fbpx
Wikipedia

Dinophysis acuminata

Dinophysis acuminata is a marine plankton species of dinoflagellates that is found in coastal waters of the north Atlantic and Pacific oceans.[1] The genus Dinophysis includes both phototrophic and heterotrophic species. D. acuminata is one of several phototrophic species of Dinophysis classed as toxic, as they produce okadaic acid which can cause diarrhetic shellfish poisoning (DSP). Okadiac acid is taken up by shellfish and has been found in the soft tissue of mussels and the liver of flounder species. When contaminated animals are consumed, they cause severe diarrhoea. D. acuminata blooms are constant threat to and indication of diarrhoeatic shellfish poisoning outbreaks.[2][3][4]

Dinophysis acuminata
Formalin fixed sample, collected from sampling station 7, North Sea
Scientific classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Myzozoa
Superclass: Dinoflagellata
Class: Dinophyceae
Order: Dinophysiales
Family: Dinophysaceae
Genus: Dinophysis
Species:
D. acuminata
Binomial name
Dinophysis acuminata
Claparède & Lachmann

Dinophysis acuminata is a photosynthesising Dinophysis species by acquiring secondary plastids from consuming the ciliate Myrionecta rubra,[5] which in turn had ingested them from the alga Teleaulax amphioxeia.[6][7] Thus, D. acuminata is a mixotroph, primarily a heterotroph, but autotroph once it acquires plastids. This is also an example of cell organelle stealing, the concept called kleptoplasty, and endosymbiosis. Dinophysis acuminata reproduces sexually and asexually.[8]

Description edit

Dinophysis acuminata is an oval-shaped protist. It measures 30-35 μm in length and 38-58 μm in diameter. The body is reddish-brown in colour and is covered with an armor-like covering called theca, which is made up of grass. The anterior end has a crown-like platform, which is the smaller epitheca; while the posterior is simply rounded constituting a larger hypotheca. The cell has two flagella for locomotion. Reproduction is by simple binary fission. In lateral view D. acuminata cells are irregularly egg-shaped, dorsally convex and have large hypothecal plates with a more or less oval shape. The dorsal contour is always more strongly convex than the ventral one. Compared to other species of Dinophysis, D. acuminata has a more straight ventral margin and larger left sulcal lists with more prominent ribs. The nucleus is prominently at the centre of the cell. The unusual feature of the cell is that it contains reddish-brown chloroplast.[1]

The taxonomic identification of Dinophysis species is largely based on cell contouring, size and shape of their large hypothecal plates and the shape of their left sulcal lists and ribs. When viewed laterally species in the Dinophysis are laterally compressed with a cap-like epitheca and a much larger hypotheca although the size and shape of these species varies greatly due to their polymorphic life cycle. Due to the morphological variability of Dinophysis species identification can be hard, especially when two species (D. acuminata and D. sacculus) co-exist. For this reason the term "D. acuminata complex" was coined to label a group of co-existing species difficult to discriminate.[9]

Dinophysis morphology edit

Dinophysis acuminata can be very hard to identify, and requires careful observations[3]. It can be identified by its midsection[1]. It is very large (38-55μm) and wide (30-38μm) in the middle unlike D. norvegica that is 34-50μm long and 36-43μm wide[2]. The Dinophysis norvegica is smaller and widest in the middle region[1]. D. norvegica and D. acuminata are a very similar species as a result, they exhibits similar behaviors and are commonly misidentified[1]. Furthermore, other ways to identify D. acuminata from other Dinophysis species can be done by comparison of the left sulcal list (cellulose extensions of the cell[5]) and LSL identification in ribs[1].Cells have convex dorsal margins and small oval shaped cells and their thecal plates are covered with areolae (circular depression on the cellulose wall of a dinoflagellate[5]) each with a pore[4]. Continuously, the knob-shaped protrusions and round antapex (botton end of a dinoflagellate[5]) are ways to identify D.acuminata[4].

Feeding and endosymbiosis edit

Dinophysis acuminata is basically a heterotroph feeding on the ciliate Mesodinium rubrum. M. rubrum in turn feeds on green algae that contain plastids. (The endosymbiont is used by the ciliate for its own photosynthesis.)[10] Microscopic observations of live cells using established cultures revealed that D. acuminata uses a peduncle, extending from the flagellar pore, to extract the cell contents of the marine ciliate M. rubrum. After about 1 minute the trapped M. rubrum becomes immobile after which the D. acuminata slowly consumes the ciliate, over 1–2 hours, filling its vacuoles with the ciliate's cytoplasm.[9] The algal plastids are not destroyed by D. acuminata but use it for its own photosynthesis, thereby becoming an autotroph. However, unlike its prey M. rubum, it is not clear whether D. acuminata uses the plastids permanently or temporarily.[11][12] Food vacuoles found in the vacuoles of this primitive genus indicates that organisms in this genus are mixotrophs especially D. norvegica[1]. Mixotrophy is the ability of an organism to use different sources of carbon and energy instead of having a single mode of feeding (autotroph or heterotroph). However, certain species related to Dinophysis acuminata prefer one mode of feeding over another. Dinophysis rotundata uses myzocytosis to feed [1]. Their mixotrophic conditions and size are influenced by prey populations and hydrographic conditions [2].

Ecology and current threats of Dinophysis edit

Dinophysis acuminata has caused several problems in oceanic ecosystems. The main cause of DSP, diarrhetic shellfish poisoning, outbreaks in waters along Europe has been due to this species[3]. Likewise, the close knit sisters of Dinophysis acuminata called Dinophysis norvegica, a photosynthetic organism with yellow chloroplast and posterior nucleus, Dinophysis acuta, and Dinophysis fortii have also been known to cause the same problems as D. acuminata[1]. Dinophysis norvegica is a marine plankton dinoflagellate that is found in neritic waters[1]. This species of the Dinophysis genus is a bloom-forming toxic species[1]. Both species reproduce asexually by binary fission to make identical copies of itself[1]. Speculations of sexual dimorphism that is the difference between the female and male counterparts have allowed researchers to draw conclusion that species of this genus can undergo sexual reproduction[1]. The first record of DSP with Dinophysis acuminata and Dinophysis fortii was in 1980 in the Patagonian coast[4]. A year after the report, another occurrence of DSP unleashed in December 1993 and November 1994[4]. Dinophysis acuminata releases lipophilic shellfish toxins (LSTs) and have been found to cause trouble to ecological marines and aquaculture farmers[2]'. The lipophilic toxins accumulate in shellfishes and causes diarrhea and shellfish poisoning to consumers. Dinophysis acuminata is the cause of DSP in Brazil and creates a disturbing impact due to its long and early blooming species[4]. However, their presence is restricted around the spring and summer[4], but in higher concentrations in December. DSP is a particular kind food poisoning that causes severe gastrointestinal illness in humans and this is related to the ingestion of toxin contaminated shellfishes from contaminated water[4]. Some of the symptoms of DSP include diarrhea, stomach pain, vomiting, nausea and fever; reported human ingestion shows that the toxins are capable of causing stomach tumors and chronic problems to consumers[4]. Government involvement as a result of high concentrations of toxins in the Dinophysis toxic shellfish epidemic has caused economic crisis in Europe and the aquaculture industry'[2]'.

References edit

  1. ^ a b Setälä, Outi; Autio, Riitta; Kuosa, Harri; Rintala, Janne; Ylöstalo, Pasi (2005). "Survival and photosynthetic activity of different Dinophysis acuminata populations in the northern Baltic Sea". Harmful Algae. 4 (2): 337–350. doi:10.1016/j.hal.2004.06.017. ISSN 1568-9883.
  2. ^ Díaz, Patricio; Reguera, Beatriz; Ruiz-Villarreal, Manuel; Pazos, Yolanda; Velo-Suárez, Lourdes; Berger, Henrick; Sourisseau, Marc (2013). "Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms". Marine Drugs. 11 (8): 2964–2981. doi:10.3390/md11082964. PMC 3766876. PMID 23959151.
  3. ^ Lee, Ka Jeong; Mok, Jong Soo; Song, Ki Cheol; Yu, Hongsik; Jung, Jee Hyung; Kim, Ji Hoe (2011). "Geographical and annual variation in lipophilic shellfish toxins from oysters and mussels along the south coast of Korea". Journal of Food Protection. 74 (12): 2127–2133. doi:10.4315/0362-028X.JFP-11-148. PMID 22186054.
  4. ^ Naustvoll, L.-J.; Gustad, E.; Dahl, E. (2012). "Monitoring of Dinophysis species and diarrhetic shellfish toxins in Flødevigen Bay, Norway: inter-annual variability over a 25-year time-series". Food Additives & Contaminants: Part A. 29 (10): 1605–1615. doi:10.1080/19440049.2012.714908. PMID 22891979.
  5. ^ Johnson, Matthew D.; Oldach, David; Delwiche, Charles F.; Stoecker, Diane K. (2007). "Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra". Nature. 445 (7126): 426–428. doi:10.1038/nature05496. PMID 17251979.
  6. ^ Janson, Sven (2004). "Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia". Environmental Microbiology. 6 (10): 1102–1106. doi:10.1111/j.1462-2920.2004.00646.x. PMID 15344936.
  7. ^ Nishitani, G.; Nagai, S.; Baba, K.; Kiyokawa, S.; Kosaka, Y.; Miyamura, K.; Nishikawa, T.; Sakurada, K.; Shinada, A.; Kamiyama, T. (2010). "High-level congruence of Myrionecta rubra prey and Dinophysis species plastid identities as revealed by genetic analyses of isolates from Japanese coastal waters". Applied and Environmental Microbiology. 76 (9): 2791–2798. doi:10.1128/AEM.02566-09. PMC 2863437. PMID 20305031.
  8. ^ "WoRMS - World Register of Marine Species - Dinophysis acuminata Claparède & Lachmann, 1859". www.marinespecies.org. Retrieved 2016-09-28.
  9. ^ a b Raho, Nicolás; Pizarro, Gemita; Escalera, Laura; Reguera, Beatriz; Marín, Irma (2008). "Morphology, toxin composition and molecular analysis of Dinophysis ovum Schütt, a dinoflagellate of the "Dinophysis acuminata complex"". Harmful Algae. 7 (6): 839–848. doi:10.1016/j.hal.2008.04.006. ISSN 1568-9883.
  10. ^ Dorrell, R. G.; Howe, C. J. (2012). "What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses". Journal of Cell Science. 125 (8): 1865–1875. doi:10.1242/jcs.102285. PMID 22547565.
  11. ^ Takishita, K; Koike, K; Maruyama, T; Ogata, T (2002). "Molecular evidence for plastid robbery (Kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning". Protist. 153 (3): 293–302. doi:10.1078/1434-4610-00106. PMID 12389818.
  12. ^ Wisecaver, Jennifer H; Hackett, Jeremiah D (2010). "Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata". BMC Genomics. 11 (1): 366. doi:10.1186/1471-2164-11-366. PMC 3017763. PMID 20537123.

External links edit

  • Dinophysis acuminata at the Smithsonian
  • Phyto'Pedia
  • Marine Species Identification Portal

dinophysis, acuminata, marine, plankton, species, dinoflagellates, that, found, coastal, waters, north, atlantic, pacific, oceans, genus, dinophysis, includes, both, phototrophic, heterotrophic, species, acuminata, several, phototrophic, species, dinophysis, c. Dinophysis acuminata is a marine plankton species of dinoflagellates that is found in coastal waters of the north Atlantic and Pacific oceans 1 The genus Dinophysis includes both phototrophic and heterotrophic species D acuminata is one of several phototrophic species of Dinophysis classed as toxic as they produce okadaic acid which can cause diarrhetic shellfish poisoning DSP Okadiac acid is taken up by shellfish and has been found in the soft tissue of mussels and the liver of flounder species When contaminated animals are consumed they cause severe diarrhoea D acuminata blooms are constant threat to and indication of diarrhoeatic shellfish poisoning outbreaks 2 3 4 Dinophysis acuminata Formalin fixed sample collected from sampling station 7 North Sea Scientific classification Domain Eukaryota Clade Diaphoretickes Clade SAR Clade Alveolata Phylum Myzozoa Superclass Dinoflagellata Class Dinophyceae Order Dinophysiales Family Dinophysaceae Genus Dinophysis Species D acuminata Binomial name Dinophysis acuminataClaparede amp Lachmann Dinophysis acuminata is a photosynthesising Dinophysis species by acquiring secondary plastids from consuming the ciliate Myrionecta rubra 5 which in turn had ingested them from the alga Teleaulax amphioxeia 6 7 Thus D acuminata is a mixotroph primarily a heterotroph but autotroph once it acquires plastids This is also an example of cell organelle stealing the concept called kleptoplasty and endosymbiosis Dinophysis acuminata reproduces sexually and asexually 8 Contents 1 Description 1 1 Dinophysis morphology 2 Feeding and endosymbiosis 3 Ecology and current threats of Dinophysis 4 References 5 External linksDescription editDinophysis acuminata is an oval shaped protist It measures 30 35 mm in length and 38 58 mm in diameter The body is reddish brown in colour and is covered with an armor like covering called theca which is made up of grass The anterior end has a crown like platform which is the smaller epitheca while the posterior is simply rounded constituting a larger hypotheca The cell has two flagella for locomotion Reproduction is by simple binary fission In lateral view D acuminata cells are irregularly egg shaped dorsally convex and have large hypothecal plates with a more or less oval shape The dorsal contour is always more strongly convex than the ventral one Compared to other species of Dinophysis D acuminata has a more straight ventral margin and larger left sulcal lists with more prominent ribs The nucleus is prominently at the centre of the cell The unusual feature of the cell is that it contains reddish brown chloroplast 1 The taxonomic identification of Dinophysis species is largely based on cell contouring size and shape of their large hypothecal plates and the shape of their left sulcal lists and ribs When viewed laterally species in the Dinophysis are laterally compressed with a cap like epitheca and a much larger hypotheca although the size and shape of these species varies greatly due to their polymorphic life cycle Due to the morphological variability of Dinophysis species identification can be hard especially when two species D acuminata and D sacculus co exist For this reason the term D acuminata complex was coined to label a group of co existing species difficult to discriminate 9 Dinophysis morphology edit Dinophysis acuminata can be very hard to identify and requires careful observations 3 It can be identified by its midsection 1 It is very large 38 55mm and wide 30 38mm in the middle unlike D norvegica that is 34 50mm long and 36 43mm wide 2 The Dinophysis norvegica is smaller and widest in the middle region 1 D norvegica and D acuminata are a very similar species as a result they exhibits similar behaviors and are commonly misidentified 1 Furthermore other ways to identify D acuminata from other Dinophysis species can be done by comparison of the left sulcal list cellulose extensions of the cell 5 and LSL identification in ribs 1 Cells have convex dorsal margins and small oval shaped cells and their thecal plates are covered with areolae circular depression on the cellulose wall of a dinoflagellate 5 each with a pore 4 Continuously the knob shaped protrusions and round antapex botton end of a dinoflagellate 5 are ways to identify D acuminata 4 Feeding and endosymbiosis editDinophysis acuminata is basically a heterotroph feeding on the ciliate Mesodinium rubrum M rubrum in turn feeds on green algae that contain plastids The endosymbiont is used by the ciliate for its own photosynthesis 10 Microscopic observations of live cells using established cultures revealed that D acuminata uses a peduncle extending from the flagellar pore to extract the cell contents of the marine ciliate M rubrum After about 1 minute the trapped M rubrum becomes immobile after which the D acuminata slowly consumes the ciliate over 1 2 hours filling its vacuoles with the ciliate s cytoplasm 9 The algal plastids are not destroyed by D acuminata but use it for its own photosynthesis thereby becoming an autotroph However unlike its prey M rubum it is not clear whether D acuminata uses the plastids permanently or temporarily 11 12 Food vacuoles found in the vacuoles of this primitive genus indicates that organisms in this genus are mixotrophs especially D norvegica 1 Mixotrophy is the ability of an organism to use different sources of carbon and energy instead of having a single mode of feeding autotroph or heterotroph However certain species related to Dinophysis acuminata prefer one mode of feeding over another Dinophysis rotundata uses myzocytosis to feed 1 Their mixotrophic conditions and size are influenced by prey populations and hydrographic conditions 2 Ecology and current threats of Dinophysis editDinophysis acuminata has caused several problems in oceanic ecosystems The main cause of DSP diarrhetic shellfish poisoning outbreaks in waters along Europe has been due to this species 3 Likewise the close knit sisters of Dinophysis acuminata called Dinophysis norvegica a photosynthetic organism with yellow chloroplast and posterior nucleus Dinophysis acuta and Dinophysis fortii have also been known to cause the same problems as D acuminata 1 Dinophysis norvegica is a marine plankton dinoflagellate that is found in neritic waters 1 This species of the Dinophysis genus is a bloom forming toxic species 1 Both species reproduce asexually by binary fission to make identical copies of itself 1 Speculations of sexual dimorphism that is the difference between the female and male counterparts have allowed researchers to draw conclusion that species of this genus can undergo sexual reproduction 1 The first record of DSP with Dinophysis acuminata and Dinophysis fortii was in 1980 in the Patagonian coast 4 A year after the report another occurrence of DSP unleashed in December 1993 and November 1994 4 Dinophysis acuminata releases lipophilic shellfish toxins LSTs and have been found to cause trouble to ecological marines and aquaculture farmers 2 The lipophilic toxins accumulate in shellfishes and causes diarrhea and shellfish poisoning to consumers Dinophysis acuminata is the cause of DSP in Brazil and creates a disturbing impact due to its long and early blooming species 4 However their presence is restricted around the spring and summer 4 but in higher concentrations in December DSP is a particular kind food poisoning that causes severe gastrointestinal illness in humans and this is related to the ingestion of toxin contaminated shellfishes from contaminated water 4 Some of the symptoms of DSP include diarrhea stomach pain vomiting nausea and fever reported human ingestion shows that the toxins are capable of causing stomach tumors and chronic problems to consumers 4 Government involvement as a result of high concentrations of toxins in the Dinophysis toxic shellfish epidemic has caused economic crisis in Europe and the aquaculture industry 2 References edit a b Setala Outi Autio Riitta Kuosa Harri Rintala Janne Ylostalo Pasi 2005 Survival and photosynthetic activity of different Dinophysis acuminata populations in the northern Baltic Sea Harmful Algae 4 2 337 350 doi 10 1016 j hal 2004 06 017 ISSN 1568 9883 Diaz Patricio Reguera Beatriz Ruiz Villarreal Manuel Pazos Yolanda Velo Suarez Lourdes Berger Henrick Sourisseau Marc 2013 Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms Marine Drugs 11 8 2964 2981 doi 10 3390 md11082964 PMC 3766876 PMID 23959151 Lee Ka Jeong Mok Jong Soo Song Ki Cheol Yu Hongsik Jung Jee Hyung Kim Ji Hoe 2011 Geographical and annual variation in lipophilic shellfish toxins from oysters and mussels along the south coast of Korea Journal of Food Protection 74 12 2127 2133 doi 10 4315 0362 028X JFP 11 148 PMID 22186054 Naustvoll L J Gustad E Dahl E 2012 Monitoring of Dinophysis species and diarrhetic shellfish toxins in Flodevigen Bay Norway inter annual variability over a 25 year time series Food Additives amp Contaminants Part A 29 10 1605 1615 doi 10 1080 19440049 2012 714908 PMID 22891979 Johnson Matthew D Oldach David Delwiche Charles F Stoecker Diane K 2007 Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra Nature 445 7126 426 428 doi 10 1038 nature05496 PMID 17251979 Janson Sven 2004 Molecular evidence that plastids in the toxin producing dinoflagellate genus Dinophysis originate from the free living cryptophyte Teleaulax amphioxeia Environmental Microbiology 6 10 1102 1106 doi 10 1111 j 1462 2920 2004 00646 x PMID 15344936 Nishitani G Nagai S Baba K Kiyokawa S Kosaka Y Miyamura K Nishikawa T Sakurada K Shinada A Kamiyama T 2010 High level congruence of Myrionecta rubra prey and Dinophysis species plastid identities as revealed by genetic analyses of isolates from Japanese coastal waters Applied and Environmental Microbiology 76 9 2791 2798 doi 10 1128 AEM 02566 09 PMC 2863437 PMID 20305031 WoRMS World Register of Marine Species Dinophysis acuminata Claparede amp Lachmann 1859 www marinespecies org Retrieved 2016 09 28 a b Raho Nicolas Pizarro Gemita Escalera Laura Reguera Beatriz Marin Irma 2008 Morphology toxin composition and molecular analysis of Dinophysis ovum Schutt a dinoflagellate of the Dinophysis acuminata complex Harmful Algae 7 6 839 848 doi 10 1016 j hal 2008 04 006 ISSN 1568 9883 Dorrell R G Howe C J 2012 What makes a chloroplast Reconstructing the establishment of photosynthetic symbioses Journal of Cell Science 125 8 1865 1875 doi 10 1242 jcs 102285 PMID 22547565 Takishita K Koike K Maruyama T Ogata T 2002 Molecular evidence for plastid robbery Kleptoplastidy in Dinophysis a dinoflagellate causing diarrhetic shellfish poisoning Protist 153 3 293 302 doi 10 1078 1434 4610 00106 PMID 12389818 Wisecaver Jennifer H Hackett Jeremiah D 2010 Transcriptome analysis reveals nuclear encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata BMC Genomics 11 1 366 doi 10 1186 1471 2164 11 366 PMC 3017763 PMID 20537123 External links editDinophysis acuminata at the Smithsonian Phyto Pedia Marine Species Identification Portal Retrieved from https en wikipedia org w index php title Dinophysis acuminata amp oldid 1218896000, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.