fbpx
Wikipedia

Isotopes of tantalum

Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180m
Ta
(0.012%).

Isotopes of tantalum (73Ta)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
177Ta synth 56.56 h β+ 177Hf
178Ta synth 2.36 h β+ 178Hf
179Ta synth 1.82 y ε 179Hf
180Ta synth 8.125 h ε 180Hf
β 180W
180mTa 0.0120% stable
181Ta 99.988% stable
182Ta synth 114.43 d β 182W
183Ta synth 5.1 d β 183W
Standard atomic weight Ar°(Ta)

There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 days, 183Ta with a half-life of 5.1 days, and 177Ta with a half-life of 56.56 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than 180mTa) is 178m1Ta with a half-life of 2.36 hours. All isotopes and nuclear isomers of tantalum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Tantalum has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of 181Ta, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 182
Ta
with a half-life of 114.43 days and produce approximately 1.12 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several months. Such a weapon is not known to have ever been built, tested, or used.[4] While the conversion factor from absorbed dose (measured in Grays) to effective dose (measured in Sievert) for gamma rays is 1 while it is 50 for alpha radiation (i.e., a gamma dose of 1 Gray is equivalent to 1 Sievert whereas an alpha dose of 1 Gray is equivalent to 50 Sievert), gamma rays are only attenuated by shielding, not stopped. As such, alpha particles require incorporation to have an effect while gamma rays can have an effect via mere proximity. In military terms, this allows a gamma ray weapon to deny an area to either side as long as the dose is high enough, whereas radioactive contamination by alpha emitters which do not release significant amounts of gamma rays can be counteracted by ensuring the material is not incorporated.

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
155
Ta
73 82 154.97459(54)# 2.9+1.5
−1.1
 ms
[5]
p 154Hf (11/2−)
155m
Ta
~323 keV 12+4
−3
 μs
[6]
p 154Hf 11/2−?
156
Ta
[7]
73 83 155.97230(43)# 106(4) ms p (71%) 155Hf (2−)
β+ (29%) 156Hf
156m
Ta
102(7) keV 0.36(4) s p 155Hf 9+
157
Ta
73 84 156.96819(22) 10.1(4) ms α (91%) 153Lu 1/2+
β+ (9%) 157Hf
157m1
Ta
22(5) keV 4.3(1) ms 11/2−
157m2
Ta
1593(9) keV 1.7(1) ms α 153Lu (25/2−)
158
Ta
73 85 157.96670(22)# 49(8) ms α (96%) 154Lu (2−)
β+ (4%) 158Hf
158m
Ta
141(9) keV 36.0(8) ms α (93%) 154Lu (9+)
IT 158Ta
β+ 158Hf
159
Ta
73 86 158.963018(22) 1.04(9) s β+ (66%) 159Hf (1/2+)
α (34%) 155Lu
159m
Ta
64(5) keV 514(9) ms α (56%) 155Lu (11/2−)
β+ (44%) 159Hf
160
Ta
73 87 159.96149(10) 1.70(20) s α 156Lu (2#)−
β+ 160Hf
160m
Ta
310(90)# keV 1.55(4) s β+ (66%) 160Hf (9)+
α (34%) 156Lu
161
Ta
73 88 160.95842(6)# 3# s β+ (95%) 161Hf 1/2+#
α (5%) 157Lu
161m
Ta
50(50)# keV 2.89(12) s 11/2−#
162
Ta
73 89 161.95729(6) 3.57(12) s β+ (99.92%) 162Hf 3+#
α (.073%) 158Lu
163
Ta
73 90 162.95433(4) 10.6(18) s β+ (99.8%) 163Hf 1/2+#
α (.2%) 159Lu
164
Ta
73 91 163.95353(3) 14.2(3) s β+ 164Hf (3+)
165
Ta
73 92 164.950773(19) 31.0(15) s β+ 165Hf 5/2−#
165m
Ta
60(30) keV 9/2−#
166
Ta
73 93 165.95051(3) 34.4(5) s β+ 166Hf (2)+
167
Ta
73 94 166.94809(3) 1.33(7) min β+ 167Hf (3/2+)
168
Ta
73 95 167.94805(3) 2.0(1) min β+ 168Hf (2−,3+)
169
Ta
73 96 168.94601(3) 4.9(4) min β+ 169Hf (5/2+)
170
Ta
73 97 169.94618(3) 6.76(6) min β+ 170Hf (3)(+#)
171
Ta
73 98 170.94448(3) 23.3(3) min β+ 171Hf (5/2−)
172
Ta
73 99 171.94490(3) 36.8(3) min β+ 172Hf (3+)
173
Ta
73 100 172.94375(3) 3.14(13) h β+ 173Hf 5/2−
174
Ta
73 101 173.94445(3) 1.14(8) h β+ 174Hf 3+
175
Ta
73 102 174.94374(3) 10.5(2) h β+ 175Hf 7/2+
176
Ta
73 103 175.94486(3) 8.09(5) h β+ 176Hf (1)−
176m1
Ta
103.0(10) keV 1.1(1) ms IT 176Ta (+)
176m2
Ta
1372.6(11)+X keV 3.8(4) µs (14−)
176m3
Ta
2820(50) keV 0.97(7) ms (20−)
177
Ta
73 104 176.944472(4) 56.56(6) h β+ 177Hf 7/2+
177m1
Ta
73.36(15) keV 410(7) ns 9/2−
177m2
Ta
186.15(6) keV 3.62(10) µs 5/2−
177m3
Ta
1355.01(19) keV 5.31(25) µs 21/2−
177m4
Ta
4656.3(5) keV 133(4) µs 49/2−
178
Ta
73 105 177.945778(16) 9.31(3) min β+ 178Hf 1+
178m1
Ta
100(50)# keV 2.36(8) h β+ 178Hf (7)−
178m2
Ta
1570(50)# keV 59(3) ms (15−)
178m3
Ta
3000(50)# keV 290(12) ms (21−)
179
Ta
73 106 178.9459295(23) 1.82(3) y EC 179Hf 7/2+
179m1
Ta
30.7(1) keV 1.42(8) µs (9/2)−
179m2
Ta
520.23(18) keV 335(45) ns (1/2)+
179m3
Ta
1252.61(23) keV 322(16) ns (21/2−)
179m4
Ta
1317.3(4) keV 9.0(2) ms IT 179Ta (25/2+)
179m5
Ta
1327.9(4) keV 1.6(4) µs (23/2−)
179m6
Ta
2639.3(5) keV 54.1(17) ms (37/2+)
180
Ta
73 107 179.9474648(24) 8.152(6) h EC (86%) 180Hf 1+
β (14%) 180W
180m1
Ta
77.1(8) keV Observationally stable[n 9][n 10] 9− 1.2(2)×10−4
180m2
Ta
1452.40(18) keV 31.2(14) µs 15−
180m3
Ta
3679.0(11) keV 2.0(5) µs (22−)
180m4
Ta
4171.0+X keV 17(5) µs (23, 24, 25)
181
Ta
73 108 180.9479958(20) Observationally stable[n 11] 7/2+ 0.99988(2)
181m1
Ta
6.238(20) keV 6.05(12) µs 9/2−
181m2
Ta
615.21(3) keV 18(1) µs 1/2+
181m3
Ta
1485(3) keV 25(2) µs 21/2−
181m4
Ta
2230(3) keV 210(20) µs 29/2−
182
Ta
73 109 181.9501518(19) 114.43(3) d β 182W 3−
182m1
Ta
16.263(3) keV 283(3) ms IT 182Ta 5+
182m2
Ta
519.572(18) keV 15.84(10) min 10−
183
Ta
73 110 182.9513726(19) 5.1(1) d β 183W 7/2+
183m
Ta
73.174(12) keV 107(11) ns 9/2−
184
Ta
73 111 183.954008(28) 8.7(1) h β 184W (5−)
185
Ta
73 112 184.955559(15) 49.4(15) min β 185W (7/2+)#
185m
Ta
1308(29) keV >1 ms (21/2−)
186
Ta
73 113 185.95855(6) 10.5(3) min β 186W (2−,3−)
186m
Ta
1.54(5) min
187
Ta
73 114 186.96053(21)# 2# min
[>300 ns]
β 187W 7/2+#
188
Ta
73 115 187.96370(21)# 20# s
[>300 ns]
β 188W
189
Ta
73 116 188.96583(32)# 3# s
[>300 ns]
7/2+#
190
Ta
73 117 189.96923(43)# 0.3# s
This table header & footer:
  1. ^ mTa – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Only known observationally stable nuclear isomer, believed to decay by isomeric transition to 180Ta, β decay to 180W, or electron capture to 180Hf with a half-life over 2.9×1017 years;[8] also theorized to undergo α decay to 176Lu
  10. ^ One of the few (observationally) stable odd-odd nuclei
  11. ^ Believed to undergo α decay to 177Lu

Tantalum-180m edit

The nuclide 180m
Ta
(m denotes a metastable state) has sufficient energy to decay in three ways: isomeric transition to the ground state of 180
Ta
, beta decay to 180
W
, and electron capture to 180
Hf
. However, no radioactivity from any decay mode of this nuclear isomer has ever been observed. As of 2023, the half-life of 180mTa is calculated from experimental observation to be at least 2.9×1017 (290 quadrillion) years.[8][9][10] The very slow decay of 180m
Ta
is attributed to its high spin (9 units) and the low spin of lower-lying states. Gamma or beta decay would require many units of angular momentum to be removed in a single step, so that the process would be very slow.[11]

The very unusual nature of 180mTa is that the ground state of this isotope is less stable than the isomer. This phenomenon is exhibited in bismuth-210m (210mBi) and americium-242m (242mAm), among other nuclides. 180
Ta
has a half-life of only 8 hours. 180m
Ta
is the only naturally occurring nuclear isomer (excluding radiogenic and cosmogenic short-living nuclides). It is also the rarest primordial nuclide in the Universe observed for any element that has any stable isotopes. In an s-process stellar environment with a thermal energy kBT = 26 keV (i.e. a temperature of 300 million kelvin), the nuclear isomers are expected to be fully thermalized, meaning that 180Ta rapidly transitions between spin states and its overall half-life is predicted to be 11 hours.[12]

It is one of only five stable nuclides to have both an odd number of protons and an odd number of neutrons, the other four stable odd-odd nuclides being 2H, 6Li, 10B and 14N.[13]

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Tantalum". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ D. T. Win; M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
  5. ^ Page, R. D.; Bianco, L.; Darby, I. G.; Uusitalo, J.; Joss, D. T.; Grahn, T.; Herzberg, R.-D.; Pakarinen, J.; Thomson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A.; Hornillos, M. B. Gómez; Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.; Ertürk, S.; Gall, B.; Hadinia, B.; Venhart, M.; Simpson, J. (26 June 2007). "α decay of Re 159 and proton emission from Ta 155". Physical Review C. 75 (6): 061302. Bibcode:2007PhRvC..75f1302P. doi:10.1103/PhysRevC.75.061302. ISSN 0556-2813.
  6. ^ Uusitalo, J.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Sonzogni, A. A.; Batchelder, J. C.; Bingham, C. R.; Davinson, T.; deBoer, J.; Henderson, D. J.; Maier, H. J.; Ressler, J. J.; Slinger, R.; Walters, W. B. (1 June 1999). "Proton emission from the closed neutron shell nucleus 155 Ta". Physical Review C. 59 (6): R2975–R2978. Bibcode:1999PhRvC..59.2975U. doi:10.1103/PhysRevC.59.R2975. ISSN 0556-2813. Retrieved 12 June 2023.
  7. ^ Darby, I. G.; Page, R. D.; Joss, D. T.; Bianco, L.; Grahn, T.; Judson, D. S.; Simpson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A. N.; Uusitalo, J.; Venhart, M.; Ertürk, S.; Gall, B.; Hadinia, B. (20 June 2011). "Precision measurements of proton emission from the ground states of Ta 156 and Re 160". Physical Review C. 83 (6): 064320. Bibcode:2011PhRvC..83f4320D. doi:10.1103/PhysRevC.83.064320. ISSN 0556-2813. Retrieved 21 June 2023.
  8. ^ a b Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15): 152501. arXiv:2306.01965. doi:10.1103/PhysRevLett.131.152501.
  9. ^ Conover, Emily (2016-10-03). "Rarest nucleus reluctant to decay". Retrieved 2016-10-05.
  10. ^ Lehnert, Björn; Hult, Mikael; Lutter, Guillaume; Zuber, Kai (2017). "Search for the decay of nature's rarest isotope 180mTa". Physical Review C. 95 (4): 044306. arXiv:1609.03725. Bibcode:2017PhRvC..95d4306L. doi:10.1103/PhysRevC.95.044306. S2CID 118497863.
  11. ^ Quantum mechanics for engineers Leon van Dommelen, Florida State University
  12. ^ P. Mohr, F. Kaeppeler, and R. Gallino (2007). "Survival of Nature's Rarest Isotope 180Ta under Stellar Conditions". Phys. Rev. C. 75: 012802. arXiv:astro-ph/0612427. doi:10.1103/PhysRevC.75.012802. S2CID 44724195.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Various (2002). Lide, David R. (ed.). (88th ed.). CRC. ISBN 978-0-8493-0486-6. OCLC 179976746. Archived from the original on 24 July 2017. Retrieved 2008-05-23.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, tantalum, natural, tantalum, 73ta, consists, stable, isotopes, 181ta, 180m, 73ta, main, isotopes, decay, abun, dance, half, life, mode, duct, 177ta, synth, 177hf, 178ta, synth, 178hf, 179ta, synth, 179hf, 180ta, synth, 180hf, 180w, 180mta, 0120, stab. Natural tantalum 73Ta consists of two stable isotopes 181Ta 99 988 and 180m Ta 0 012 Isotopes of tantalum 73Ta Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 177Ta synth 56 56 h b 177Hf 178Ta synth 2 36 h b 178Hf 179Ta synth 1 82 y e 179Hf 180Ta synth 8 125 h e 180Hf b 180W 180mTa 0 0120 stable 181Ta 99 988 stable 182Ta synth 114 43 d b 182W 183Ta synth 5 1 d b 183WStandard atomic weight Ar Ta 180 94788 0 00002 2 180 95 0 01 abridged 3 viewtalkedit There are also 35 known artificial radioisotopes the longest lived of which are 179Ta with a half life of 1 82 years 182Ta with a half life of 114 43 days 183Ta with a half life of 5 1 days and 177Ta with a half life of 56 56 hours All other isotopes have half lives under a day most under an hour There are also numerous isomers the most stable of which other than 180mTa is 178m1Ta with a half life of 2 36 hours All isotopes and nuclear isomers of tantalum are either radioactive or observationally stable meaning that they are predicted to be radioactive but no actual decay has been observed Tantalum has been proposed as a salting material for nuclear weapons cobalt is another better known salting material A jacket of 181Ta irradiated by the intense high energy neutron flux from an exploding thermonuclear weapon would transmute into the radioactive isotope 182 Ta with a half life of 114 43 days and produce approximately 1 12 MeV of gamma radiation significantly increasing the radioactivity of the weapon s fallout for several months Such a weapon is not known to have ever been built tested or used 4 While the conversion factor from absorbed dose measured in Grays to effective dose measured in Sievert for gamma rays is 1 while it is 50 for alpha radiation i e a gamma dose of 1 Gray is equivalent to 1 Sievert whereas an alpha dose of 1 Gray is equivalent to 50 Sievert gamma rays are only attenuated by shielding not stopped As such alpha particles require incorporation to have an effect while gamma rays can have an effect via mere proximity In military terms this allows a gamma ray weapon to deny an area to either side as long as the dose is high enough whereas radioactive contamination by alpha emitters which do not release significant amounts of gamma rays can be counteracted by ensuring the material is not incorporated List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 n 7 Spin andparity n 8 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation 155 Ta 73 82 154 97459 54 2 9 1 5 1 1 ms 5 p 154Hf 11 2 155m Ta 323 keV 12 4 3 ms 6 p 154Hf 11 2 156 Ta 7 73 83 155 97230 43 106 4 ms p 71 155Hf 2 b 29 156Hf 156m Ta 102 7 keV 0 36 4 s p 155Hf 9 157 Ta 73 84 156 96819 22 10 1 4 ms a 91 153Lu 1 2 b 9 157Hf 157m1 Ta 22 5 keV 4 3 1 ms 11 2 157m2 Ta 1593 9 keV 1 7 1 ms a 153Lu 25 2 158 Ta 73 85 157 96670 22 49 8 ms a 96 154Lu 2 b 4 158Hf 158m Ta 141 9 keV 36 0 8 ms a 93 154Lu 9 IT 158Ta b 158Hf 159 Ta 73 86 158 963018 22 1 04 9 s b 66 159Hf 1 2 a 34 155Lu 159m Ta 64 5 keV 514 9 ms a 56 155Lu 11 2 b 44 159Hf 160 Ta 73 87 159 96149 10 1 70 20 s a 156Lu 2 b 160Hf 160m Ta 310 90 keV 1 55 4 s b 66 160Hf 9 a 34 156Lu 161 Ta 73 88 160 95842 6 3 s b 95 161Hf 1 2 a 5 157Lu 161m Ta 50 50 keV 2 89 12 s 11 2 162 Ta 73 89 161 95729 6 3 57 12 s b 99 92 162Hf 3 a 073 158Lu 163 Ta 73 90 162 95433 4 10 6 18 s b 99 8 163Hf 1 2 a 2 159Lu 164 Ta 73 91 163 95353 3 14 2 3 s b 164Hf 3 165 Ta 73 92 164 950773 19 31 0 15 s b 165Hf 5 2 165m Ta 60 30 keV 9 2 166 Ta 73 93 165 95051 3 34 4 5 s b 166Hf 2 167 Ta 73 94 166 94809 3 1 33 7 min b 167Hf 3 2 168 Ta 73 95 167 94805 3 2 0 1 min b 168Hf 2 3 169 Ta 73 96 168 94601 3 4 9 4 min b 169Hf 5 2 170 Ta 73 97 169 94618 3 6 76 6 min b 170Hf 3 171 Ta 73 98 170 94448 3 23 3 3 min b 171Hf 5 2 172 Ta 73 99 171 94490 3 36 8 3 min b 172Hf 3 173 Ta 73 100 172 94375 3 3 14 13 h b 173Hf 5 2 174 Ta 73 101 173 94445 3 1 14 8 h b 174Hf 3 175 Ta 73 102 174 94374 3 10 5 2 h b 175Hf 7 2 176 Ta 73 103 175 94486 3 8 09 5 h b 176Hf 1 176m1 Ta 103 0 10 keV 1 1 1 ms IT 176Ta 176m2 Ta 1372 6 11 X keV 3 8 4 µs 14 176m3 Ta 2820 50 keV 0 97 7 ms 20 177 Ta 73 104 176 944472 4 56 56 6 h b 177Hf 7 2 177m1 Ta 73 36 15 keV 410 7 ns 9 2 177m2 Ta 186 15 6 keV 3 62 10 µs 5 2 177m3 Ta 1355 01 19 keV 5 31 25 µs 21 2 177m4 Ta 4656 3 5 keV 133 4 µs 49 2 178 Ta 73 105 177 945778 16 9 31 3 min b 178Hf 1 178m1 Ta 100 50 keV 2 36 8 h b 178Hf 7 178m2 Ta 1570 50 keV 59 3 ms 15 178m3 Ta 3000 50 keV 290 12 ms 21 179 Ta 73 106 178 9459295 23 1 82 3 y EC 179Hf 7 2 179m1 Ta 30 7 1 keV 1 42 8 µs 9 2 179m2 Ta 520 23 18 keV 335 45 ns 1 2 179m3 Ta 1252 61 23 keV 322 16 ns 21 2 179m4 Ta 1317 3 4 keV 9 0 2 ms IT 179Ta 25 2 179m5 Ta 1327 9 4 keV 1 6 4 µs 23 2 179m6 Ta 2639 3 5 keV 54 1 17 ms 37 2 180 Ta 73 107 179 9474648 24 8 152 6 h EC 86 180Hf 1 b 14 180W 180m1 Ta 77 1 8 keV Observationally stable n 9 n 10 9 1 2 2 10 4 180m2 Ta 1452 40 18 keV 31 2 14 µs 15 180m3 Ta 3679 0 11 keV 2 0 5 µs 22 180m4 Ta 4171 0 X keV 17 5 µs 23 24 25 181 Ta 73 108 180 9479958 20 Observationally stable n 11 7 2 0 99988 2 181m1 Ta 6 238 20 keV 6 05 12 µs 9 2 181m2 Ta 615 21 3 keV 18 1 µs 1 2 181m3 Ta 1485 3 keV 25 2 µs 21 2 181m4 Ta 2230 3 keV 210 20 µs 29 2 182 Ta 73 109 181 9501518 19 114 43 3 d b 182W 3 182m1 Ta 16 263 3 keV 283 3 ms IT 182Ta 5 182m2 Ta 519 572 18 keV 15 84 10 min 10 183 Ta 73 110 182 9513726 19 5 1 1 d b 183W 7 2 183m Ta 73 174 12 keV 107 11 ns 9 2 184 Ta 73 111 183 954008 28 8 7 1 h b 184W 5 185 Ta 73 112 184 955559 15 49 4 15 min b 185W 7 2 185m Ta 1308 29 keV gt 1 ms 21 2 186 Ta 73 113 185 95855 6 10 5 3 min b 186W 2 3 186m Ta 1 54 5 min 187 Ta 73 114 186 96053 21 2 min gt 300 ns b 187W 7 2 188 Ta 73 115 187 96370 21 20 s gt 300 ns b 188W 189 Ta 73 116 188 96583 32 3 s gt 300 ns 7 2 190 Ta 73 117 189 96923 43 0 3 s This table header amp footer view mTa Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition p Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Only known observationally stable nuclear isomer believed to decay by isomeric transition to 180Ta b decay to 180W or electron capture to 180Hf with a half life over 2 9 1017 years 8 also theorized to undergo a decay to 176Lu One of the few observationally stable odd odd nuclei Believed to undergo a decay to 177LuTantalum 180m editThe nuclide 180m Ta m denotes a metastable state has sufficient energy to decay in three ways isomeric transition to the ground state of 180 Ta beta decay to 180 W and electron capture to 180 Hf However no radioactivity from any decay mode of this nuclear isomer has ever been observed As of 2023 the half life of 180mTa is calculated from experimental observation to be at least 2 9 1017 290 quadrillion years 8 9 10 The very slow decay of 180m Ta is attributed to its high spin 9 units and the low spin of lower lying states Gamma or beta decay would require many units of angular momentum to be removed in a single step so that the process would be very slow 11 The very unusual nature of 180mTa is that the ground state of this isotope is less stable than the isomer This phenomenon is exhibited in bismuth 210m 210mBi and americium 242m 242mAm among other nuclides 180 Ta has a half life of only 8 hours 180m Ta is the only naturally occurring nuclear isomer excluding radiogenic and cosmogenic short living nuclides It is also the rarest primordial nuclide in the Universe observed for any element that has any stable isotopes In an s process stellar environment with a thermal energy kBT 26 keV i e a temperature of 300 million kelvin the nuclear isomers are expected to be fully thermalized meaning that 180Ta rapidly transitions between spin states and its overall half life is predicted to be 11 hours 12 It is one of only five stable nuclides to have both an odd number of protons and an odd number of neutrons the other four stable odd odd nuclides being 2H 6Li 10B and 14N 13 References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Tantalum CIAAW 2005 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 D T Win M Al Masum 2003 Weapons of Mass Destruction PDF Assumption University Journal of Technology 6 4 199 219 Page R D Bianco L Darby I G Uusitalo J Joss D T Grahn T Herzberg R D Pakarinen J Thomson J Eeckhaudt S Greenlees P T Jones P M Julin R Juutinen S Ketelhut S Leino M Leppanen A P Nyman M Rahkila P Saren J Scholey C Steer A Hornillos M B Gomez Al Khalili J S Cannon A J Stevenson P D Erturk S Gall B Hadinia B Venhart M Simpson J 26 June 2007 a decay of Re 159 and proton emission from Ta 155 Physical Review C 75 6 061302 Bibcode 2007PhRvC 75f1302P doi 10 1103 PhysRevC 75 061302 ISSN 0556 2813 Uusitalo J Davids C N Woods P J Seweryniak D Sonzogni A A Batchelder J C Bingham C R Davinson T deBoer J Henderson D J Maier H J Ressler J J Slinger R Walters W B 1 June 1999 Proton emission from the closed neutron shell nucleus 155 Ta Physical Review C 59 6 R2975 R2978 Bibcode 1999PhRvC 59 2975U doi 10 1103 PhysRevC 59 R2975 ISSN 0556 2813 Retrieved 12 June 2023 Darby I G Page R D Joss D T Bianco L Grahn T Judson D S Simpson J Eeckhaudt S Greenlees P T Jones P M Julin R Juutinen S Ketelhut S Leino M Leppanen A P Nyman M Rahkila P Saren J Scholey C Steer A N Uusitalo J Venhart M Erturk S Gall B Hadinia B 20 June 2011 Precision measurements of proton emission from the ground states of Ta 156 and Re 160 Physical Review C 83 6 064320 Bibcode 2011PhRvC 83f4320D doi 10 1103 PhysRevC 83 064320 ISSN 0556 2813 Retrieved 21 June 2023 a b Arnquist I J Avignone III F T Barabash A S Barton C J Bhimani K H Blalock E Bos B Busch M Buuck M Caldwell T S Christofferson C D Chu P H Clark M L Cuesta C Detwiler J A Efremenko Yu Ejiri H Elliott S R Giovanetti G K Goett J Green M P Gruszko J Guinn I S Guiseppe V E Haufe C R Henning R Aguilar D Hervas Hoppe E W Hostiuc A Kim I Kouzes R T Lannen V T E Li A Lopez Castano J M Massarczyk R Meijer S J Meijer W Oli T K Paudel L S Pettus W Poon A W P Radford D C Reine A L Rielage K Rouyer A Ruof N W Schaper D C Schleich S J Smith Gandy T A Tedeschi D Thompson J D Varner R L Vasilyev S Watkins S L Wilkerson J F Wiseman C Xu W Yu C H 13 October 2023 Constraints on the Decay of 180mTa Phys Rev Lett 131 15 152501 arXiv 2306 01965 doi 10 1103 PhysRevLett 131 152501 Conover Emily 2016 10 03 Rarest nucleus reluctant to decay Retrieved 2016 10 05 Lehnert Bjorn Hult Mikael Lutter Guillaume Zuber Kai 2017 Search for the decay of nature s rarest isotope 180mTa Physical Review C 95 4 044306 arXiv 1609 03725 Bibcode 2017PhRvC 95d4306L doi 10 1103 PhysRevC 95 044306 S2CID 118497863 Quantum mechanics for engineers Leon van Dommelen Florida State University P Mohr F Kaeppeler and R Gallino 2007 Survival of Nature s Rarest Isotope 180Ta under Stellar Conditions Phys Rev C 75 012802 arXiv astro ph 0612427 doi 10 1103 PhysRevC 75 012802 S2CID 44724195 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Various 2002 Lide David R ed Handbook of Chemistry amp Physics 88th ed CRC ISBN 978 0 8493 0486 6 OCLC 179976746 Archived from the original on 24 July 2017 Retrieved 2008 05 23 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of tantalum amp oldid 1218586294, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.