fbpx
Wikipedia

Adolfo del Campo

Adolfo del Campo (born 1981, Bilbao, Spain) is a Spanish physicist and a professor of physics at the University of Luxembourg.[1] He is best known for his work in quantum control and theoretical physics. He is notable as one of the pioneers of shortcuts to adiabaticity. He was elected as a Fellow of the American Physical Society in 2023.[2]

Adolfo del Campo
Born1981 (age 42–43)
Alma materUniversity of Basque Country
Known forShortcuts to adiabaticity
Kibble-Zurek mechanism
Quantum speed limit
AwardsJ. R. Oppenheimer Fellowship (2011)
Scientific career
FieldsQuantum Physics
Institutions

Education edit

Del Campo was educated at the University of the Basque Country, The University of Texas at Austin, and The University of North Carolina at Chapel Hill. He completed his Ph.D. at the University of the Basque Country in 2008. He was a postdoctoral research associate at Imperial College London. He was awarded a Distinguished J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory.[3]

Career edit

In 2014, he became an associate professor at the University of Massachusetts.[4] He was an Ikerbasque Research Professor at the Donostia International Physics Center (2019-2020) and is a full professor at the University of Luxembourg. He has held visiting positions at several universities, including the National Autonomous University of Mexico, the University of Kyoto, Los Alamos National Laboratory, and Institut Henri Poincaré. During his career, del Campo has published over 100 peer-reviewed papers. He has contributed to developing shortcuts to adiabaticity, quantum speed limits, quantum heat engines and the Kibble–Zurek mechanism.

Research edit

Del Campo has contributed significantly to the development of shortcuts to adiabaticity, which are techniques designed to efficiently prepare quantum states.[5][6] His work has extended their application to encompass many-body quantum systems with continuous variables [7][8][9] and spin degrees of freedom.[10][11] These extensions have led to novel quantum algorithms combining the quantum circuit model of quantum computation with shortcuts to adiabaticity.

In partnership with Muga and Ruschhaupt, Del Campo edited the comprehensive volume titled "Time in Quantum Mechanics".[12] He has generalized the time-energy uncertainty relation by introducing quantum speed limits in open quantum systems[13] and classical systems.[14][15][16]

Working on quantum thermodynamics, Del Campo proposed using shortcuts to adiabaticity to enhance the performance of quantum heat engines and bounding the output power by means of quantum speed limits.[17][18] This approach motivated experiments demonstrating the suppression of quantum friction[19] and the realization of superadiabatic quantum engines. In collaboration with Jaramillo and Beau, Dr. Del Campo conducted pioneering theoretical research showcasing the quantum supremacy of many-body thermodynamic devices, establishing the superior performance of heat engines employing many-body working substances compared to their classical counterparts.[20]

Del Campo's contributions to the field of phase transitions expanded upon the Kibble–Zurek mechanism, which explains the creation of topological defects upon crossing critical points in both classical and quantum systems.  Del Campo, in collaboration with Kibble and Zurek, introduced the Inhomogeneous Kibble-Zurek mechanism, a concept that involves spatially local driving to minimize defect formation during phase transitions.[21] This prediction has undergone experimental validation using various systems, including trapped ions[22][23] and ultracold gases. Additionally, Del Campo's work has uncovered universal features beyond the traditional Kibble-Zurek mechanism. He predicted the fluctuations in the number of topological defects to be universal,[24][25] with confirmation achieved through experiments using D-Wave devices.[26][27]

Awards edit

See also edit

References edit

  1. ^ "University of Luxembourg People - Adolfo Del Campo". wwwen.uni.lu/research/fstm/dphyms/. 15 December 2023.
  2. ^ "APS Fellow Archive".
  3. ^ "LANL Distinguished Postdoc Fellows" (PDF).
  4. ^ "University of Massachusetts Boston Faculty & Staff".
  5. ^ Chen, Xi; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; Guéry-Odelin, D.; Muga, J. G. (11 February 2010). "Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity". Physical Review Letters. 104 (6): 063002. arXiv:0910.0709. Bibcode:2010PhRvL.104f3002C. doi:10.1103/PhysRevLett.104.063002. PMID 20366818. S2CID 1372315.
  6. ^ Torrontegui, Erik; Ibáñez, Sara; Martínez-Garaot, Sofia; Modugno, Michele; del Campo, Adolfo; Guéry-Odelin, David; Ruschhaupt, Andreas; Chen, Xi; Muga, Juan Gonzalo (1 January 2013), "Shortcuts to Adiabaticity", in Arimondo, Ennio; Berman, Paul R.; Lin, Chun C. (eds.), Chapter 2 - Shortcuts to Adiabaticity, Advances in Atomic, Molecular, and Optical Physics, vol. 62, Academic Press, pp. 117–169, arXiv:1212.6343, doi:10.1016/b978-0-12-408090-4.00002-5, ISBN 9780124080904, S2CID 118553513, retrieved 3 October 2023
  7. ^ del Campo, A. (26 September 2011). "Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope". Physical Review A. 84 (3): 031606. arXiv:1103.0714. Bibcode:2011PhRvA..84c1606D. doi:10.1103/PhysRevA.84.031606. S2CID 119291327.
  8. ^ Campo, A. del; Boshier, M. G. (11 September 2012). "Shortcuts to adiabaticity in a time-dependent box". Scientific Reports. 2 (1): 648. arXiv:1201.6627. Bibcode:2012NatSR...2E.648D. doi:10.1038/srep00648. ISSN 2045-2322. PMC 3438466. PMID 22970340.
  9. ^ del Campo, Adolfo (3 September 2013). "Shortcuts to Adiabaticity by Counterdiabatic Driving". Physical Review Letters. 111 (10): 100502. arXiv:1306.0410. Bibcode:2013PhRvL.111j0502D. doi:10.1103/PhysRevLett.111.100502. PMID 25166641. S2CID 28259265.
  10. ^ del Campo, Adolfo; Rams, Marek M.; Zurek, Wojciech H. (13 September 2012). "Assisted Finite-Rate Adiabatic Passage Across a Quantum Critical Point: Exact Solution for the Quantum Ising Model". Physical Review Letters. 109 (11): 115703. arXiv:1206.2670. Bibcode:2012PhRvL.109k5703D. doi:10.1103/PhysRevLett.109.115703. PMID 23005647.
  11. ^ Saberi, Hamed; Opatrný, Tomáš; Mølmer, Klaus; del Campo, Adolfo (1 December 2014). "Adiabatic tracking of quantum many-body dynamics". Physical Review A. 90 (6): 060301. arXiv:1408.0524. Bibcode:2014PhRvA..90f0301S. doi:10.1103/PhysRevA.90.060301.
  12. ^ Muga, Gonzalo; Ruschhaupt, Andreas; Campo, Adolfo, eds. (2009). Time in Quantum Mechanics II. Lecture Notes in Physics. Vol. 789. doi:10.1007/978-3-642-03174-8. ISBN 978-3-642-03173-1. ISSN 0075-8450.
  13. ^ del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F. (30 January 2013). "Quantum Speed Limits in Open System Dynamics". Physical Review Letters. 110 (5): 050403. arXiv:1209.1737. Bibcode:2013PhRvL.110e0403D. doi:10.1103/PhysRevLett.110.050403. PMID 23414008.
  14. ^ Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A. (12 February 2018). "Quantum Speed Limits across the Quantum-to-Classical Transition". Physical Review Letters. 120 (7): 070401. arXiv:1710.07335. Bibcode:2018PhRvL.120g0401S. doi:10.1103/PhysRevLett.120.070401. PMID 29542956.
  15. ^ Nicholson, Schuyler B.; García-Pintos, Luis Pedro; del Campo, Adolfo; Green, Jason R. (December 2020). "Time–information uncertainty relations in thermodynamics". Nature Physics. 16 (12): 1211–1215. arXiv:2001.05418. Bibcode:2020NatPh..16.1211N. doi:10.1038/s41567-020-0981-y. ISSN 1745-2481. S2CID 210718709.
  16. ^ García-Pintos, Luis Pedro; Nicholson, Schuyler B.; Green, Jason R.; del Campo, Adolfo; Gorshkov, Alexey V. (28 February 2022). "Unifying Quantum and Classical Speed Limits on Observables". Physical Review X. 12 (1): 011038. arXiv:2108.04261. Bibcode:2022PhRvX..12a1038G. doi:10.1103/PhysRevX.12.011038.
  17. ^ Campo, A. del; Goold, J.; Paternostro, M. (28 August 2014). "More bang for your buck: Super-adiabatic quantum engines". Scientific Reports. 4 (1): 6208. Bibcode:2014NatSR...4E6208C. doi:10.1038/srep06208. ISSN 2045-2322. PMC 4147366. PMID 25163421.
  18. ^ Beau, M.; Jaramillo, J.; del Campo, A. (30 April 2016). "Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity". Entropy. 18 (5): 168. arXiv:1603.06019. Bibcode:2016Entrp..18..168B. doi:10.3390/e18050168. ISSN 1099-4300.
  19. ^ Deng, Shujin; Chenu, Aurélia; Diao, Pengpeng; Li, Fang; Yu, Shi; Coulamy, Ivan; del Campo, Adolfo; Wu, Haibin (6 April 2018). "Superadiabatic quantum friction suppression in finite-time thermodynamics". Science Advances. 4 (4): eaar5909. arXiv:1711.00650. Bibcode:2018SciA....4.5909D. doi:10.1126/sciadv.aar5909. ISSN 2375-2548. PMC 5922798. PMID 29719865.
  20. ^ Jaramillo, J; Beau, M; Campo, A del (26 July 2016). "Quantum supremacy of many-particle thermal machines". New Journal of Physics. 18 (7): 075019. arXiv:1510.04633. Bibcode:2016NJPh...18g5019J. doi:10.1088/1367-2630/18/7/075019. ISSN 1367-2630.
  21. ^ del Campo, A; Kibble, T W B; Zurek, W H (9 October 2013). "Causality and non-equilibrium second-order phase transitions in inhomogeneous systems". Journal of Physics: Condensed Matter. 25 (40): 404210. arXiv:1302.3648. Bibcode:2013JPCM...25N4210D. doi:10.1088/0953-8984/25/40/404210. ISSN 0953-8984. PMID 24025443. S2CID 45215226.
  22. ^ Ulm, S.; Roßnagel, J.; Jacob, G.; Degünther, C.; Dawkins, S. T.; Poschinger, U. G.; Nigmatullin, R.; Retzker, A.; Plenio, M. B.; Schmidt-Kaler, F.; Singer, K. (7 August 2013). "Observation of the Kibble–Zurek scaling law for defect formation in ion crystals". Nature Communications. 4 (1): 2290. arXiv:1302.5343. Bibcode:2013NatCo...4.2290U. doi:10.1038/ncomms3290. ISSN 2041-1723. PMID 23921517.
  23. ^ Pyka, K.; Keller, J.; Partner, H. L.; Nigmatullin, R.; Burgermeister, T.; Meier, D. M.; Kuhlmann, K.; Retzker, A.; Plenio, M. B.; Zurek, W. H.; del Campo, A.; Mehlstäubler, T. E. (7 August 2013). "Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals". Nature Communications. 4 (1): 2291. arXiv:1211.7005. Bibcode:2013NatCo...4.2291P. doi:10.1038/ncomms3291. ISSN 2041-1723. PMID 23921564.
  24. ^ del Campo, Adolfo (14 November 2018). "Universal Statistics of Topological Defects Formed in a Quantum Phase Transition". Physical Review Letters. 121 (20): 200601. arXiv:1806.10646. Bibcode:2018PhRvL.121t0601D. doi:10.1103/PhysRevLett.121.200601. PMID 30500249. S2CID 51736461.
  25. ^ Gómez-Ruiz, Fernando J.; Mayo, Jack J.; del Campo, Adolfo (17 June 2020). "Full Counting Statistics of Topological Defects after Crossing a Phase Transition". Physical Review Letters. 124 (24): 240602. arXiv:1912.04679. Bibcode:2020PhRvL.124x0602G. doi:10.1103/PhysRevLett.124.240602. PMID 32639801. S2CID 209140380.
  26. ^ Bando, Yuki; Susa, Yuki; Oshiyama, Hiroki; Shibata, Naokazu; Ohzeki, Masayuki; Gómez-Ruiz, Fernando Javier; Lidar, Daniel A.; Suzuki, Sei; del Campo, Adolfo; Nishimori, Hidetoshi (8 September 2020). "Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond". Physical Review Research. 2 (3): 033369. arXiv:2001.11637. Bibcode:2020PhRvR...2c3369B. doi:10.1103/PhysRevResearch.2.033369.
  27. ^ King, Andrew D.; Suzuki, Sei; Raymond, Jack; Zucca, Alex; Lanting, Trevor; Altomare, Fabio; Berkley, Andrew J.; Ejtemaee, Sara; Hoskinson, Emile; Huang, Shuiyuan; Ladizinsky, Eric; MacDonald, Allison J. R.; Marsden, Gaelen; Oh, Travis; Poulin-Lamarre, Gabriel (November 2022). "Coherent quantum annealing in a programmable 2,000 qubit Ising chain". Nature Physics. 18 (11): 1324–1328. arXiv:2202.05847. Bibcode:2022NatPh..18.1324K. doi:10.1038/s41567-022-01741-6. ISSN 1745-2481. S2CID 246823045.
  28. ^ "Leon Heller PDPA Publication Award Winners" (PDF).
  29. ^ "2023 Fellows". APS Fellow Archive. American Physical Society. Retrieved 19 October 2023.

External links edit

  • Official home page
  • Editorial Board of Scientific Reports

Selected bibliography edit

  • Time in Quantum Mechanics - Vol. 2, Gonzalo Muga, Andreas Ruschhaupt, Adolfo del Campo (Eds.), (Springer LNP, 2011).
  • Assisted Finite-Rate Adiabatic Passage Across a Quantum Critical Point: Exact Solution for the Quantum Ising Model, Adolfo del Campo, Marek M. Rams, and Wojciech H. Zurek Phys. Rev. Lett. 109, 115703 (2012).
  • Shortcuts to adiabaticity by counterdiabatic driving, Adolfo del Campo, Phys. Rev. Lett. 111, 100502 (2013).
  • Quantum speed limits in open system dynamics, A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga Phys. Rev. Lett. 110, 050403 (2013).
  • Causality and non-equilibrium second-order phase transitions in inhomogeneous systems, A. del Campo, T. W. B. Kibble, W. H. Zurek J. Phys.: Condens. Matter 25, 404210 (2013) .
  • Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking, Adolfo del Campo and Wojciech H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014).
  • Quantum speed limits across the quantum-to-classical transition, B. Shanahan, A. Chenu, N. Margolus, and A. del Campo Phys. Rev. Lett. 120, 070401 (2018).
  • Universal Statistics of Topological Defects Formed in a Quantum Phase Transition , Adolfo del Campo Phys. Rev. Lett. 121, 200601 (2018).

adolfo, campo, born, 1981, bilbao, spain, spanish, physicist, professor, physics, university, luxembourg, best, known, work, quantum, control, theoretical, physics, notable, pioneers, shortcuts, adiabaticity, elected, fellow, american, physical, society, 2023,. Adolfo del Campo born 1981 Bilbao Spain is a Spanish physicist and a professor of physics at the University of Luxembourg 1 He is best known for his work in quantum control and theoretical physics He is notable as one of the pioneers of shortcuts to adiabaticity He was elected as a Fellow of the American Physical Society in 2023 2 Adolfo del CampoBorn1981 age 42 43 Bilbao Basque Country SpainAlma materUniversity of Basque CountryKnown forShortcuts to adiabaticityKibble Zurek mechanismQuantum speed limitAwardsJ R Oppenheimer Fellowship 2011 Scientific careerFieldsQuantum PhysicsInstitutionsImperial College LondonLos Alamos National LaboratoryUniversity of MassachusettsDonostia International Physics CenterUniversity of Luxembourg Contents 1 Education 2 Career 3 Research 4 Awards 5 See also 6 References 7 External links 8 Selected bibliographyEducation editDel Campo was educated at the University of the Basque Country The University of Texas at Austin and The University of North Carolina at Chapel Hill He completed his Ph D at the University of the Basque Country in 2008 He was a postdoctoral research associate at Imperial College London He was awarded a Distinguished J Robert Oppenheimer Fellowship at Los Alamos National Laboratory 3 Career editIn 2014 he became an associate professor at the University of Massachusetts 4 He was an Ikerbasque Research Professor at the Donostia International Physics Center 2019 2020 and is a full professor at the University of Luxembourg He has held visiting positions at several universities including the National Autonomous University of Mexico the University of Kyoto Los Alamos National Laboratory and Institut Henri Poincare During his career del Campo has published over 100 peer reviewed papers He has contributed to developing shortcuts to adiabaticity quantum speed limits quantum heat engines and the Kibble Zurek mechanism Research editDel Campo has contributed significantly to the development of shortcuts to adiabaticity which are techniques designed to efficiently prepare quantum states 5 6 His work has extended their application to encompass many body quantum systems with continuous variables 7 8 9 and spin degrees of freedom 10 11 These extensions have led to novel quantum algorithms combining the quantum circuit model of quantum computation with shortcuts to adiabaticity In partnership with Muga and Ruschhaupt Del Campo edited the comprehensive volume titled Time in Quantum Mechanics 12 He has generalized the time energy uncertainty relation by introducing quantum speed limits in open quantum systems 13 and classical systems 14 15 16 Working on quantum thermodynamics Del Campo proposed using shortcuts to adiabaticity to enhance the performance of quantum heat engines and bounding the output power by means of quantum speed limits 17 18 This approach motivated experiments demonstrating the suppression of quantum friction 19 and the realization of superadiabatic quantum engines In collaboration with Jaramillo and Beau Dr Del Campo conducted pioneering theoretical research showcasing the quantum supremacy of many body thermodynamic devices establishing the superior performance of heat engines employing many body working substances compared to their classical counterparts 20 Del Campo s contributions to the field of phase transitions expanded upon the Kibble Zurek mechanism which explains the creation of topological defects upon crossing critical points in both classical and quantum systems Del Campo in collaboration with Kibble and Zurek introduced the Inhomogeneous Kibble Zurek mechanism a concept that involves spatially local driving to minimize defect formation during phase transitions 21 This prediction has undergone experimental validation using various systems including trapped ions 22 23 and ultracold gases Additionally Del Campo s work has uncovered universal features beyond the traditional Kibble Zurek mechanism He predicted the fluctuations in the number of topological defects to be universal 24 25 with confirmation achieved through experiments using D Wave devices 26 27 Awards editDistinguished J R Oppenheimer Fellow Los Alamos National Laboratory 2011 Leon Heller PDPA Publication Award Los Alamos National Laboratory 2014 28 Fellow of the American Physical Society 2023 29 See also editKibble Zurek mechanism Shortcuts to adiabaticity Quantum speed limit Quantum heat enginesReferences edit University of Luxembourg People Adolfo Del Campo wwwen uni lu research fstm dphyms 15 December 2023 APS Fellow Archive LANL Distinguished Postdoc Fellows PDF University of Massachusetts Boston Faculty amp Staff Chen Xi Ruschhaupt A Schmidt S del Campo A Guery Odelin D Muga J G 11 February 2010 Fast Optimal Frictionless Atom Cooling in Harmonic Traps Shortcut to Adiabaticity Physical Review Letters 104 6 063002 arXiv 0910 0709 Bibcode 2010PhRvL 104f3002C doi 10 1103 PhysRevLett 104 063002 PMID 20366818 S2CID 1372315 Torrontegui Erik Ibanez Sara Martinez Garaot Sofia Modugno Michele del Campo Adolfo Guery Odelin David Ruschhaupt Andreas Chen Xi Muga Juan Gonzalo 1 January 2013 Shortcuts to Adiabaticity in Arimondo Ennio Berman Paul R Lin Chun C eds Chapter 2 Shortcuts to Adiabaticity Advances in Atomic Molecular and Optical Physics vol 62 Academic Press pp 117 169 arXiv 1212 6343 doi 10 1016 b978 0 12 408090 4 00002 5 ISBN 9780124080904 S2CID 118553513 retrieved 3 October 2023 del Campo A 26 September 2011 Frictionless quantum quenches in ultracold gases A quantum dynamical microscope Physical Review A 84 3 031606 arXiv 1103 0714 Bibcode 2011PhRvA 84c1606D doi 10 1103 PhysRevA 84 031606 S2CID 119291327 Campo A del Boshier M G 11 September 2012 Shortcuts to adiabaticity in a time dependent box Scientific Reports 2 1 648 arXiv 1201 6627 Bibcode 2012NatSR 2E 648D doi 10 1038 srep00648 ISSN 2045 2322 PMC 3438466 PMID 22970340 del Campo Adolfo 3 September 2013 Shortcuts to Adiabaticity by Counterdiabatic Driving Physical Review Letters 111 10 100502 arXiv 1306 0410 Bibcode 2013PhRvL 111j0502D doi 10 1103 PhysRevLett 111 100502 PMID 25166641 S2CID 28259265 del Campo Adolfo Rams Marek M Zurek Wojciech H 13 September 2012 Assisted Finite Rate Adiabatic Passage Across a Quantum Critical Point Exact Solution for the Quantum Ising Model Physical Review Letters 109 11 115703 arXiv 1206 2670 Bibcode 2012PhRvL 109k5703D doi 10 1103 PhysRevLett 109 115703 PMID 23005647 Saberi Hamed Opatrny Tomas Molmer Klaus del Campo Adolfo 1 December 2014 Adiabatic tracking of quantum many body dynamics Physical Review A 90 6 060301 arXiv 1408 0524 Bibcode 2014PhRvA 90f0301S doi 10 1103 PhysRevA 90 060301 Muga Gonzalo Ruschhaupt Andreas Campo Adolfo eds 2009 Time in Quantum Mechanics II Lecture Notes in Physics Vol 789 doi 10 1007 978 3 642 03174 8 ISBN 978 3 642 03173 1 ISSN 0075 8450 del Campo A Egusquiza I L Plenio M B Huelga S F 30 January 2013 Quantum Speed Limits in Open System Dynamics Physical Review Letters 110 5 050403 arXiv 1209 1737 Bibcode 2013PhRvL 110e0403D doi 10 1103 PhysRevLett 110 050403 PMID 23414008 Shanahan B Chenu A Margolus N del Campo A 12 February 2018 Quantum Speed Limits across the Quantum to Classical Transition Physical Review Letters 120 7 070401 arXiv 1710 07335 Bibcode 2018PhRvL 120g0401S doi 10 1103 PhysRevLett 120 070401 PMID 29542956 Nicholson Schuyler B Garcia Pintos Luis Pedro del Campo Adolfo Green Jason R December 2020 Time information uncertainty relations in thermodynamics Nature Physics 16 12 1211 1215 arXiv 2001 05418 Bibcode 2020NatPh 16 1211N doi 10 1038 s41567 020 0981 y ISSN 1745 2481 S2CID 210718709 Garcia Pintos Luis Pedro Nicholson Schuyler B Green Jason R del Campo Adolfo Gorshkov Alexey V 28 February 2022 Unifying Quantum and Classical Speed Limits on Observables Physical Review X 12 1 011038 arXiv 2108 04261 Bibcode 2022PhRvX 12a1038G doi 10 1103 PhysRevX 12 011038 Campo A del Goold J Paternostro M 28 August 2014 More bang for your buck Super adiabatic quantum engines Scientific Reports 4 1 6208 Bibcode 2014NatSR 4E6208C doi 10 1038 srep06208 ISSN 2045 2322 PMC 4147366 PMID 25163421 Beau M Jaramillo J del Campo A 30 April 2016 Scaling up quantum heat engines efficiently via shortcuts to adiabaticity Entropy 18 5 168 arXiv 1603 06019 Bibcode 2016Entrp 18 168B doi 10 3390 e18050168 ISSN 1099 4300 Deng Shujin Chenu Aurelia Diao Pengpeng Li Fang Yu Shi Coulamy Ivan del Campo Adolfo Wu Haibin 6 April 2018 Superadiabatic quantum friction suppression in finite time thermodynamics Science Advances 4 4 eaar5909 arXiv 1711 00650 Bibcode 2018SciA 4 5909D doi 10 1126 sciadv aar5909 ISSN 2375 2548 PMC 5922798 PMID 29719865 Jaramillo J Beau M Campo A del 26 July 2016 Quantum supremacy of many particle thermal machines New Journal of Physics 18 7 075019 arXiv 1510 04633 Bibcode 2016NJPh 18g5019J doi 10 1088 1367 2630 18 7 075019 ISSN 1367 2630 del Campo A Kibble T W B Zurek W H 9 October 2013 Causality and non equilibrium second order phase transitions in inhomogeneous systems Journal of Physics Condensed Matter 25 40 404210 arXiv 1302 3648 Bibcode 2013JPCM 25N4210D doi 10 1088 0953 8984 25 40 404210 ISSN 0953 8984 PMID 24025443 S2CID 45215226 Ulm S Rossnagel J Jacob G Degunther C Dawkins S T Poschinger U G Nigmatullin R Retzker A Plenio M B Schmidt Kaler F Singer K 7 August 2013 Observation of the Kibble Zurek scaling law for defect formation in ion crystals Nature Communications 4 1 2290 arXiv 1302 5343 Bibcode 2013NatCo 4 2290U doi 10 1038 ncomms3290 ISSN 2041 1723 PMID 23921517 Pyka K Keller J Partner H L Nigmatullin R Burgermeister T Meier D M Kuhlmann K Retzker A Plenio M B Zurek W H del Campo A Mehlstaubler T E 7 August 2013 Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals Nature Communications 4 1 2291 arXiv 1211 7005 Bibcode 2013NatCo 4 2291P doi 10 1038 ncomms3291 ISSN 2041 1723 PMID 23921564 del Campo Adolfo 14 November 2018 Universal Statistics of Topological Defects Formed in a Quantum Phase Transition Physical Review Letters 121 20 200601 arXiv 1806 10646 Bibcode 2018PhRvL 121t0601D doi 10 1103 PhysRevLett 121 200601 PMID 30500249 S2CID 51736461 Gomez Ruiz Fernando J Mayo Jack J del Campo Adolfo 17 June 2020 Full Counting Statistics of Topological Defects after Crossing a Phase Transition Physical Review Letters 124 24 240602 arXiv 1912 04679 Bibcode 2020PhRvL 124x0602G doi 10 1103 PhysRevLett 124 240602 PMID 32639801 S2CID 209140380 Bando Yuki Susa Yuki Oshiyama Hiroki Shibata Naokazu Ohzeki Masayuki Gomez Ruiz Fernando Javier Lidar Daniel A Suzuki Sei del Campo Adolfo Nishimori Hidetoshi 8 September 2020 Probing the universality of topological defect formation in a quantum annealer Kibble Zurek mechanism and beyond Physical Review Research 2 3 033369 arXiv 2001 11637 Bibcode 2020PhRvR 2c3369B doi 10 1103 PhysRevResearch 2 033369 King Andrew D Suzuki Sei Raymond Jack Zucca Alex Lanting Trevor Altomare Fabio Berkley Andrew J Ejtemaee Sara Hoskinson Emile Huang Shuiyuan Ladizinsky Eric MacDonald Allison J R Marsden Gaelen Oh Travis Poulin Lamarre Gabriel November 2022 Coherent quantum annealing in a programmable 2 000 qubit Ising chain Nature Physics 18 11 1324 1328 arXiv 2202 05847 Bibcode 2022NatPh 18 1324K doi 10 1038 s41567 022 01741 6 ISSN 1745 2481 S2CID 246823045 Leon Heller PDPA Publication Award Winners PDF 2023 Fellows APS Fellow Archive American Physical Society Retrieved 19 October 2023 External links editOfficial home page Editorial Board of Scientific ReportsSelected bibliography editTime in Quantum Mechanics Vol 2 Gonzalo Muga Andreas Ruschhaupt Adolfo del Campo Eds Springer LNP 2011 Assisted Finite Rate Adiabatic Passage Across a Quantum Critical Point Exact Solution for the Quantum Ising Model Adolfo del Campo Marek M Rams and Wojciech H Zurek Phys Rev Lett 109 115703 2012 Shortcuts to adiabaticity by counterdiabatic driving Adolfo del Campo Phys Rev Lett 111 100502 2013 Quantum speed limits in open system dynamics A del Campo I L Egusquiza M B Plenio and S F Huelga Phys Rev Lett 110 050403 2013 Causality and non equilibrium second order phase transitions in inhomogeneous systems A del Campo T W B Kibble W H Zurek J Phys Condens Matter 25 404210 2013 Universality of Phase Transition Dynamics Topological Defects from Symmetry Breaking Adolfo del Campo and Wojciech H Zurek Int J Mod Phys A 29 1430018 2014 Quantum speed limits across the quantum to classical transition B Shanahan A Chenu N Margolus and A del Campo Phys Rev Lett 120 070401 2018 Universal Statistics of Topological Defects Formed in a Quantum Phase Transition Adolfo del Campo Phys Rev Lett 121 200601 2018 Retrieved from https en wikipedia org w index php title Adolfo del Campo amp oldid 1221071404, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.