fbpx
Wikipedia

AAI Aerosonde

The AAI Aerosonde is a small unmanned aerial vehicle (UAV) designed to collect weather data, including temperature, atmospheric pressure, humidity, and wind measurements over oceans and remote areas. The Aerosonde was developed by Insitu, and is now manufactured by Aerosonde Ltd, which is a strategic business of AAI Corporation. The Aerosonde is powered by a modified Enya R120 model aircraft engine, and carries on board a small computer, meteorological instruments, and a GPS receiver for navigation. It is also used by the United States Armed Forces for intelligence, surveillance and reconnaissance (ISR).

Aerosonde
Aerosonde "Laima" in display at Museum of Flight, Seattle, WA
Role Unmanned aerial vehicle
National origin United States
Manufacturer AAI

Design and development edit

On August 21, 1998, a Phase 1 Aerosonde nicknamed "Laima", after the ancient Latvian deity of good fortune, completed a 2,031 mile (3,270 km) flight across the Atlantic Ocean. This was the first crossing of the Atlantic Ocean by a UAV; at the time, it was also the smallest aircraft ever to cross the Atlantic[1] (the smallest aircraft record was subsequently broken by the Spirit of Butts Farm UAV). Launched from a roof rack of a moving car due to its lack of undercarriage, Laima flew from Newfoundland, Canada to Benbecula, an island off the coast of Scotland in 26 hours 45 minutes in stormy weather, using approximately 1.5 U.S. gallons (1.25 imperial gallons or 5.7 litres) of gasoline (petrol). Other than for take-off and landing, the flight was autonomous, without external control, at an altitude of 5,500 ft (1,680 meters). Aerosondes have also been the first unmanned aircraft to penetrate tropical cyclones, with an initial mission in 2001[2] followed by eye penetrations in 2005.[3]

Operational history edit

On 5 March 2012, the U.S. Special Operations Command (SOCOM) awarded AAI a contract to provide the Aerosonde-G for their Mid-Endurance UAS II program. The catapult-launched air vehicle has a takeoff weight 34.1 or 36 kg (75 or 79 lb) depending on engine type, with endurance of over 10 hours and an electro-optic/infrared and laser-pointer payload.[4] The Aerosonde has been employed by SOCOM and U.S. Naval Air Systems Command (NAVAIR) under the designation MQ-19 under service provision contracts. A typical system comprises four air vehicles and two ground control stations that are accommodated in tents or tailored to fit in most vehicles. The system can also include remote video terminals for individual users to uplink new navigation waypoints and sensor commands to, and receive sensor imagery and video from, the vehicle from a ruggedized tablet device. Originally, the Aerosonde suffered from engine-reliability issues, but Textron says it has rectified those issues.[5]

By November 2015, Textron Systems was performing Aerosonde operations in "eight or nine" countries for its users, including the U.S. Marine Corps, U.S. Air Force, and SOCOM, as well as for commercial users consisting of a customer in the oil and gas industry. Instead of buying hardware, customers pay for "sensor hours," and the company decides how many aircraft are produced to meet requirements. 4,000 fee-for-service hours were being performed monthly, and the Aerosonde had exceeded 110,000 flight hours in service.[6]

Variants edit

Specifications (Aerosonde) edit

General characteristics edit

  • Crew: Remote-controlled
  • Length: 5 ft 8 in (1.7 m)
  • Wingspan: 9 ft 8 in (2.9 m)
  • Height: 2 ft 0 in (0.60 m)
  • Wing area: 6.1 ft2 (0.57 m2)
  • Empty: 22lb (10 kg)
  • Loaded: 28.9 lb (13.1 kg)
  • Maximum take-off: 28.9 lb (13.1 kg)
  • Powerplant: Modified Enya R120 model aircraft engine, 1.74 hp (1280 W)

Lycoming El-005 Multi Fuel power plant

Performance edit

  • Maximum speed: 69 mph (111 km/h)
  • Range: 100 miles (150 km)
  • Service ceiling: 15,000 ft (4,500 m)
  • Rate of climb: ft/min ( m/min)
  • Wing loading: 5 lb/ft2 (23 kg/m2)
  • Power/Mass: 0.06 hp/lb (98 W/kg)

References edit

  1. ^ Tad McGeer (25 February 1999). (PDF). Aerovel Corp. Archived from the original (PDF) on 19 November 2008.
  2. ^ Po-Hsiung Lin. "Fly Into Typhoon Haiyan With UAV Aerosonde" (PDF). National Taiwan University. Retrieved 21 January 2015.
  3. ^ . National Taiwan University. 1 October 2005. Archived from the original on 7 July 2011.
  4. ^ U.S. Chooses Aerosonde, Other UAVs for ISR Services - Ainonline.com, 16 March 2012
  5. ^ Textron Awaits Key UAV Decisions - Ainonline.com, 15 June 2015
  6. ^ Textron keen to expand Aerosonde operations - Flightglobal.com, 10 November 2015
  • Display information at Museum of Flight in Seattle, Washington.
  • G.J. Holland, T. McGeer and H.H. Youngren. Autonomous aerosondes for economical atmospheric soundings anywhere on the globe. Bulletin of the American Meteorological Society 73(12):1987-1999, December 1992.
  • "DOD 4120.15-L - Addendum: MDS Designators allocated after 19 August 1998 (until September 2009)". 2009. designation-systems.net. from the original on 29 December 2010. Retrieved 10 January 2011.

Cyclone reconnaissance

  • P-H Lin & C-S Lee. Fly into typhoon Haiyan with UAV Aerosonde. American Meteorological Society conference paper 52113 (2002).
  • NASA Wallops Flight Facility press release:

Laima flight

  • Tad McGeer.
  • Aerosonde Pty Ltd. press release:
  • University of Washington, Aeronautics and Astronautics Program, College of Engineering: ()

External links edit

  • Aerosonde Pty Ltd. web site

aerosonde, australian, manufacturer, uavs, aerosonde, small, unmanned, aerial, vehicle, designed, collect, weather, data, including, temperature, atmospheric, pressure, humidity, wind, measurements, over, oceans, remote, areas, aerosonde, developed, insitu, ma. For the Australian manufacturer of UAVs see Aerosonde Ltd The AAI Aerosonde is a small unmanned aerial vehicle UAV designed to collect weather data including temperature atmospheric pressure humidity and wind measurements over oceans and remote areas The Aerosonde was developed by Insitu and is now manufactured by Aerosonde Ltd which is a strategic business of AAI Corporation The Aerosonde is powered by a modified Enya R120 model aircraft engine and carries on board a small computer meteorological instruments and a GPS receiver for navigation It is also used by the United States Armed Forces for intelligence surveillance and reconnaissance ISR Aerosonde Aerosonde Laima in display at Museum of Flight Seattle WA Role Unmanned aerial vehicle National origin United States Manufacturer AAI Contents 1 Design and development 2 Operational history 3 Variants 4 Specifications Aerosonde 4 1 General characteristics 4 2 Performance 5 References 6 External linksDesign and development editOn August 21 1998 a Phase 1 Aerosonde nicknamed Laima after the ancient Latvian deity of good fortune completed a 2 031 mile 3 270 km flight across the Atlantic Ocean This was the first crossing of the Atlantic Ocean by a UAV at the time it was also the smallest aircraft ever to cross the Atlantic 1 the smallest aircraft record was subsequently broken by the Spirit of Butts Farm UAV Launched from a roof rack of a moving car due to its lack of undercarriage Laima flew from Newfoundland Canada to Benbecula an island off the coast of Scotland in 26 hours 45 minutes in stormy weather using approximately 1 5 U S gallons 1 25 imperial gallons or 5 7 litres of gasoline petrol Other than for take off and landing the flight was autonomous without external control at an altitude of 5 500 ft 1 680 meters Aerosondes have also been the first unmanned aircraft to penetrate tropical cyclones with an initial mission in 2001 2 followed by eye penetrations in 2005 3 Operational history editOn 5 March 2012 the U S Special Operations Command SOCOM awarded AAI a contract to provide the Aerosonde G for their Mid Endurance UAS II program The catapult launched air vehicle has a takeoff weight 34 1 or 36 kg 75 or 79 lb depending on engine type with endurance of over 10 hours and an electro optic infrared and laser pointer payload 4 The Aerosonde has been employed by SOCOM and U S Naval Air Systems Command NAVAIR under the designation MQ 19 under service provision contracts A typical system comprises four air vehicles and two ground control stations that are accommodated in tents or tailored to fit in most vehicles The system can also include remote video terminals for individual users to uplink new navigation waypoints and sensor commands to and receive sensor imagery and video from the vehicle from a ruggedized tablet device Originally the Aerosonde suffered from engine reliability issues but Textron says it has rectified those issues 5 By November 2015 Textron Systems was performing Aerosonde operations in eight or nine countries for its users including the U S Marine Corps U S Air Force and SOCOM as well as for commercial users consisting of a customer in the oil and gas industry Instead of buying hardware customers pay for sensor hours and the company decides how many aircraft are produced to meet requirements 4 000 fee for service hours were being performed monthly and the Aerosonde had exceeded 110 000 flight hours in service 6 Variants editThis section is empty You can help by adding to it March 2015 Specifications Aerosonde editThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed February 2015 Learn how and when to remove this message General characteristics edit Crew Remote controlled Length 5 ft 8 in 1 7 m Wingspan 9 ft 8 in 2 9 m Height 2 ft 0 in 0 60 m Wing area 6 1 ft2 0 57 m2 Empty 22lb 10 kg Loaded 28 9 lb 13 1 kg Maximum take off 28 9 lb 13 1 kg Powerplant Modified Enya R120 model aircraft engine 1 74 hp 1280 W Lycoming El 005 Multi Fuel power plant Performance edit Maximum speed 69 mph 111 km h Range 100 miles 150 km Service ceiling 15 000 ft 4 500 m Rate of climb ft min m min Wing loading 5 lb ft2 23 kg m2 Power Mass 0 06 hp lb 98 W kg References edit Tad McGeer 25 February 1999 Lamia The First Atlantic Crossing by Unmanned Aircraft PDF Aerovel Corp Archived from the original PDF on 19 November 2008 Po Hsiung Lin Fly Into Typhoon Haiyan With UAV Aerosonde PDF National Taiwan University Retrieved 21 January 2015 Typhoon Long Wang National Taiwan University 1 October 2005 Archived from the original on 7 July 2011 U S Chooses Aerosonde Other UAVs for ISR Services Ainonline com 16 March 2012 Textron Awaits Key UAV Decisions Ainonline com 15 June 2015 Textron keen to expand Aerosonde operations Flightglobal com 10 November 2015 Display information at Museum of Flight in Seattle Washington G J Holland T McGeer and H H Youngren Autonomous aerosondes for economical atmospheric soundings anywhere on the globe Bulletin of the American Meteorological Society 73 12 1987 1999 December 1992 DOD 4120 15 L Addendum MDS Designators allocated after 19 August 1998 until September 2009 2009 designation systems net Archived from the original on 29 December 2010 Retrieved 10 January 2011 Cyclone reconnaissance P H Lin amp C S Lee Fly into typhoon Haiyan with UAV Aerosonde American Meteorological Society conference paper 52113 2002 NASA Wallops Flight Facility press release Aerosonde UAV Completes First Operational Flights at NASA Wallops Laima flight Tad McGeer Laima The first Atlantic crossing by unmanned aircraft 1998 Aerosonde Pty Ltd press release First UAV across the Atlantic University of Washington Aeronautics and Astronautics Program College of Engineering Aerosonde project web page External links edit nbsp Wikimedia Commons has media related to Aerosonde Aerosonde Pty Ltd web site Retrieved from https en wikipedia org w index php title AAI Aerosonde amp oldid 1173756356, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.