after Hannes Alfven is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines 1 A cluster of double layers forming in an Alfven wave about a sixth of the distance from the left Red electrons Green ions Yellow electric potential Orange parallel electric field Pink charge density Blue magnetic field source source source source source source source source Kinetic Alfven wave Contents 1 Definition 2 Alfven velocity 3 Alfven time 4 Relativistic case 5 History 5 1 The coronal heating problem 5 2 Experimental studies and observations 6 Historical timeline 7 See also 8 References 9 Further reading 10 External linksDefinition editAn Alfven wave is a low frequency compared to the ion gyrofrequency travelling oscillation of the ions and magnetic field in a plasma The ion mass density provides the inertia and the magnetic field line tension provides the restoring force Alfven waves propagate in the direction of the magnetic field and the motion of the ions and the perturbation of the magnetic field are transverse to the direction of propagation However Alfven waves existing at oblique incidences will smoothly change into magnetosonic waves when the propagation is perpendicular to the magnetic field Alfven waves are dispersionless Alfven velocity editThe low frequency relative permittivity e displaystyle varepsilon nbsp of a magnetized plasma is given by 2 e 1 c 2 m 0 r B 2 displaystyle varepsilon 1 frac c 2 mu 0 rho B 2 nbsp where B is the magnetic flux density c displaystyle c nbsp is the speed of light m 0 displaystyle mu 0 nbsp is the permeability of the vacuum and the mass density is the sum r s n s m s displaystyle rho sum s n s m s nbsp over all species of charged plasma particles electrons as well as all types of ions Here species s textstyle s nbsp has number density n s textstyle n s nbsp and mass per particle m s textstyle m s nbsp The phase velocity of an electromagnetic wave in such a medium isv c e c 1 c 2 m 0 r B 2 displaystyle v frac c sqrt varepsilon frac c sqrt 1 dfrac c 2 mu 0 rho B 2 nbsp For the case of an Alfven wave v v A 1 v A 2 c 2 displaystyle v frac v A sqrt 1 dfrac v A 2 c 2 nbsp where v A B m 0 r displaystyle v A equiv frac B sqrt mu 0 rho nbsp is the Alfven wave group velocity The formula for the phase velocity assumes that the plasma particles are moving at non relativistic speeds the mass weighted particle velocity is zero in the frame of reference and the wave is propagating parallel to the magnetic field vector If v A c displaystyle v A ll c nbsp then v v A displaystyle v approx v A nbsp On the other hand when v A displaystyle v A to infty nbsp v c displaystyle v to c nbsp That is at high field or low density the group velocity of the Alfven wave approaches the speed of light and the Alfven wave becomes an ordinary electromagnetic wave Neglecting the contribution of the electrons to the mass density r n i m i displaystyle rho n i m i nbsp where n i displaystyle n i nbsp is the ion number density and m i displaystyle m i nbsp is the mean ion mass per particle so thatv A 2 18 10 11 cm s 1 m i m p 1 2 n i 1 cm 3 1 2 B 1 G displaystyle v A approx left 2 18 times 10 11 text cm text s 1 right left frac m i m p right frac 1 2 left frac n i 1 text cm 3 right frac 1 2 left frac B 1 text G right nbsp Alfven time editIn plasma physics the Alfven time t A displaystyle tau A nbsp is an important timescale for wave phenomena It is related to the Alfven velocity by t A a v A displaystyle tau A frac a v A nbsp where a displaystyle a nbsp denotes the characteristic scale of the system For example a displaystyle a nbsp could be the minor radius of the torus in a tokamak Relativistic case editThe Alfven wave velocity in relativistic magnetohydrodynamics is 3 v c 1 e P 2 P m displaystyle v frac c sqrt 1 dfrac e P 2P m nbsp where e is the total energy density of plasma particles P displaystyle P nbsp is the total plasma pressure and P m B 2 2 m 0 displaystyle P m frac B 2 2 mu 0 nbsp is the magnetic pressure In the non relativistic limit where P e r c 2 displaystyle P ll e approx rho c 2 nbsp this formula reduces to the one given previously History edit nbsp Magnetic waves called Alfven S waves flow from the base of black hole jets The coronal heating problem edit Further information Stellar corona Coronal heating problem The study of Alfven waves began from the coronal heating problem a longstanding question in heliophysics It was unclear why the temperature of the solar corona is hot about one million kelvins compared to its surface the photosphere which is only a few thousand kelvins Intuitively it would make sense to see a decrease in temperature when moving away from a heat source but this does not seem to be the case even though the photosphere is denser and would generate more heat than the corona In 1942 Hannes Alfven proposed in Nature the existence of an electromagnetic hydrodynamic wave which would carry energy from the photosphere to heat up the corona and the solar wind He claimed that the sun had all the necessary criteria to support these waves and they may in turn be responsible for sun spots He stated If a conducting liquid is placed in a constant magnetic field every motion of the liquid gives rise to an E M F which produces electric currents Owing to the magnetic field these currents give mechanical forces which change the state of motion of the liquid Thus a kind of combined electromagnetic hydrodynamic wave is produced 4 This would eventually turn out to be Alfven waves He received the 1970 Nobel Prize in Physics for this discovery Experimental studies and observations edit The convection zone of the sun the region beneath the photosphere in which energy is transported primarily by convection is sensitive to the motion of the core due to the rotation of the sun Together with varying pressure gradients beneath the surface electromagnetic fluctuations produced in the convection zone induce random motion on the photospheric surface and produce Alfven waves The waves then leave the surface travel through the chromosphere and transition zone and interact with the ionized plasma The wave itself carries energy and some of the electrically charged plasma In the early 1990s de Pontieu 5 and Haerendel 6 suggested that Alfven waves may also be associated with the plasma jets known as spicules It was theorized these brief spurts of superheated gas were carried by the combined energy and momentum of their own upward velocity as well as the oscillating transverse motion of the Alfven waves In 2007 Alfven waves were reportedly observed for the first time traveling towards the corona by Tomczyk et al but their predictions could not conclude that the energy carried by the Alfven waves was sufficient to heat the corona to its enormous temperatures for the observed amplitudes of the waves were not high enough 7 However in 2011 McIntosh et al reported the observation of highly energetic Alfven waves combined with energetic spicules which could sustain heating the corona to its million kelvin temperature These observed amplitudes 20 0 km s against 2007 s observed 0 5 km s contained over one hundred times more energy than the ones observed in 2007 8 The short period of the waves also allowed more energy transfer into the coronal atmosphere The 50 000 km long spicules may also play a part in accelerating the solar wind past the corona 9 Alfven waves are routinely observed in solar wind in particular in fast solar wind streams The role of Alfvenic oscillations in the interaction between fast solar wind and the Earth s magnetosphere is currently under debate 10 11 However the above mentioned discoveries of Alfven waves in the complex Sun s atmosphere starting from the Hinode era in 2007 for the next 10 years mostly fall in the realm of Alfvenic waves essentially generated as a mixed mode due to transverse structuring of the magnetic and plasma properties in the localized flux tubes In 2009 Jess et al 12 reported the periodic variation of H alpha line width as observed by Swedish Solar Telescope SST above chromospheric bright points They claimed first direct detection of the long period 126 700 s incompressible torsional Alfven waves in the lower solar atmosphere After the seminal work of Jess et al 2009 in 2017 Srivastava et al 13 detected the existence of high frequency torsional Alfven waves in the Sun s chromospheric fine structured flux tubes They discovered that these high frequency waves carry substantial energy capable of heating the Sun s corona and also in originating the supersonic solar wind In 2018 using spectral imaging observations non LTE local thermodynamic equilibrium inversions and magnetic field extrapolations of sunspot atmospheres Grant et al 14 found evidence for elliptically polarized Alfven waves forming fast mode shocks in the outer regions of the chromospheric umbral atmosphere They provided quantification of the degree of physical heat provided by the dissipation of such Alfven wave modes above active region spots Historical timeline edit1942 Alfven suggests the existence of electromagnetic hydromagnetic waves in a paper published in Nature 150 405 406 1942 1949 Laboratory experiments by S Lundquist produce such waves in magnetized mercury with a velocity that approximated Alfven s formula 1949 Enrico Fermi uses Alfven waves in his theory of cosmic rays 1950 Alfven publishes the first edition of his book Cosmical Electrodynamics detailing hydromagnetic waves and discussing their application to both laboratory and space plasmas 1952 Additional confirmation appears in experiments by Winston Bostick and Morton Levine with ionized helium 1954 Bo Lehnert produces Alfven waves in liquid sodium 15 1958 Eugene Parker suggests hydromagnetic waves in the interstellar medium 1958 Berthold Harris and Hope detect Alfven waves in the ionosphere after the Argus nuclear test generated by the explosion and traveling at speeds predicted by Alfven formula 1958 Eugene Parker suggests hydromagnetic waves in the Solar corona extending into the Solar wind 1959 D F Jephcott produces Alfven waves in a gas discharge 16 1959 C H Kelley and J Yenser produce Alfven waves in the ambient atmosphere 1960 Coleman et al report the measurement of Alfven waves by the magnetometer aboard the Pioneer and Explorer satellites 17 1961 Sugiura suggests evidence of hydromagnetic waves in the Earth s magnetic field 18 1961 Normal Alfven modes and resonances in liquid sodium are studied by Jameson 1966 R O Motz generates and observes Alfven waves in mercury 19 1970 Hannes Alfven wins the 1970 Nobel Prize in physics for fundamental work and discoveries in magneto hydrodynamics with fruitful applications in different parts of plasma physics 1973 Eugene Parker suggests hydromagnetic waves in the intergalactic medium 1974 J V Hollweg suggests the existence of hydromagnetic waves in interplanetary space 20 1977 Mendis and Ip suggest the existence of hydromagnetic waves in the coma of Comet Kohoutek 21 1984 Roberts et al predict the presence of standing MHD waves in the solar corona 22 and opens the field of coronal seismology 1999 Aschwanden et al 23 and Nakariakov et al report the detection of damped transverse oscillations of solar coronal loops observed with the extreme ultraviolet EUV imager on board the Transition Region And Coronal Explorer TRACE interpreted as standing kink or Alfvenic oscillations of the loops This confirms the theoretical prediction of Roberts et al 1984 2007 Tomczyk et al reported the detection of Alfvenic waves in images of the solar corona with the Coronal Multi Channel Polarimeter CoMP instrument at the National Solar Observatory New Mexico 24 However these observations turned out to be kink waves of coronal plasma structures 25 doi 10 1051 0004 6361 200911840 2007 A special issue on the Hinode space observatory was released in the journal Science 26 Alfven wave signatures in the coronal atmosphere were observed by Cirtain et al 27 Okamoto et al 28 and De Pontieu et al 29 By estimating the observed waves energy density De Pontieu et al have shown that the energy associated with the waves is sufficient to heat the corona and accelerate the solar wind 2008 Kaghashvili et al uses driven wave fluctuations as a diagnostic tool to detect Alfven waves in the solar corona 30 2009 Jess et al detect torsional Alfven waves in the structured Sun s chromosphere using the Swedish Solar Telescope 12 2011 Alfven waves are shown to propagate in a liquid metal alloy made of Gallium 31 2017 3D numerical modelling performed by Srivastava et al show that the high frequency 12 42 mHz Alfven waves detected by the Swedish Solar Telescope can carry substantial energy to heat the Sun s inner corona 13 2018 Using spectral imaging observations non LTE inversions and magnetic field extrapolations of sunspot atmospheres Grant et al found evidence for elliptically polarized Alfven waves forming fast mode shocks in the outer regions of the chromospheric umbral atmosphere For the first time these authors provided quantification of the degree of physical heat provided by the dissipation of such Alfven wave modes 14 See also editAlfven surface Computational magnetohydrodynamics Electrohydrodynamics Electromagnetic pump Ferrofluid Magnetic flow meter Magnetohydrodynamic turbulence MHD generator MHD sensor Molten salt Plasma stability Shocks and discontinuities magnetohydrodynamics References edit Iwai K Shinya K Takashi K and Moreau R 2003 Pressure change accompanying Alfven waves in a liquid metal Magnetohydrodynamics 39 3 pp 245 250 page 245 Chen F F 2016 Introduction to Plasma Physics and Controlled Fusion 3rd ed Switzerland Springer International Publishing pp 55 126 131 Gedalin M 1993 Linear waves in relativistic anisotropic magnetohydrodynamics Physical Review E 47 6 4354 4357 Bibcode 1993PhRvE 47 4354G doi 10 1103 PhysRevE 47 4354 PMID 9960513 Alfven Hannes 1942 Existence of electromagnetic hydrodynamic waves Nature 150 3805 405 406 Bibcode 1942Natur 150 405A doi 10 1038 150405d0 S2CID 4072220 Bart de Pontieu 18 December 1997 Chromospheric Spicules driven by Alfven waves Max Planck Institut fur extraterrestrische Physik Archived from the original on 16 July 2002 Retrieved 1 April 2012 Gerhard Haerendel 1992 Weakly damped Alfven waves as drivers of solar chromospheric spicules Nature 360 6401 241 243 Bibcode 1992Natur 360 241H doi 10 1038 360241a0 S2CID 44454309 Tomczyk S McIntosh S W Keil S L Judge P G Schad T Seeley D H Edmondson J 2007 Alfven waves in the solar corona Science 317 5842 1192 1196 Bibcode 2007Sci 317 1192T doi 10 1126 science 1143304 PMID 17761876 S2CID 45840582 McIntosh et al 2011 Alfvenic waves with sufficient energy to power the quiet solar corona and fast solar wind Nature 475 7357 477 480 Bibcode 2011Natur 475 477M doi 10 1038 nature10235 PMID 21796206 S2CID 4336248 Karen Fox 27 July 2011 SDO spots extra energy in the Sun s corona NASA Retrieved 2 April 2012 Pokhotelov D Rae I J Murphy K R Mann I R 8 June 2015 The influence of solar wind variability on magnetospheric ULF wave power Annales Geophysicae 33 6 697 701 doi 10 5194 angeo 33 697 2015 Borovsky J E 5 January 2023 Further investigation of the effect of upstream solar wind fluctuations on solar wind magnetosphere coupling Is the effect real Frontiers in Astronomy and Space Sciences 9 1 18 doi 10 3389 fspas 2022 975135 a b Jess David B Mathioudakis Mihalis Erdelyi Robert Crockett Philip J Keenan Francis P Christian Damian J 20 March 2009 Alfven Waves in the Lower Solar Atmosphere Science 323 5921 1582 1585 arXiv 0903 3546 Bibcode 2009Sci 323 1582J doi 10 1126 science 1168680 hdl 10211 3 172550 ISSN 0036 8075 PMID 19299614 S2CID 14522616 a b Srivastava Abhishek Kumar Shetye Juie Murawski Krzysztof Doyle John Gerard Stangalini Marco Scullion Eamon Ray Tom Wojcik Dariusz Patryk Dwivedi Bhola N 3 March 2017 High frequency torsional Alfven waves as an energy source for coronal heating Scientific Reports 7 1 43147 Bibcode 2017NatSR 743147S doi 10 1038 srep43147 ISSN 2045 2322 PMC 5335648 PMID 28256538 a b Grant Samuel D T Jess David B Zaqarashvili Teimuraz V Beck Christian Socas Navarro Hector Aschwanden Markus J Keys Peter H Christian Damian J Houston Scott J Hewitt Rebecca L 2018 Alfven Wave Dissipation in the Solar Chromosphere Nature Physics 14 5 480 483 arXiv 1810 07712 Bibcode 2018NatPh 14 480G doi 10 1038 s41567 018 0058 3 S2CID 119089600 Lehnert Bo 15 May 1954 Magneto Hydrodynamic Waves in Liquid Sodium Physical Review 94 4 815 824 Bibcode 1954PhRv 94 815L doi 10 1103 PhysRev 94 815 JEPHCOTT D F 13 June 1959 Alfven Waves in a Gas Discharge Nature 183 4676 1652 1654 Bibcode 1959Natur 183 1652J doi 10 1038 1831652a0 ISSN 0028 0836 S2CID 11487078 Sonett C P Smith E J Judge D L Coleman P J 15 February 1960 Current Systems in the Vestigial Geomagnetic Field Explorer VI Physical Review Letters 4 4 161 163 Bibcode 1960PhRvL 4 161S doi 10 1103 PhysRevLett 4 161 Sugiura Masahisa December 1961 Evidence of low frequency hydromagnetic waves in the exosphere Journal of Geophysical Research 66 12 4087 4095 Bibcode 1961JGR 66 4087S doi 10 1029 jz066i012p04087 ISSN 0148 0227 Motz Robin O 1966 Alfven Wave Generation in a Spherical System Physics of Fluids 9 2 411 Bibcode 1966PhFl 9 411M doi 10 1063 1 1761687 ISSN 0031 9171 Hollweg J V 1974 Hydromagnetic Waves in Interplanetary Space Publications of the Astronomical Society of the Pacific 86 513 561 Bibcode 1974PASP 86 561H doi 10 1086 129646 ISSN 1538 3873 Mendis D A Ip W H March 1977 The ionospheres and plasma tails of comets Space Science Reviews 20 2 145 190 Bibcode 1977SSRv 20 145M doi 10 1007 bf02186863 ISSN 0038 6308 S2CID 119883598 Roberts B Edwin P M Benz A O 1984 Coronal oscillations The Astrophysical Journal 279 2 857 865 Bibcode 1984ApJ 279 857R doi 10 1086 161956 ISSN 0004 637X Aschwanden Markus J Fletcher Lyndsay Schrijver Carolus J Alexander David 1999 Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer PDF The Astrophysical Journal 520 2 880 Bibcode 1999ApJ 520 880A doi 10 1086 307502 ISSN 0004 637X S2CID 122698505 Tomczyk S McIntosh S W Keil S L Judge P G Schad T Seeley D H Edmondson J 31 August 2007 Alfven Waves in the Solar Corona Science 317 5842 1192 1196 Bibcode 2007Sci 317 1192T doi 10 1126 science 1143304 ISSN 0036 8075 PMID 17761876 S2CID 45840582 Doorsselaere T Van Nakariakov V M Verwichte E 2008 Detection of Waves in the Solar Corona Kink or Alfven The Astrophysical Journal Letters 676 1 L73 Bibcode 2008ApJ 676L 73V doi 10 1086 587029 ISSN 1538 4357 Science 318 5856 Science 318 5856 7 December 2007 ISSN 0036 8075 Cirtain J W Golub L Lundquist L Ballegooijen A van Savcheva A Shimojo M DeLuca E Tsuneta S Sakao T 7 December 2007 Evidence for Alfven Waves in Solar X ray Jets Science 318 5856 1580 1582 Bibcode 2007Sci 318 1580C doi 10 1126 science 1147050 ISSN 0036 8075 PMID 18063786 S2CID 39318753 Okamoto T J Tsuneta S Berger T E Ichimoto K Katsukawa Y Lites B W Nagata S Shibata K Shimizu T 7 December 2007 Coronal Transverse Magnetohydrodynamic Waves in a Solar Prominence Science 318 5856 1577 1580 arXiv 0801 1958 Bibcode 2007Sci 318 1577O doi 10 1126 science 1145447 ISSN 0036 8075 PMID 18063785 S2CID 121422620 Pontieu B De McIntosh S W Carlsson M Hansteen V H Tarbell T D Schrijver C J Title A M Shine R A Tsuneta S 7 December 2007 Chromospheric Alfvenic Waves Strong Enough to Power the Solar Wind Science 318 5856 1574 1577 Bibcode 2007Sci 318 1574D doi 10 1126 science 1151747 ISSN 0036 8075 PMID 18063784 S2CID 33655095 Kaghashvili Edisher Kh Quinn Richard A Hollweg Joseph V 2009 Driven Waves as a Diagnostics Tool in the Solar Corona The Astrophysical Journal 703 2 1318 Bibcode 2009ApJ 703 1318K doi 10 1088 0004 637x 703 2 1318 S2CID 120848530 Thierry Alboussiere Philippe Cardin Francois Debray Patrick La Rizza Jean Paul Masson Franck Plunian Adolfo Ribeiro Denys Schmitt 2011 Experimental evidence of Alfven wave propagation in a Gallium alloy Phys Fluids 23 9 096601 arXiv 1106 4727 Bibcode 2011PhFl 23i6601A doi 10 1063 1 3633090 S2CID 2234120 Further reading editThis further reading section may need cleanup Please read the editing guide and help improve the section July 2022 Learn how and when to remove this template message Alfven H 1942 Existence of electromagnetic hydrodynamic waves Nature 150 3805 405 406 Bibcode 1942Natur 150 405A doi 10 1038 150405d0 S2CID 4072220 Alfven H 1981 Cosmic Plasma Holland Reidel ISBN 978 90 277 1151 9 Aschwanden M J Fletcher L Schrijver C J Alexander D 1999 Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer PDF The Astrophysical Journal 520 2 880 894 Bibcode 1999ApJ 520 880A doi 10 1086 307502 S2CID 122698505 Berthold W K Harris A K Hope H J 1960 World Wide Effects of Hydromagnetic Waves Due to Argus Journal of Geophysical Research 65 8 2233 2239 Bibcode 1960JGR 65 2233B doi 10 1029 JZ065i008p02233 Bostick Winston H Levine Morton A 1952 Experimental Demonstration in the Laboratory of the Existence of Magneto Hydrodynamic Waves in Ionized Helium Physical Review 87 4 671 Bibcode 1952PhRv 87 671B doi 10 1103 PhysRev 87 671 Coleman P J Jr Sonett C P Judge D L Smith E J 1960 Some Preliminary Results of the Pioneer V Magnetometer Experiment Journal of Geophysical Research 65 6 1856 1857 Bibcode 1960JGR 65 1856C doi 10 1029 JZ065i006p01856 Cramer N F Vladimirov S V 1997 Alfven Waves in Dusty Interstellar Clouds Publications of the Astronomical Society of Australia 14 2 170 178 Bibcode 1997PASA 14 170C doi 10 1071 AS97170 Dessler A J 1970 Swedish iconoclast recognized after many years of rejection and obscurity Science 170 3958 604 606 Bibcode 1970Sci 170 604D doi 10 1126 science 170 3958 604 PMID 17799293 Falceta Goncalves D Jatenco Pereira V 2002 The Effects of Alfven Waves and Radiation Pressure in Dust Winds of Late Type Stars The Astrophysical Journal 576 2 976 981 arXiv astro ph 0207342 Bibcode 2002ApJ 576 976F doi 10 1086 341794 S2CID 429332 Fermi E 1949 On the Origin of the Cosmic Radiation Physical Review 75 8 1169 1174 Bibcode 1949PhRv 75 1169F doi 10 1103 PhysRev 75 1169 S2CID 7070907 Galtier S 2000 A weak turbulence theory for incompressible magnetohydrodynamics J Plasma Physics 63 5 447 488 arXiv astro ph 0008148 Bibcode 2000JPlPh 63 447G doi 10 1017 S0022377899008284 S2CID 15528846 Hollweg J V 1974 Hydromagnetic waves in interplanetary space Publications of the Astronomical Society of the Pacific 86 October 1974 561 594 Bibcode 1974PASP 86 561H doi 10 1086 129646 Ip W H Mendis D A 1975 The cometary magnetic field and its associated electric currents Icarus 26 4 457 461 Bibcode 1975Icar 26 457I doi 10 1016 0019 1035 75 90115 3 Jephcott D F 1959 Alfven waves in a gas discharge Nature 183 4676 1652 1654 Bibcode 1959Natur 183 1652J doi 10 1038 1831652a0 S2CID 11487078 Lehnert Bo 1954 Magneto Hydrodynamic Waves in Liquid Sodium Physical Review 94 4 815 824 Bibcode 1954PhRv 94 815L doi 10 1103 PhysRev 94 815 Lundquist S 1949 Experimental Investigations of Magneto Hydrodynamic Waves Physical Review 76 12 1805 1809 Bibcode 1949PhRv 76 1805L doi 10 1103 PhysRev 76 1805 Mancuso S Spangler S R 1999 Coronal Faraday Rotation Observations Measurements and Limits on Plasma Inhomogeneities The Astrophysical Journal 525 1 195 208 Bibcode 1999ApJ 525 195M doi 10 1086 307896 S2CID 122721188 Motz R O 1966 Alfven Wave Generation in a Spherical System Physics of Fluids 9 2 411 412 Bibcode 1966PhFl 9 411M doi 10 1063 1 1761687 Nakariakov V M Ofman L Deluca E E Roberts B Davila J M 1999 TRACE observation of damped coronal loop oscillations Implications for coronal heating Science 285 5429 862 864 Bibcode 1999Sci 285 862N doi 10 1126 science 285 5429 862 PMID 10436148 Ofman L Wang T J 2008 Hinode observations of transverse waves with flows in coronal loops Astronomy and Astrophysics 482 2 L9 L12 Bibcode 2008A amp A 482L 9O doi 10 1051 0004 6361 20079340 Otani N F 1988a The Alfven ion cyclotron instability simulation theory and techniques Journal of Computational Physics 78 2 251 277 Bibcode 1988JCoPh 78 251O doi 10 1016 0021 9991 88 90049 6 Otani N F 1988b Application of Nonlinear Dynamical Invariants in a Single Electromagnetic Wave to the Study of the Alfven Ion Cyclotron Instability Physics of Fluids 31 6 1456 1464 Bibcode 1988PhFl 31 1456O doi 10 1063 1 866736 Parker E N 1955 Hydromagnetic Waves and the Acceleration of Cosmic Rays Physical Review 99 1 241 253 Bibcode 1955PhRv 99 241P doi 10 1103 PhysRev 99 241 Parker E N 1958 Suprathermal Particle Generation in the Solar Corona The Astrophysical Journal 128 677 Bibcode 1958ApJ 128 677P doi 10 1086 146580 Parker E N 1973 Extragalactic Cosmic Rays and the Galactic Magnetic Field Astrophysics and Space Science 24 1 279 288 Bibcode 1973Ap amp SS 24 279P doi 10 1007 BF00648691 S2CID 119623745 Silberstein M Otani N F 1994 Computer simulation of Alfven waves and double layers along auroral magnetic field lines PDF Journal of Geophysical Research 99 A4 6351 6365 Bibcode 1994JGR 99 6351S doi 10 1029 93JA02963 Sugiura Masahisa 1961 Some Evidence of Hydromagnetic Waves in the Earth s Magnetic Field Physical Review Letters 6 6 255 257 Bibcode 1961PhRvL 6 255S doi 10 1103 PhysRevLett 6 255 Tomczyk S McIntosh S W Keil S L Judge P G Schad T Seeley D H Edmondson J 2007 Waves in the Solar Corona Science 317 5842 1192 1196 Bibcode 2007Sci 317 1192T doi 10 1126 science 1143304 PMID 17761876 S2CID 45840582 Van Doorsselaere T Nakariakov V M Verwichte E 2008 Detection of Waves in the Solar Corona Kink or Alfven The Astrophysical Journal 676 1 L73 L75 Bibcode 2008ApJ 676L 73V CiteSeerX 10 1 1 460 1896 doi 10 1086 587029 S2CID 22933645 Vasheghani Farahani S Van Doorsselaere T Verwichte E Nakariakov V M 2009 Propagating transverse waves in soft X ray coronal jets Astronomy and Astrophysics 498 2 L29 L32 Bibcode 2009A amp A 498L 29V doi 10 1051 0004 6361 200911840 Jess David B Mathioudakis Mihalis Erdelyi Robert Crockett Philip J Keenan Francis P Christian Damian J 2009 Alfven Waves in the Lower Solar Atmosphere Science 323 5921 1582 1585 arXiv 0903 3546 Bibcode 2009Sci 323 1582J doi 10 1126 science 1168680 hdl 10211 3 172550 PMID 19299614 S2CID 14522616 Srivastava Abhishek K Shetye Juie Murawski Krzysztof Doyle John Gerard Stangalini Marco Scullion Eamon Ray Tom Wojcik Dariusz Patryk Dwivedi Bhola N 2017 High frequency torsional Alfven waves as an energy source for coronal heating Scientific Reports 7 id 43147 Bibcode 2017NatSR 743147S doi 10 1038 srep43147 PMC 5335648 PMID 28256538 Grant Samuel D T Jess David B Zaqarashvili Teimuraz V Beck Christian Socas Navarro Hector Aschwanden Markus J Keys Peter H Christian Damian J Houston Scott J Hewitt Rebecca L 2018 Alfven Wave Dissipation in the Solar Chromosphere Nature Physics 14 5 480 483 arXiv 1810 07712 Bibcode 2018NatPh 14 480G doi 10 1038 s41567 018 0058 3 S2CID 119089600 Murtaza Ghulam Alfven wave propagation in dusty atoms PDF NCP Retrieved 9 May 2020 External links editMysterious Solar Ripples Detected Dave Mosher 2 September 2007 Space com EurekAlert notification of 7 December 2007 Science special issue EurekAlert notification Scientists find solution to solar puzzle Retrieved from https en wikipedia org w index php title Alfven wave amp oldid 1211063344 Alfven velocity, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.