fbpx
Wikipedia

475 °C embrittlement

475 °C embrittlement is the loss of plasticity in duplex stainless steel in the ferrite phase when it is heated in the range of 315 °C (599 °F) to 540 °C (1,004 °F). This type of embrittlement is due to precipitation hardening which can lead to brittle fracture failure.[1]

Duplex stainless steel

 
Electron backscatter diffraction map of 128hrs age hardened DSS with the ferrite phase formaing the matrix and austenite grains sporadically spread

Duplex stainless steel (DSS) is a mixture of austenite and ferrite microstructure, not necessarily in equal proportions, where the alloy solidifies as ferrite, and the temperature falls to around 1,000 °C (1,830 °F), it is partially transformed to austenite. These contain 18-28% Cr and 4-8% Ni and are strong and have good corrosion resistance, particularly chloride stress corrosion and chloride pitting corrosion, and higher strength than standard austenitic stainless steels such as Type 304 or 316.[2][3][4] Duplex steels have a higher chromium content compared to austenitic stainless steel, 20–28%; higher molybdenum, up to 5%; lower nickel, up to 9% and 0.05–0.50% nitrogen.[5][6] They are therefore used extensively in the offshore oil and gas industry for pipework systems, manifolds, risers, etc. and in the petrochemical industry in the form of pipelines and pressure vessels.[7]

Alpha (α) phase is a ferritic phase with body-centred cubic (BCC) structure, Im m [229] space group, 2.866 Å lattice parameter, and has one twinning system {112}<111> and three slip systems {110}<111>, {112}<111> and {123}<111>; however, the last system rarely activates.[8][9] Gamma ( ) phase is austenitic with a face-centred cubic (FCC) structure, Fm m [259] space group, and 3.66 Å lattice parameter. It normally has more Ni, Cu, and interstitial C and N.[10] Plastic deformation occurs in austenite more readily than in ferrite[11][12] During deformation, straight slip bands form in the austenite grains and propagate to the ferrite-austenite grain boundaries, assisting in slipping the ferrite phase. Curved slip bands also form due to the bulk ferrite grain deformation.[13][14][15]

Age hardening by spinodal decomposition

 
Calculated metastable miscibility gap in the Fe-Cr binary system (remake of [16][17]).

Duplex stainless can have limited toughness due to its large ferritic grain size, and its tendencies to hardening and embrittlement at temperatures ranging from 280–500 °C, especially at 475 °C, where spinodal decomposition of the supersaturated solid ferrite solution into Fe-rich nanophase ( ) and Cr-rich nanophase ( ), accompanied by G-phase precipitation, occurs.[18][19][20] This makes the ferrite phase a preferential initiation site for micro-cracks.[21] This is because aging encourages Σ3 {112}<111> ferrite deformation twinning at slow strain rate and room temperature in tensile or compressive deformation, nucleating from local stress concentration sites,[18][22] and parent-twinning boundaries, with 60° (in or out) misorientation, are suitable for cleavage crack nucleation.[22][23][24]

Spinodal decomposition refers to the spontaneous separation of a phase into two coherent phases via uphill diffusion, i.e., a negative diffusion coefficient  , without a barrier to nucleation due to the phase being thermodynamically unstable (i.e., miscibility gap,   +   region in Figure 1),[25] where   is the Gibbs free energy per mole of solution and the composition. It increases hardness and decreases magneticity.[26] Miscibility gap describes the region in a phase diagram below the melting point of each compound where the atom[clarification needed] disrupts the solid phase into the liquid of two separated stable phases.[27]

Microscopy characterisation

 
Microstructural evolution under the Cahn–Hilliard equation, demonstrating distinctive coarsening and phase separation.

Using Field Emission Gun Transmission Electron Microscope FEG-TEM, the nanometre-scaled modulated structure of the decomposed ferrite was revealed as Cr-rich nanophase gave the bright image, and Fe-rich darker image.[28] It also revealed that these modulated nanophases grow coarser with aging time.[28][29] Decomposed phases start as irregular rounded shapes with no particular arrangement, but with time the Cr-rich nanophase takes a plat shape aligned in the <110> directions.[29] Nevertheless, as the ferrite hardness increases with aging time, the hardness of the ductile austenite phase remains nearly unchanged [30][31][32] due to faster diffusivity in ferrite compared to the austenite.[26] Nevertheless, austenite undergoes a substitutional redistribution of elements, enhancing galvanic corrosion between the two phases.[33]

Mechanical effect

 
Change of hardness (measured using diamond Vicker indenter and expressed in Vickers Pyramid Number, HV) with 2, 4, 8, 16, 32, 64, and 128 hours aging time for the ferrite phase in super-duplex Zeron 100 alloy. The indent was done in 11 widely separated locations in each aged sample.[1]

Spinodal decomposition increases the hardening of the material due to the misfit between the Cr-rich and Fe-rich nano-phases, internal stress, and variation of elastic modulus. The formation of coherent (i.e., lattice matching) precipitates induces an equal but opposite strain, raising the system's free energy depending on the precipitate shape and matrix and precipitate elastic properties.[27][34] Around a spherical inclusion, the distortion is purely hydrostatic. The embrittlement is caused by dislocations impediment/ locking by (mostly) the spinodally decomposed (modulated) matrix [30][31] and (strain around) G-phase precipitates [35] (i.e., internal stress relaxation by the formation of Cottrell atmosphere[36]).

G-phase precipitates are a phase rich in Ni, Ti, and Si,[20] but Cr and Mn may substitute Ti sites [37] and be named because it appears prominently at grain boundaries.[20] G-phase precipitates occur during long-term aging, are encouraged by increasing Ni content in the ferrite phase,[37] and reduce corrosion resistance significantly.[38] It has ellipsoid morphology, FCC structure (Fm m), and 11.4 Å lattice parameter,[39] with a diameter < 50 nm that increases with aging.[40][41]

Treatment

550 °C heat treatment can reverse spinodal decomposition but not affect the G-phase precipitates.[42] The ferrite matrix spinodal decomposition can be substantially reversed by introducing an external pulsed electric current that changes the system's free energy due to the difference in electrical conductivity between the nanophases and the dissolution of G-phase precipitates.[43][44] Cyclic loading suppresses spinodal decomposition,[45] and radiation accelerates it but changes its nature from an interconnected network to isolated islands.[46]

Further reading

  • Bonny G, Terentyev D, Malerba L (2010). "New Contribution to the Thermodynamics of Fe-Cr Alloys as Base for Ferritic Steels". Journal of Phase Equilibria and Diffusion. 31 (5): 439–444. doi:10.1007/S11669-010-9782-9. S2CID 95044045.

References

  1. ^ a b Mohamed Koko, A. (2022). In situ full-field characterisation of strain concentrations (deformation twins, slip bands and cracks) (PhD Thesis thesis). University of Oxford.  This article incorporates text from this source, which is available under the CC BY 4.0 license.
  2. ^ Alvarez-Armas, Iris (2008). "Duplex Stainless Steels: Brief History and Some Recent Alloys". Recent Patents on Mechanical Engineering. 1 (1): 51–57. doi:10.2174/2212797610801010051.
  3. ^ Peckner, Donald; Bernstein, I.M. (1977). "chapter 8". Handbook of Stainless Steels. McGraw Hill. ISBN 9780070491472.
  4. ^ Lacombe, P.; Baroux, B.; Beranger, G. (1990). "chapter 18". Les Aciers Inoxydables. Les Editions de Physique. ISBN 2-86883-142-7.
  5. ^ International Molybdenum Association (IMOA) (2014). Practical Guidelines for the fabrication of Duplex Stainless Steels (PDF). www.imoa.info. ISBN 978-1-907470-09-7.
  6. ^ Charles, Jacques (2010). Proceedings of the Duplex Stainless Steel Conference, Beaune (2010). EDP Sciences, Paris. pp. 29–82.
  7. ^ International Stainless Steel Forum (2020). "Duplex Stainless Steels" (PDF).
  8. ^ Du, C.; Maresca, F.; Geers, M. G. D.; Hoefnagels, J. P. M. (2018-03-01). "Ferrite slip system activation investigated by uniaxial micro-tensile tests and simulations". Acta Materialia. 146: 314–327. Bibcode:2018AcMat.146..314D. doi:10.1016/j.actamat.2017.12.054. ISSN 1359-6454.
  9. ^ Koko, Abdalrhaman; Elmukashfi, Elsiddig; Dragnevski, Kalin; Wilkinson, Angus J.; Marrow, Thomas James (2021-10-01). "J-integral analysis of the elastic strain fields of ferrite deformation twins using electron backscatter diffraction". Acta Materialia. 218: 117203. Bibcode:2021AcMat.21817203K. doi:10.1016/j.actamat.2021.117203. ISSN 1359-6454.
  10. ^ Nilsson, J.-O. (1992-08-01). "Super duplex stainless steels". Materials Science and Technology. 8 (8): 685–700. Bibcode:1992MatST...8..685N. doi:10.1179/mst.1992.8.8.685. ISSN 0267-0836.
  11. ^ Zieliński, W.; Świątnicki, W.; Barstch, M.; Messerschmidt, U. (2003-08-28). "Non-uniform distribution of plastic strain in duplex steel during TEM in situ deformation". Materials Chemistry and Physics. 81 (2): 476–479. doi:10.1016/S0254-0584(03)00059-2. ISSN 0254-0584.
  12. ^ Koko, Abdalrhaman; Elmukashfi, Elsiddig; Becker, Thorsten H.; Karamched, Phani S.; Wilkinson, Angus J.; Marrow, T. James (2022-10-15). "In situ characterisation of the strain fields of intragranular slip bands in ferrite by high-resolution electron backscatter diffraction". Acta Materialia. 239: 118284. Bibcode:2022AcMat.23918284K. doi:10.1016/j.actamat.2022.118284. ISSN 1359-6454. S2CID 251783802.
  13. ^ Serre, I.; Salazar, D.; Vogt, J.-B. (September 2008). "Atomic force microscopy investigation of surface relief in individual phases of deformed duplex stainless steel". Materials Science and Engineering: A. 492 (1–2): 428–433. doi:10.1016/j.msea.2008.04.060.
  14. ^ Li Z, Hu Y, Chen T, Wang X, Liu P, Lu Y (December 2020). "Microstructural Evolution and Mechanical Behavior of Thermally Aged Cast Duplex Stainless Steel". Materials. 13 (24): 5636. Bibcode:2020Mate...13.5636L. doi:10.3390/ma13245636. PMC 7763132. PMID 33321825.
  15. ^ Zhang, Qingdong; Ma, Sida; Jing, Tao (March 2019). "Mechanical Properties of a Thermally-aged Cast Duplex Stainless Steel by in Situ Tensile Test at the Service Temperature". Metals. 9 (3): 317. doi:10.3390/met9030317. ISSN 2075-4701.
  16. ^ Fan, Y.; Liu, T.G.; Xin, L.; Han, Y.M.; Lu, Y.H.; Shoji, T. (February 2021). "Thermal aging behaviors of duplex stainless steels used in nuclear power plant: A review". Journal of Nuclear Materials. 544: 152693. Bibcode:2021JNuM..54452693F. doi:10.1016/j.jnucmat.2020.152693. S2CID 229461947.
  17. ^ Bonny, G.; Terentyev, D.; Malerba, L. (October 2010). "New Contribution to the Thermodynamics of Fe-Cr Alloys as Base for Ferritic Steels". Journal of Phase Equilibria and Diffusion. 31 (5): 439–444. doi:10.1007/s11669-010-9782-9. ISSN 1547-7037. S2CID 95044045.
  18. ^ a b Örnek, Cem; Burke, M. G.; Hashimoto, T.; Engelberg, D. L. (April 2017). "748 K (475 °C) Embrittlement of Duplex Stainless Steel: Effect on Microstructure and Fracture Behavior". Metallurgical and Materials Transactions A. 48 (4): 1653–1665. Bibcode:2017MMTA...48.1653O. doi:10.1007/s11661-016-3944-2. ISSN 1073-5623. S2CID 136321604.
  19. ^ Weng, K. L; Chen, H. R; Yang, J. R (2004-08-15). "The low-temperature aging embrittlement in a 2205 duplex stainless steel". Materials Science and Engineering: A. 379 (1): 119–132. doi:10.1016/j.msea.2003.12.051. ISSN 0921-5093.
  20. ^ a b c Beattie, H. J.; Versnyder, F. L. (July 1956). "A New Complex Phase in a High-Temperature Alloy". Nature. 178 (4526): 208–209. Bibcode:1956Natur.178..208B. doi:10.1038/178208b0. ISSN 1476-4687. S2CID 4217639.
  21. ^ Liu, Gang; Li, Shi-Lei; Zhang, Hai-Long; Wang, Xi-Tao; Wang, Yan-Li (August 2018). "Characterization of Impact Deformation Behavior of a Thermally Aged Duplex Stainless Steel by EBSD". Acta Metallurgica Sinica (English Letters). 31 (8): 798–806. doi:10.1007/s40195-018-0708-6. ISSN 1006-7191. S2CID 139395583.
  22. ^ a b Marrow, T. J.; Humphreys, A. O.; Strangwood, M. (July 1997). "The Crack Initiation Toughness for Brittle Fracture of Super Duplex Stainless Steel". Fatigue & Fracture of Engineering Materials & Structures. 20 (7): 1005–1014. doi:10.1111/j.1460-2695.1997.tb01543.x.
  23. ^ Kato, Masaharu (January 1981). "Hardening by spinodally modulated structure in b.c.c. alloys". Acta Metallurgica. 29 (1): 79–87. doi:10.1016/0001-6160(81)90088-2.
  24. ^ Marrow, T. J.; Harris, C. (July 1996). "THE FRACTURE MECHANISM OF 475°C EMBRITTLEMENT IN A DUPLEX STAINLESS STEEL". Fatigue & Fracture of Engineering Materials & Structures. 19 (7): 935–947. doi:10.1111/j.1460-2695.1996.tb01028.x.
  25. ^ Mburu, Sarah; Kolli, R. Prakash; Perea, Daniel E.; Schwarm, Samuel C.; Eaton, Arielle; Liu, Jia; Patel, Shiv; Bartrand, Jonah; Ankem, Sreeramamurthy (April 2017). "Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels". Materials Science and Engineering: A. 690: 365–377. doi:10.1016/j.msea.2017.03.011.
  26. ^ a b Örnek, C.; Burke, M. G.; Hashimoto, T.; Lim, J. J. H.; Engelberg, D. L. (2017-05-26). "475°C Embrittlement of Duplex Stainless Steel—A Comprehensive Microstructure Characterization Study". Materials Performance and Characterization. 6 (3): MPC20160088. doi:10.1520/MPC20160088.
  27. ^ a b Porter, David A.; Easterling, Kenneth E.; Sherif, Mohamed Y. (2021). Phase ransformations in Metals and Alloys. [S.l.]: CRC Press. ISBN 978-1-000-46779-6. OCLC 1267751972.
  28. ^ a b Weng, K.L; Chen, H.R; Yang, J.R (August 2004). "The low-temperature aging embrittlement in a 2205 duplex stainless steel". Materials Science and Engineering: A. 379 (1–2): 119–132. doi:10.1016/j.msea.2003.12.051.
  29. ^ a b Soriano-Vargas, Orlando; Avila-Davila, Erika O.; Lopez-Hirata, Victor M.; Cayetano-Castro, Nicolas; Gonzalez-Velazquez, Jorge L. (May 2010). "Effect of spinodal decomposition on the mechanical behavior of Fe–Cr alloys". Materials Science and Engineering: A. 527 (12): 2910–2914. doi:10.1016/j.msea.2010.01.020.
  30. ^ a b Zhang, Qingdong; Singaravelu, Arun Sundar S.; Zhao, Yongfeng; Jing, Tao; Chawla, Nikhilesh (2019-01-16). "Mechanical properties of a thermally-aged cast duplex stainless steel by nanoindentation and micropillar compression". Materials Science and Engineering: A. 743: 520–528. doi:10.1016/j.msea.2018.11.112. ISSN 0921-5093. S2CID 139168335.
  31. ^ a b Lee, Ho Jung; Kong, Byeong Seo; Obulan Subramanian, Gokul; Heo, Jaewon; Jang, Changheui; Lee, Kyoung-Soo (2018-10-01). "Evaluation of thermal aging of δ-ferrite in austenitic stainless steel weld using nanopillar compression test". Scripta Materialia. 155: 32–36. doi:10.1016/j.scriptamat.2018.06.016. ISSN 1359-6462. S2CID 139130674.
  32. ^ Godfrey, T. J.; Smith, G. D.W. (November 1986). "The Atom Probe Analysis of a Cast Duplex Stainless Steel". Le Journal de Physique Colloques. 47 (C7): C7–217–C7-222. doi:10.1051/jphyscol:1986738. ISSN 0449-1947. S2CID 93304045.
  33. ^ May, J.E.; de Sousa, C.A.C.; Kuri, S.E. (July 2003). "Aspects of the anodic behaviour of duplex stainless steels aged for long periods at low temperatures". Corrosion Science. 45 (7): 1395–1403. doi:10.1016/S0010-938X(02)00244-5.
  34. ^ Cahn, John W (1961-09-01). "On spinodal decomposition". Acta Metallurgica. 9 (9): 795–801. doi:10.1016/0001-6160(61)90182-1. ISSN 0001-6160.
  35. ^ Badyka, R.; Monnet, G.; Saillet, S.; Domain, C.; Pareige, C. (February 2019). "Quantification of hardening contribution of G-Phase precipitation and spinodal decomposition in aged duplex stainless steel: APT analysis and micro-hardness measurements". Journal of Nuclear Materials. 514: 266–275. Bibcode:2019JNuM..514..266B. doi:10.1016/j.jnucmat.2018.12.002. S2CID 105302671.
  36. ^ Calcagnotto, Marion; Adachi, Yoshitaka; Ponge, Dirk; Raabe, Dierk (January 2011). "Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging". Acta Materialia. 59 (2): 658–670. Bibcode:2011AcMat..59..658C. doi:10.1016/j.actamat.2010.10.002.
  37. ^ a b Sakata, Mikihiro; Kadoi, Kota; Inoue, Hiroshige (December 2021). "Acceleration of 475 °C embrittlement in weld metal of 22 mass% Cr-duplex stainless steel". Materials Today Communications. 29: 102800. doi:10.1016/j.mtcomm.2021.102800. S2CID 240575697.
  38. ^ Xue, Fei; Shi, Fangjie; Zhang, Chuangju; Zheng, Qiaoling; Yi, Dawei; Li, Xiuqing; Li, Yefei (2021-07-21). "The Microstructure and Mechanical and Corrosion Behaviors of Thermally Aged Z3CN20-09M Cast Stainless Steel for Primary Coolant Pipes of Nuclear Power Plants". Coatings. 11 (8): 870. doi:10.3390/coatings11080870. ISSN 2079-6412.
  39. ^ Li, Shilei; Wang, Yanli; Wang, Xitao; Xue, Fei (September 2014). "G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study". Journal of Nuclear Materials. 452 (1–3): 382–388. Bibcode:2014JNuM..452..382L. doi:10.1016/j.jnucmat.2014.05.069.
  40. ^ Hamaoka, T.; Nomoto, A.; Nishida, K.; Dohi, K.; Soneda, N. (December 2012). "Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel". Philosophical Magazine. 92 (34): 4354–4375. Bibcode:2012PMag...92.4354H. doi:10.1080/14786435.2012.707340. ISSN 1478-6435. S2CID 135586095.
  41. ^ Mateo, A; Llanes, L; Anglada, M; Redjaimia, A; Metauer, G (1997). "Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel". Journal of Materials Science. 32 (17): 4533–4540. doi:10.1023/A:1018669217124. S2CID 134334541.
  42. ^ Lee, Ho Jung; Kong, Byeong Seo; Obulan Subramanian, Gokul; Heo, Jaewon; Jang, Changheui; Lee, Kyoung-Soo (October 2018). "Evaluation of thermal aging of δ-ferrite in austenitic stainless steel weld using nanopillar compression test". Scripta Materialia. 155: 32–36. doi:10.1016/j.scriptamat.2018.06.016. S2CID 139130674.
  43. ^ Liu, Xuebing; Zhang, Xinfang (August 2018). "An ultrafast performance regeneration of aged stainless steel by pulsed electric current". Scripta Materialia. 153: 86–89. doi:10.1016/j.scriptamat.2018.05.004. S2CID 139625954.
  44. ^ Liu, Xuebing; Lu, Wenjun; Zhang, Xinfang (January 2020). "Reconstructing the decomposed ferrite phase to achieve toughness regeneration in a duplex stainless steel". Acta Materialia. 183: 51–63. Bibcode:2020AcMat.183...51L. doi:10.1016/j.actamat.2019.11.008. S2CID 210229887.
  45. ^ Akita, Masayuki; Kakiuchi, Toshifumi; Uematsu, Yoshihiko (2011). "Microstructural Changes of High-Chromium Ferritic Stainless Steel Subjected to Cyclic Loading in 475°C Embrittlement Region". Procedia Engineering. 10: 100–105. doi:10.1016/j.proeng.2011.04.019.
  46. ^ Miller, M.K.; Stoller, R.E.; Russell, K.F. (June 1996). "Effect of neutron-irradiation on the spinodal decomposition of Fe-32% Cr model alloy". Journal of Nuclear Materials. 230 (3): 219–225. Bibcode:1996JNuM..230..219M. doi:10.1016/0022-3115(96)80017-1.

embrittlement, loss, plasticity, duplex, stainless, steel, ferrite, phase, when, heated, range, this, type, embrittlement, precipitation, hardening, which, lead, brittle, fracture, failure, contents, duplex, stainless, steel, hardening, spinodal, decomposition. 475 C embrittlement is the loss of plasticity in duplex stainless steel in the ferrite phase when it is heated in the range of 315 C 599 F to 540 C 1 004 F This type of embrittlement is due to precipitation hardening which can lead to brittle fracture failure 1 Contents 1 Duplex stainless steel 2 Age hardening by spinodal decomposition 3 Microscopy characterisation 4 Mechanical effect 5 Treatment 6 Further reading 7 ReferencesDuplex stainless steel EditSee also Duplex stainless steel Electron backscatter diffraction map of 128hrs age hardened DSS with the ferrite phase formaing the matrix and austenite grains sporadically spread Duplex stainless steel DSS is a mixture of austenite and ferrite microstructure not necessarily in equal proportions where the alloy solidifies as ferrite and the temperature falls to around 1 000 C 1 830 F it is partially transformed to austenite These contain 18 28 Cr and 4 8 Ni and are strong and have good corrosion resistance particularly chloride stress corrosion and chloride pitting corrosion and higher strength than standard austenitic stainless steels such as Type 304 or 316 2 3 4 Duplex steels have a higher chromium content compared to austenitic stainless steel 20 28 higher molybdenum up to 5 lower nickel up to 9 and 0 05 0 50 nitrogen 5 6 They are therefore used extensively in the offshore oil and gas industry for pipework systems manifolds risers etc and in the petrochemical industry in the form of pipelines and pressure vessels 7 Alpha a phase is a ferritic phase with body centred cubic BCC structure Im3 displaystyle bar 3 m 229 space group 2 866 A lattice parameter and has one twinning system 112 lt 111 gt and three slip systems 110 lt 111 gt 112 lt 111 gt and 123 lt 111 gt however the last system rarely activates 8 9 Gamma g displaystyle gamma phase is austenitic with a face centred cubic FCC structure Fm3 displaystyle bar 3 m 259 space group and 3 66 A lattice parameter It normally has more Ni Cu and interstitial C and N 10 Plastic deformation occurs in austenite more readily than in ferrite 11 12 During deformation straight slip bands form in the austenite grains and propagate to the ferrite austenite grain boundaries assisting in slipping the ferrite phase Curved slip bands also form due to the bulk ferrite grain deformation 13 14 15 Age hardening by spinodal decomposition EditSee also Spinodal decomposition and Precipitation hardening Calculated metastable miscibility gap in the Fe Cr binary system remake of 16 17 Duplex stainless can have limited toughness due to its large ferritic grain size and its tendencies to hardening and embrittlement at temperatures ranging from 280 500 C especially at 475 C where spinodal decomposition of the supersaturated solid ferrite solution into Fe rich nanophase a displaystyle acute a and Cr rich nanophase a displaystyle acute a acute accompanied by G phase precipitation occurs 18 19 20 This makes the ferrite phase a preferential initiation site for micro cracks 21 This is because aging encourages S3 112 lt 111 gt ferrite deformation twinning at slow strain rate and room temperature in tensile or compressive deformation nucleating from local stress concentration sites 18 22 and parent twinning boundaries with 60 in or out misorientation are suitable for cleavage crack nucleation 22 23 24 Spinodal decomposition refers to the spontaneous separation of a phase into two coherent phases via uphill diffusion i e a negative diffusion coefficient d 2 G d x 2 displaystyle d 2 G over dx 2 without a barrier to nucleation due to the phase being thermodynamically unstable i e miscibility gap a displaystyle acute a a displaystyle acute a acute region in Figure 1 25 where G displaystyle G is the Gibbs free energy per mole of solution and the composition It increases hardness and decreases magneticity 26 Miscibility gap describes the region in a phase diagram below the melting point of each compound where the atom clarification needed disrupts the solid phase into the liquid of two separated stable phases 27 Microscopy characterisation Edit Microstructural evolution under the Cahn Hilliard equation demonstrating distinctive coarsening and phase separation Using Field Emission Gun Transmission Electron Microscope FEG TEM the nanometre scaled modulated structure of the decomposed ferrite was revealed as Cr rich nanophase gave the bright image and Fe rich darker image 28 It also revealed that these modulated nanophases grow coarser with aging time 28 29 Decomposed phases start as irregular rounded shapes with no particular arrangement but with time the Cr rich nanophase takes a plat shape aligned in the lt 110 gt directions 29 Nevertheless as the ferrite hardness increases with aging time the hardness of the ductile austenite phase remains nearly unchanged 30 31 32 due to faster diffusivity in ferrite compared to the austenite 26 Nevertheless austenite undergoes a substitutional redistribution of elements enhancing galvanic corrosion between the two phases 33 Mechanical effect Edit Change of hardness measured using diamond Vicker indenter and expressed in Vickers Pyramid Number HV with 2 4 8 16 32 64 and 128 hours aging time for the ferrite phase in super duplex Zeron 100 alloy The indent was done in 11 widely separated locations in each aged sample 1 Spinodal decomposition increases the hardening of the material due to the misfit between the Cr rich and Fe rich nano phases internal stress and variation of elastic modulus The formation of coherent i e lattice matching precipitates induces an equal but opposite strain raising the system s free energy depending on the precipitate shape and matrix and precipitate elastic properties 27 34 Around a spherical inclusion the distortion is purely hydrostatic The embrittlement is caused by dislocations impediment locking by mostly the spinodally decomposed modulated matrix 30 31 and strain around G phase precipitates 35 i e internal stress relaxation by the formation of Cottrell atmosphere 36 G phase precipitates are a phase rich in Ni Ti and Si 20 but Cr and Mn may substitute Ti sites 37 and be named because it appears prominently at grain boundaries 20 G phase precipitates occur during long term aging are encouraged by increasing Ni content in the ferrite phase 37 and reduce corrosion resistance significantly 38 It has ellipsoid morphology FCC structure Fm3 displaystyle bar 3 m and 11 4 A lattice parameter 39 with a diameter lt 50 nm that increases with aging 40 41 Treatment Edit550 C heat treatment can reverse spinodal decomposition but not affect the G phase precipitates 42 The ferrite matrix spinodal decomposition can be substantially reversed by introducing an external pulsed electric current that changes the system s free energy due to the difference in electrical conductivity between the nanophases and the dissolution of G phase precipitates 43 44 Cyclic loading suppresses spinodal decomposition 45 and radiation accelerates it but changes its nature from an interconnected network to isolated islands 46 Further reading EditBonny G Terentyev D Malerba L 2010 New Contribution to the Thermodynamics of Fe Cr Alloys as Base for Ferritic Steels Journal of Phase Equilibria and Diffusion 31 5 439 444 doi 10 1007 S11669 010 9782 9 S2CID 95044045 References Edit a b Mohamed Koko A 2022 In situ full field characterisation of strain concentrations deformation twins slip bands and cracks PhD Thesis thesis University of Oxford This article incorporates text from this source which is available under the CC BY 4 0 license Alvarez Armas Iris 2008 Duplex Stainless Steels Brief History and Some Recent Alloys Recent Patents on Mechanical Engineering 1 1 51 57 doi 10 2174 2212797610801010051 Peckner Donald Bernstein I M 1977 chapter 8 Handbook of Stainless Steels McGraw Hill ISBN 9780070491472 Lacombe P Baroux B Beranger G 1990 chapter 18 Les Aciers Inoxydables Les Editions de Physique ISBN 2 86883 142 7 International Molybdenum Association IMOA 2014 Practical Guidelines for the fabrication of Duplex Stainless Steels PDF www imoa info ISBN 978 1 907470 09 7 Charles Jacques 2010 Proceedings of the Duplex Stainless Steel Conference Beaune 2010 EDP Sciences Paris pp 29 82 International Stainless Steel Forum 2020 Duplex Stainless Steels PDF Du C Maresca F Geers M G D Hoefnagels J P M 2018 03 01 Ferrite slip system activation investigated by uniaxial micro tensile tests and simulations Acta Materialia 146 314 327 Bibcode 2018AcMat 146 314D doi 10 1016 j actamat 2017 12 054 ISSN 1359 6454 Koko Abdalrhaman Elmukashfi Elsiddig Dragnevski Kalin Wilkinson Angus J Marrow Thomas James 2021 10 01 J integral analysis of the elastic strain fields of ferrite deformation twins using electron backscatter diffraction Acta Materialia 218 117203 Bibcode 2021AcMat 21817203K doi 10 1016 j actamat 2021 117203 ISSN 1359 6454 Nilsson J O 1992 08 01 Super duplex stainless steels Materials Science and Technology 8 8 685 700 Bibcode 1992MatST 8 685N doi 10 1179 mst 1992 8 8 685 ISSN 0267 0836 Zielinski W Swiatnicki W Barstch M Messerschmidt U 2003 08 28 Non uniform distribution of plastic strain in duplex steel during TEM in situ deformation Materials Chemistry and Physics 81 2 476 479 doi 10 1016 S0254 0584 03 00059 2 ISSN 0254 0584 Koko Abdalrhaman Elmukashfi Elsiddig Becker Thorsten H Karamched Phani S Wilkinson Angus J Marrow T James 2022 10 15 In situ characterisation of the strain fields of intragranular slip bands in ferrite by high resolution electron backscatter diffraction Acta Materialia 239 118284 Bibcode 2022AcMat 23918284K doi 10 1016 j actamat 2022 118284 ISSN 1359 6454 S2CID 251783802 Serre I Salazar D Vogt J B September 2008 Atomic force microscopy investigation of surface relief in individual phases of deformed duplex stainless steel Materials Science and Engineering A 492 1 2 428 433 doi 10 1016 j msea 2008 04 060 Li Z Hu Y Chen T Wang X Liu P Lu Y December 2020 Microstructural Evolution and Mechanical Behavior of Thermally Aged Cast Duplex Stainless Steel Materials 13 24 5636 Bibcode 2020Mate 13 5636L doi 10 3390 ma13245636 PMC 7763132 PMID 33321825 Zhang Qingdong Ma Sida Jing Tao March 2019 Mechanical Properties of a Thermally aged Cast Duplex Stainless Steel by in Situ Tensile Test at the Service Temperature Metals 9 3 317 doi 10 3390 met9030317 ISSN 2075 4701 Fan Y Liu T G Xin L Han Y M Lu Y H Shoji T February 2021 Thermal aging behaviors of duplex stainless steels used in nuclear power plant A review Journal of Nuclear Materials 544 152693 Bibcode 2021JNuM 54452693F doi 10 1016 j jnucmat 2020 152693 S2CID 229461947 Bonny G Terentyev D Malerba L October 2010 New Contribution to the Thermodynamics of Fe Cr Alloys as Base for Ferritic Steels Journal of Phase Equilibria and Diffusion 31 5 439 444 doi 10 1007 s11669 010 9782 9 ISSN 1547 7037 S2CID 95044045 a b Ornek Cem Burke M G Hashimoto T Engelberg D L April 2017 748 K 475 C Embrittlement of Duplex Stainless Steel Effect on Microstructure and Fracture Behavior Metallurgical and Materials Transactions A 48 4 1653 1665 Bibcode 2017MMTA 48 1653O doi 10 1007 s11661 016 3944 2 ISSN 1073 5623 S2CID 136321604 Weng K L Chen H R Yang J R 2004 08 15 The low temperature aging embrittlement in a 2205 duplex stainless steel Materials Science and Engineering A 379 1 119 132 doi 10 1016 j msea 2003 12 051 ISSN 0921 5093 a b c Beattie H J Versnyder F L July 1956 A New Complex Phase in a High Temperature Alloy Nature 178 4526 208 209 Bibcode 1956Natur 178 208B doi 10 1038 178208b0 ISSN 1476 4687 S2CID 4217639 Liu Gang Li Shi Lei Zhang Hai Long Wang Xi Tao Wang Yan Li August 2018 Characterization of Impact Deformation Behavior of a Thermally Aged Duplex Stainless Steel by EBSD Acta Metallurgica Sinica English Letters 31 8 798 806 doi 10 1007 s40195 018 0708 6 ISSN 1006 7191 S2CID 139395583 a b Marrow T J Humphreys A O Strangwood M July 1997 The Crack Initiation Toughness for Brittle Fracture of Super Duplex Stainless Steel Fatigue amp Fracture of Engineering Materials amp Structures 20 7 1005 1014 doi 10 1111 j 1460 2695 1997 tb01543 x Kato Masaharu January 1981 Hardening by spinodally modulated structure in b c c alloys Acta Metallurgica 29 1 79 87 doi 10 1016 0001 6160 81 90088 2 Marrow T J Harris C July 1996 THE FRACTURE MECHANISM OF 475 C EMBRITTLEMENT IN A DUPLEX STAINLESS STEEL Fatigue amp Fracture of Engineering Materials amp Structures 19 7 935 947 doi 10 1111 j 1460 2695 1996 tb01028 x Mburu Sarah Kolli R Prakash Perea Daniel E Schwarm Samuel C Eaton Arielle Liu Jia Patel Shiv Bartrand Jonah Ankem Sreeramamurthy April 2017 Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels Materials Science and Engineering A 690 365 377 doi 10 1016 j msea 2017 03 011 a b Ornek C Burke M G Hashimoto T Lim J J H Engelberg D L 2017 05 26 475 C Embrittlement of Duplex Stainless Steel A Comprehensive Microstructure Characterization Study Materials Performance and Characterization 6 3 MPC20160088 doi 10 1520 MPC20160088 a b Porter David A Easterling Kenneth E Sherif Mohamed Y 2021 Phase ransformations in Metals and Alloys S l CRC Press ISBN 978 1 000 46779 6 OCLC 1267751972 a b Weng K L Chen H R Yang J R August 2004 The low temperature aging embrittlement in a 2205 duplex stainless steel Materials Science and Engineering A 379 1 2 119 132 doi 10 1016 j msea 2003 12 051 a b Soriano Vargas Orlando Avila Davila Erika O Lopez Hirata Victor M Cayetano Castro Nicolas Gonzalez Velazquez Jorge L May 2010 Effect of spinodal decomposition on the mechanical behavior of Fe Cr alloys Materials Science and Engineering A 527 12 2910 2914 doi 10 1016 j msea 2010 01 020 a b Zhang Qingdong Singaravelu Arun Sundar S Zhao Yongfeng Jing Tao Chawla Nikhilesh 2019 01 16 Mechanical properties of a thermally aged cast duplex stainless steel by nanoindentation and micropillar compression Materials Science and Engineering A 743 520 528 doi 10 1016 j msea 2018 11 112 ISSN 0921 5093 S2CID 139168335 a b Lee Ho Jung Kong Byeong Seo Obulan Subramanian Gokul Heo Jaewon Jang Changheui Lee Kyoung Soo 2018 10 01 Evaluation of thermal aging of d ferrite in austenitic stainless steel weld using nanopillar compression test Scripta Materialia 155 32 36 doi 10 1016 j scriptamat 2018 06 016 ISSN 1359 6462 S2CID 139130674 Godfrey T J Smith G D W November 1986 The Atom Probe Analysis of a Cast Duplex Stainless Steel Le Journal de Physique Colloques 47 C7 C7 217 C7 222 doi 10 1051 jphyscol 1986738 ISSN 0449 1947 S2CID 93304045 May J E de Sousa C A C Kuri S E July 2003 Aspects of the anodic behaviour of duplex stainless steels aged for long periods at low temperatures Corrosion Science 45 7 1395 1403 doi 10 1016 S0010 938X 02 00244 5 Cahn John W 1961 09 01 On spinodal decomposition Acta Metallurgica 9 9 795 801 doi 10 1016 0001 6160 61 90182 1 ISSN 0001 6160 Badyka R Monnet G Saillet S Domain C Pareige C February 2019 Quantification of hardening contribution of G Phase precipitation and spinodal decomposition in aged duplex stainless steel APT analysis and micro hardness measurements Journal of Nuclear Materials 514 266 275 Bibcode 2019JNuM 514 266B doi 10 1016 j jnucmat 2018 12 002 S2CID 105302671 Calcagnotto Marion Adachi Yoshitaka Ponge Dirk Raabe Dierk January 2011 Deformation and fracture mechanisms in fine and ultrafine grained ferrite martensite dual phase steels and the effect of aging Acta Materialia 59 2 658 670 Bibcode 2011AcMat 59 658C doi 10 1016 j actamat 2010 10 002 a b Sakata Mikihiro Kadoi Kota Inoue Hiroshige December 2021 Acceleration of 475 C embrittlement in weld metal of 22 mass Cr duplex stainless steel Materials Today Communications 29 102800 doi 10 1016 j mtcomm 2021 102800 S2CID 240575697 Xue Fei Shi Fangjie Zhang Chuangju Zheng Qiaoling Yi Dawei Li Xiuqing Li Yefei 2021 07 21 The Microstructure and Mechanical and Corrosion Behaviors of Thermally Aged Z3CN20 09M Cast Stainless Steel for Primary Coolant Pipes of Nuclear Power Plants Coatings 11 8 870 doi 10 3390 coatings11080870 ISSN 2079 6412 Li Shilei Wang Yanli Wang Xitao Xue Fei September 2014 G phase precipitation in duplex stainless steels after long term thermal aging A high resolution transmission electron microscopy study Journal of Nuclear Materials 452 1 3 382 388 Bibcode 2014JNuM 452 382L doi 10 1016 j jnucmat 2014 05 069 Hamaoka T Nomoto A Nishida K Dohi K Soneda N December 2012 Effects of aging temperature on G phase precipitation and ferrite phase decomposition in duplex stainless steel Philosophical Magazine 92 34 4354 4375 Bibcode 2012PMag 92 4354H doi 10 1080 14786435 2012 707340 ISSN 1478 6435 S2CID 135586095 Mateo A Llanes L Anglada M Redjaimia A Metauer G 1997 Characterization of the intermetallic G phase in an AISI 329 duplex stainless steel Journal of Materials Science 32 17 4533 4540 doi 10 1023 A 1018669217124 S2CID 134334541 Lee Ho Jung Kong Byeong Seo Obulan Subramanian Gokul Heo Jaewon Jang Changheui Lee Kyoung Soo October 2018 Evaluation of thermal aging of d ferrite in austenitic stainless steel weld using nanopillar compression test Scripta Materialia 155 32 36 doi 10 1016 j scriptamat 2018 06 016 S2CID 139130674 Liu Xuebing Zhang Xinfang August 2018 An ultrafast performance regeneration of aged stainless steel by pulsed electric current Scripta Materialia 153 86 89 doi 10 1016 j scriptamat 2018 05 004 S2CID 139625954 Liu Xuebing Lu Wenjun Zhang Xinfang January 2020 Reconstructing the decomposed ferrite phase to achieve toughness regeneration in a duplex stainless steel Acta Materialia 183 51 63 Bibcode 2020AcMat 183 51L doi 10 1016 j actamat 2019 11 008 S2CID 210229887 Akita Masayuki Kakiuchi Toshifumi Uematsu Yoshihiko 2011 Microstructural Changes of High Chromium Ferritic Stainless Steel Subjected to Cyclic Loading in 475 C Embrittlement Region Procedia Engineering 10 100 105 doi 10 1016 j proeng 2011 04 019 Miller M K Stoller R E Russell K F June 1996 Effect of neutron irradiation on the spinodal decomposition of Fe 32 Cr model alloy Journal of Nuclear Materials 230 3 219 225 Bibcode 1996JNuM 230 219M doi 10 1016 0022 3115 96 80017 1 Retrieved from https en wikipedia org w index php title 475 C embrittlement amp oldid 1145635884, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.