fbpx
Wikipedia

Wang tile

Wang tiles (or Wang dominoes), first proposed by mathematician, logician, and philosopher Hao Wang in 1961, are a class of formal systems. They are modelled visually by square tiles with a color on each side. A set of such tiles is selected, and copies of the tiles are arranged side by side with matching colors, without rotating or reflecting them.

This set of 11 Wang tiles will tile the plane but only aperiodically.

The basic question about a set of Wang tiles is whether it can tile the plane or not, i.e., whether an entire infinite plane can be filled this way. The next question is whether this can be done in a periodic pattern.

Domino problem edit

 
Example of Wang tessellation with 13 tiles.

In 1961, Wang conjectured that if a finite set of Wang tiles can tile the plane, then there also exists a periodic tiling, which, mathematically, is a tiling that is invariant under translations by vectors in a 2-dimensional lattice. This can be likened to the periodic tiling in a wallpaper pattern, where the overall pattern is a repetition of some smaller pattern. He also observed that this conjecture would imply the existence of an algorithm to decide whether a given finite set of Wang tiles can tile the plane.[1][2] The idea of constraining adjacent tiles to match each other occurs in the game of dominoes, so Wang tiles are also known as Wang dominoes.[3] The algorithmic problem of determining whether a tile set can tile the plane became known as the domino problem.[4]

According to Wang's student, Robert Berger,[4]

The Domino Problem deals with the class of all domino sets. It consists of deciding, for each domino set, whether or not it is solvable. We say that the Domino Problem is decidable or undecidable according to whether there exists or does not exist an algorithm which, given the specifications of an arbitrary domino set, will decide whether or not the set is solvable.

In other words, the domino problem asks whether there is an effective procedure that correctly settles the problem for all given domino sets.

In 1966, Berger solved the domino problem in the negative. He proved that no algorithm for the problem can exist, by showing how to translate any Turing machine into a set of Wang tiles that tiles the plane if and only if the Turing machine does not halt. The undecidability of the halting problem (the problem of testing whether a Turing machine eventually halts) then implies the undecidability of Wang's tiling problem.[4]

Aperiodic sets of tiles edit

 
Wang tiles made monochromatic by replacing edges of each quadrant with a shape corresponding on its colour – this set is isomorphic to Jeandel and Rao's minimal set above

Combining Berger's undecidability result with Wang's observation shows that there must exist a finite set of Wang tiles that tiles the plane, but only aperiodically. This is similar to a Penrose tiling, or the arrangement of atoms in a quasicrystal. Although Berger's original set contained 20,426 tiles, he conjectured that smaller sets would work, including subsets of his set, and in his unpublished Ph.D. thesis, he reduced the number of tiles to 104. In later years, ever smaller sets were found.[5][6][7][8] For example, a set of 13 aperiodic tiles was published by Karel Culik II in 1996.[6]

The smallest set of aperiodic tiles was discovered by Emmanuel Jeandel and Michael Rao in 2015, with 11 tiles and 4 colors. They used an exhaustive computer search to prove that 10 tiles or 3 colors are insufficient to force aperiodicity.[8] This set, shown above in the title image, can be examined more closely at File:Wang 11 tiles.svg.

Generalizations edit

Wang tiles can be generalized in various ways, all of which are also undecidable in the above sense. For example, Wang cubes are equal-sized cubes with colored faces and side colors can be matched on any polygonal tessellation. Culik and Kari have demonstrated aperiodic sets of Wang cubes.[9] Winfree et al. have demonstrated the feasibility of creating molecular "tiles" made from DNA (deoxyribonucleic acid) that can act as Wang tiles.[10] Mittal et al. have shown that these tiles can also be composed of peptide nucleic acid (PNA), a stable artificial mimic of DNA.[11]

Applications edit

Wang tiles have been used for procedural synthesis of textures, heightfields, and other large and nonrepeating bidimensional data sets; a small set of precomputed or hand-made source tiles can be assembled very cheaply without too obvious repetitions and without periodicity. In this case, traditional aperiodic tilings would show their very regular structure; much less constrained sets that guarantee at least two tile choices for any two given side colors are common because tileability is easily ensured and each tile can be selected pseudorandomly.[12][13][14][15][16]

Wang tiles have also been used in cellular automata theory decidability proofs.[17]

In popular culture edit

The short story "Wang's Carpets", later expanded to the novel Diaspora, by Greg Egan, postulates a universe, complete with resident organisms and intelligent beings, embodied as Wang tiles implemented by patterns of complex molecules.[18]

See also edit

References edit

  1. ^ Wang, Hao (1961), "Proving theorems by pattern recognition—II", Bell System Technical Journal, 40 (1): 1–41, doi:10.1002/j.1538-7305.1961.tb03975.x. Wang proposes his tiles, and conjectures that there are no aperiodic sets.
  2. ^ Wang, Hao (November 1965), "Games, logic and computers", Scientific American, 213 (5): 98–106, doi:10.1038/scientificamerican1165-98. Presents the domino problem for a popular audience.
  3. ^ Renz, Peter (1981), "Mathematical proof: What it is and what it ought to be", The Two-Year College Mathematics Journal, 12 (2): 83–103, doi:10.2307/3027370, JSTOR 3027370.
  4. ^ a b c Berger, Robert (1966), "The undecidability of the domino problem", Memoirs of the American Mathematical Society, 66: 72, MR 0216954. Berger coins the term "Wang tiles", and demonstrates the first aperiodic set of them.
  5. ^ Robinson, Raphael M. (1971), "Undecidability and nonperiodicity for tilings of the plane", Inventiones Mathematicae, 12 (3): 177–209, Bibcode:1971InMat..12..177R, doi:10.1007/bf01418780, MR 0297572, S2CID 14259496.
  6. ^ a b Culik, Karel II (1996), "An aperiodic set of 13 Wang tiles", Discrete Mathematics, 160 (1–3): 245–251, doi:10.1016/S0012-365X(96)00118-5, MR 1417576. (Showed an aperiodic set of 13 tiles with 5 colors.)
  7. ^ Kari, Jarkko (1996), "A small aperiodic set of Wang tiles", Discrete Mathematics, 160 (1–3): 259–264, doi:10.1016/0012-365X(95)00120-L, MR 1417578.
  8. ^ a b Jeandel, Emmanuel; Rao, Michaël (2021), "An aperiodic set of 11 Wang tiles", Advances in Combinatorics: 1:1–1:37, arXiv:1506.06492, doi:10.19086/aic.18614, MR 4210631, S2CID 13261182. (Showed an aperiodic set of 11 tiles with 4 colors, and proved that fewer tiles or fewer colors cannot be aperiodic.)
  9. ^ Culik, Karel II; Kari, Jarkko (1995), "An aperiodic set of Wang cubes", Journal of Universal Computer Science, 1 (10): 675–686, doi:10.1007/978-3-642-80350-5_57, MR 1392428.
  10. ^ Winfree, E.; Liu, F.; Wenzler, L.A.; Seeman, N.C. (1998), "Design and self-assembly of two-dimensional DNA crystals", Nature, 394 (6693): 539–544, Bibcode:1998Natur.394..539W, doi:10.1038/28998, PMID 9707114, S2CID 4385579.
  11. ^ Lukeman, P.; Seeman, N.; Mittal, A. (2002), "Hybrid PNA/DNA nanosystems", 1st International Conference on Nanoscale/Molecular Mechanics (N-M2-I), Outrigger Wailea Resort, Maui, Hawaii.
  12. ^ Stam, Jos (1997), Aperiodic Texture Mapping (PDF). Introduces the idea of using Wang tiles for texture variation, with a deterministic substitution system.
  13. ^ Neyret, Fabrice; Cani, Marie-Paule (1999), "Pattern-Based Texturing Revisited", Proceedings of the 26th annual conference on Computer graphics and interactive techniques - SIGGRAPH '99 (PDF), Los Angeles, United States: ACM, pp. 235–242, doi:10.1145/311535.311561, ISBN 0-201-48560-5, S2CID 11247905. Introduces stochastic tiling.
  14. ^ Cohen, Michael F.; Shade, Jonathan; Hiller, Stefan; Deussen, Oliver (2003), "Wang tiles for image and texture generation", (PDF), New York, NY, USA: ACM, pp. 287–294, doi:10.1145/1201775.882265, ISBN 1-58113-709-5, S2CID 207162102, archived from the original (PDF) on 2006-03-18.
  15. ^ Wei, Li-Yi (2004), "Tile-based texture mapping on graphics hardware", Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS '04), New York, NY, USA: ACM, pp. 55–63, doi:10.1145/1058129.1058138, ISBN 3-905673-15-0, S2CID 53224612. Applies Wang Tiles for real-time texturing on a GPU.
  16. ^ . Kopf, Johannes; Cohen-Or, Daniel; Deussen, Oliver; Lischinski, Dani (2006), "Recursive Wang tiles for real-time blue noise", ACM SIGGRAPH 2006 Papers on - SIGGRAPH '06, New York, NY, USA: ACM, pp. 509–518, doi:10.1145/1179352.1141916, ISBN 1-59593-364-6, S2CID 11007853. Shows advanced applications.
  17. ^ Kari, Jarkko (1990), "Reversibility of 2D cellular automata is undecidable", Cellular automata: theory and experiment (Los Alamos, NM, 1989), Physica D: Nonlinear Phenomena, vol. 45, pp. 379–385, Bibcode:1990PhyD...45..379K, doi:10.1016/0167-2789(90)90195-U, MR 1094882.
  18. ^ Burnham, Karen (2014), Greg Egan, Modern Masters of Science Fiction, University of Illinois Press, pp. 72–73, ISBN 978-0-252-09629-7.

Further reading edit

External links edit

  • Animated demonstration of a naïve Wang tiling method - requires Javascript and HTML5

wang, tile, wang, dominoes, first, proposed, mathematician, logician, philosopher, wang, 1961, class, formal, systems, they, modelled, visually, square, tiles, with, color, each, side, such, tiles, selected, copies, tiles, arranged, side, side, with, matching,. Wang tiles or Wang dominoes first proposed by mathematician logician and philosopher Hao Wang in 1961 are a class of formal systems They are modelled visually by square tiles with a color on each side A set of such tiles is selected and copies of the tiles are arranged side by side with matching colors without rotating or reflecting them This set of 11 Wang tiles will tile the plane but only aperiodically Wikimedia Commons has media related to Wang tiles The basic question about a set of Wang tiles is whether it can tile the plane or not i e whether an entire infinite plane can be filled this way The next question is whether this can be done in a periodic pattern Contents 1 Domino problem 2 Aperiodic sets of tiles 3 Generalizations 4 Applications 5 In popular culture 6 See also 7 References 8 Further reading 9 External linksDomino problem edit nbsp Example of Wang tessellation with 13 tiles In 1961 Wang conjectured that if a finite set of Wang tiles can tile the plane then there also exists a periodic tiling which mathematically is a tiling that is invariant under translations by vectors in a 2 dimensional lattice This can be likened to the periodic tiling in a wallpaper pattern where the overall pattern is a repetition of some smaller pattern He also observed that this conjecture would imply the existence of an algorithm to decide whether a given finite set of Wang tiles can tile the plane 1 2 The idea of constraining adjacent tiles to match each other occurs in the game of dominoes so Wang tiles are also known as Wang dominoes 3 The algorithmic problem of determining whether a tile set can tile the plane became known as the domino problem 4 According to Wang s student Robert Berger 4 The Domino Problem deals with the class of all domino sets It consists of deciding for each domino set whether or not it is solvable We say that the Domino Problem is decidable or undecidable according to whether there exists or does not exist an algorithm which given the specifications of an arbitrary domino set will decide whether or not the set is solvable In other words the domino problem asks whether there is an effective procedure that correctly settles the problem for all given domino sets In 1966 Berger solved the domino problem in the negative He proved that no algorithm for the problem can exist by showing how to translate any Turing machine into a set of Wang tiles that tiles the plane if and only if the Turing machine does not halt The undecidability of the halting problem the problem of testing whether a Turing machine eventually halts then implies the undecidability of Wang s tiling problem 4 Aperiodic sets of tiles edit nbsp Wang tiles made monochromatic by replacing edges of each quadrant with a shape corresponding on its colour this set is isomorphic to Jeandel and Rao s minimal set above Combining Berger s undecidability result with Wang s observation shows that there must exist a finite set of Wang tiles that tiles the plane but only aperiodically This is similar to a Penrose tiling or the arrangement of atoms in a quasicrystal Although Berger s original set contained 20 426 tiles he conjectured that smaller sets would work including subsets of his set and in his unpublished Ph D thesis he reduced the number of tiles to 104 In later years ever smaller sets were found 5 6 7 8 For example a set of 13 aperiodic tiles was published by Karel Culik II in 1996 6 The smallest set of aperiodic tiles was discovered by Emmanuel Jeandel and Michael Rao in 2015 with 11 tiles and 4 colors They used an exhaustive computer search to prove that 10 tiles or 3 colors are insufficient to force aperiodicity 8 This set shown above in the title image can be examined more closely at File Wang 11 tiles svg Generalizations editWang tiles can be generalized in various ways all of which are also undecidable in the above sense For example Wang cubes are equal sized cubes with colored faces and side colors can be matched on any polygonal tessellation Culik and Kari have demonstrated aperiodic sets of Wang cubes 9 Winfree et al have demonstrated the feasibility of creating molecular tiles made from DNA deoxyribonucleic acid that can act as Wang tiles 10 Mittal et al have shown that these tiles can also be composed of peptide nucleic acid PNA a stable artificial mimic of DNA 11 Applications editWang tiles have been used for procedural synthesis of textures heightfields and other large and nonrepeating bidimensional data sets a small set of precomputed or hand made source tiles can be assembled very cheaply without too obvious repetitions and without periodicity In this case traditional aperiodic tilings would show their very regular structure much less constrained sets that guarantee at least two tile choices for any two given side colors are common because tileability is easily ensured and each tile can be selected pseudorandomly 12 13 14 15 16 Wang tiles have also been used in cellular automata theory decidability proofs 17 In popular culture editThe short story Wang s Carpets later expanded to the novel Diaspora by Greg Egan postulates a universe complete with resident organisms and intelligent beings embodied as Wang tiles implemented by patterns of complex molecules 18 See also editEdge matching puzzleReferences edit Wang Hao 1961 Proving theorems by pattern recognition II Bell System Technical Journal 40 1 1 41 doi 10 1002 j 1538 7305 1961 tb03975 x Wang proposes his tiles and conjectures that there are no aperiodic sets Wang Hao November 1965 Games logic and computers Scientific American 213 5 98 106 doi 10 1038 scientificamerican1165 98 Presents the domino problem for a popular audience Renz Peter 1981 Mathematical proof What it is and what it ought to be The Two Year College Mathematics Journal 12 2 83 103 doi 10 2307 3027370 JSTOR 3027370 a b c Berger Robert 1966 The undecidability of the domino problem Memoirs of the American Mathematical Society 66 72 MR 0216954 Berger coins the term Wang tiles and demonstrates the first aperiodic set of them Robinson Raphael M 1971 Undecidability and nonperiodicity for tilings of the plane Inventiones Mathematicae 12 3 177 209 Bibcode 1971InMat 12 177R doi 10 1007 bf01418780 MR 0297572 S2CID 14259496 a b Culik Karel II 1996 An aperiodic set of 13 Wang tiles Discrete Mathematics 160 1 3 245 251 doi 10 1016 S0012 365X 96 00118 5 MR 1417576 Showed an aperiodic set of 13 tiles with 5 colors Kari Jarkko 1996 A small aperiodic set of Wang tiles Discrete Mathematics 160 1 3 259 264 doi 10 1016 0012 365X 95 00120 L MR 1417578 a b Jeandel Emmanuel Rao Michael 2021 An aperiodic set of 11 Wang tiles Advances in Combinatorics 1 1 1 37 arXiv 1506 06492 doi 10 19086 aic 18614 MR 4210631 S2CID 13261182 Showed an aperiodic set of 11 tiles with 4 colors and proved that fewer tiles or fewer colors cannot be aperiodic Culik Karel II Kari Jarkko 1995 An aperiodic set of Wang cubes Journal of Universal Computer Science 1 10 675 686 doi 10 1007 978 3 642 80350 5 57 MR 1392428 Winfree E Liu F Wenzler L A Seeman N C 1998 Design and self assembly of two dimensional DNA crystals Nature 394 6693 539 544 Bibcode 1998Natur 394 539W doi 10 1038 28998 PMID 9707114 S2CID 4385579 Lukeman P Seeman N Mittal A 2002 Hybrid PNA DNA nanosystems 1st International Conference on Nanoscale Molecular Mechanics N M2 I Outrigger Wailea Resort Maui Hawaii Stam Jos 1997 Aperiodic Texture Mapping PDF Introduces the idea of using Wang tiles for texture variation with a deterministic substitution system Neyret Fabrice Cani Marie Paule 1999 Pattern Based Texturing Revisited Proceedings of the 26th annual conference on Computer graphics and interactive techniques SIGGRAPH 99 PDF Los Angeles United States ACM pp 235 242 doi 10 1145 311535 311561 ISBN 0 201 48560 5 S2CID 11247905 Introduces stochastic tiling Cohen Michael F Shade Jonathan Hiller Stefan Deussen Oliver 2003 Wang tiles for image and texture generation ACM SIGGRAPH 2003 Papers on SIGGRAPH 03 PDF New York NY USA ACM pp 287 294 doi 10 1145 1201775 882265 ISBN 1 58113 709 5 S2CID 207162102 archived from the original PDF on 2006 03 18 Wei Li Yi 2004 Tile based texture mapping on graphics hardware Proceedings of the ACM SIGGRAPH EUROGRAPHICS Conference on Graphics Hardware HWWS 04 New York NY USA ACM pp 55 63 doi 10 1145 1058129 1058138 ISBN 3 905673 15 0 S2CID 53224612 Applies Wang Tiles for real time texturing on a GPU Kopf Johannes Cohen Or Daniel Deussen Oliver Lischinski Dani 2006 Recursive Wang tiles for real time blue noise ACM SIGGRAPH 2006 Papers on SIGGRAPH 06 New York NY USA ACM pp 509 518 doi 10 1145 1179352 1141916 ISBN 1 59593 364 6 S2CID 11007853 Shows advanced applications Kari Jarkko 1990 Reversibility of 2D cellular automata is undecidable Cellular automata theory and experiment Los Alamos NM 1989 Physica D Nonlinear Phenomena vol 45 pp 379 385 Bibcode 1990PhyD 45 379K doi 10 1016 0167 2789 90 90195 U MR 1094882 Burnham Karen 2014 Greg Egan Modern Masters of Science Fiction University of Illinois Press pp 72 73 ISBN 978 0 252 09629 7 Further reading editGrunbaum Branko Shephard G C 1987 Tilings and Patterns New York W H Freeman ISBN 0 7167 1193 1 External links editSteven Dutch s page including many pictures of aperiodic tilings Animated demonstration of a naive Wang tiling method requires Javascript and HTML5 Retrieved from https en wikipedia org w index php title Wang tile amp oldid 1209142812, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.