fbpx
Wikipedia

Vertical and horizontal bundles

In mathematics, the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle. More precisely, given a smooth fiber bundle , the vertical bundle and horizontal bundle are subbundles of the tangent bundle of whose Whitney sum satisfies . This means that, over each point , the fibers and form complementary subspaces of the tangent space . The vertical bundle consists of all vectors that are tangent to the fibers, while the horizontal bundle requires some choice of complementary subbundle.

To make this precise, define the vertical space at to be . That is, the differential (where ) is a linear surjection whose kernel has the same dimension as the fibers of . If we write , then consists of exactly the vectors in which are also tangent to . The name is motivated by low-dimensional examples like the trivial line bundle over a circle, which is sometimes depicted as a vertical cylinder projecting to a horizontal circle. A subspace of is called a horizontal space if is the direct sum of and .

The disjoint union of the vertical spaces VeE for each e in E is the subbundle VE of TE; this is the vertical bundle of E. Likewise, provided the horizontal spaces vary smoothly with e, their disjoint union is a horizontal bundle. The use of the words "the" and "a" here is intentional: each vertical subspace is unique, defined explicitly by . Excluding trivial cases, there are an infinite number of horizontal subspaces at each point. Also note that arbitrary choices of horizontal space at each point will not, in general, form a smooth vector bundle; they must also vary in an appropriately smooth way.

The horizontal bundle is one way to formulate the notion of an Ehresmann connection on a fiber bundle. Thus, for example, if E is a principal G-bundle, then the horizontal bundle is usually required to be G-invariant: such a choice is equivalent to a connection on the principal bundle.[1] This notably occurs when E is the frame bundle associated to some vector bundle, which is a principal bundle.

Formal definition edit

Let π:EB be a smooth fiber bundle over a smooth manifold B. The vertical bundle is the kernel VE := ker(dπ) of the tangent map dπ : TE → TB.[2]

Since dπe is surjective at each point e, it yields a regular subbundle of TE. Furthermore, the vertical bundle VE is also integrable.

An Ehresmann connection on E is a choice of a complementary subbundle HE to VE in TE, called the horizontal bundle of the connection. At each point e in E, the two subspaces form a direct sum, such that TeE = VeE ⊕ HeE.

Example edit

A simple example of a smooth fiber bundle is a Cartesian product of two manifolds. Consider the bundle B1 := (M × N, pr1) with bundle projection pr1 : M × NM : (xy) → x. Applying the definition in the paragraph above to find the vertical bundle, we consider first a point (m,n) in M × N. Then the image of this point under pr1 is m. The preimage of m under this same pr1 is {m} × N, so that T(m,n) ({m} × N) = {m} × TN. The vertical bundle is then VB1 = M × TN, which is a subbundle of T(M ×N). If we take the other projection pr2 : M × N → N : (xy) → y to define the fiber bundle B2 := (M × N, pr2) then the vertical bundle will be VB2 = TM × N.

In both cases, the product structure gives a natural choice of horizontal bundle, and hence an Ehresmann connection: the horizontal bundle of B1 is the vertical bundle of B2 and vice versa.

Properties edit

Various important tensors and differential forms from differential geometry take on specific properties on the vertical and horizontal bundles, or even can be defined in terms of them. Some of these are:

  • A vertical vector field is a vector field that is in the vertical bundle. That is, for each point e of E, one chooses a vector   where   is the vertical vector space at e.[2]
  • A differentiable r-form   on E is said to be a horizontal form if   whenever at least one of the vectors   is vertical.
  • The connection form vanishes on the horizontal bundle, and is non-zero only on the vertical bundle. In this way, the connection form can be used to define the horizontal bundle: The horizontal bundle is the kernel of the connection form.
  • The solder form or tautological one-form vanishes on the vertical bundle and is non-zero only on the horizontal bundle. By definition, the solder form takes its values entirely in the horizontal bundle.
  • For the case of a frame bundle, the torsion form vanishes on the vertical bundle, and can be used to define exactly that part that needs to be added to an arbitrary connection to turn it into a Levi-Civita connection, i.e. to make a connection be torsionless. Indeed, if one writes θ for the solder form, then the torsion tensor Θ is given by Θ = D θ (with D the exterior covariant derivative). For any given connection ω, there is a unique one-form σ on TE, called the contorsion tensor, that is vanishing in the vertical bundle, and is such that ω+σ is another connection 1-form that is torsion-free. The resulting one-form ω+σ is nothing other than the Levi-Civita connection. One can take this as a definition: since the torsion is given by  , the vanishing of the torsion is equivalent to having  , and it is not hard to show that σ must vanish on the vertical bundle, and that σ must be G-invariant on each fibre (more precisely, that σ transforms in the adjoint representation of G). Note that this defines the Levi-Civita connection without making any explicit reference to any metric tensor (although the metric tensor can be understood to be a special case of a solder form, as it establishes a mapping between the tangent and cotangent bundles of the base space, i.e. between the horizontal and vertical subspaces of the frame bundle).
  • In the case where E is a principal bundle, then the fundamental vector field must necessarily live in the vertical bundle, and vanish in any horizontal bundle.

Notes edit

  1. ^ David Bleecker, Gauge Theory and Variational Principles (1981) Addison-Wesely Publishing Company ISBN 0-201-10096-7 (See theorem 1.2.4)
  2. ^ a b Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural Operations in Differential Geometry (PDF), Springer-Verlag (page 77)

References edit

vertical, horizontal, bundles, mathematics, vertical, bundle, horizontal, bundle, vector, bundles, associated, smooth, fiber, bundle, more, precisely, given, smooth, fiber, bundle, displaystyle, colon, vertical, bundle, displaystyle, horizontal, bundle, displa. In mathematics the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle More precisely given a smooth fiber bundle p E B displaystyle pi colon E to B the vertical bundle VE displaystyle VE and horizontal bundle HE displaystyle HE are subbundles of the tangent bundle TE displaystyle TE of E displaystyle E whose Whitney sum satisfies VE HE TE displaystyle VE oplus HE cong TE This means that over each point e E displaystyle e in E the fibers VeE displaystyle V e E and HeE displaystyle H e E form complementary subspaces of the tangent space TeE displaystyle T e E The vertical bundle consists of all vectors that are tangent to the fibers while the horizontal bundle requires some choice of complementary subbundle To make this precise define the vertical space VeE displaystyle V e E at e E displaystyle e in E to be ker dpe displaystyle ker d pi e That is the differential dpe TeE TbB displaystyle d pi e colon T e E to T b B where b p e displaystyle b pi e is a linear surjection whose kernel has the same dimension as the fibers of p displaystyle pi If we write F p 1 b displaystyle F pi 1 b then VeE displaystyle V e E consists of exactly the vectors in TeE displaystyle T e E which are also tangent to F displaystyle F The name is motivated by low dimensional examples like the trivial line bundle over a circle which is sometimes depicted as a vertical cylinder projecting to a horizontal circle A subspace HeE displaystyle H e E of TeE displaystyle T e E is called a horizontal space if TeE displaystyle T e E is the direct sum of VeE displaystyle V e E and HeE displaystyle H e E The disjoint union of the vertical spaces VeE for each e in E is the subbundle VE of TE this is the vertical bundle of E Likewise provided the horizontal spaces HeE displaystyle H e E vary smoothly with e their disjoint union is a horizontal bundle The use of the words the and a here is intentional each vertical subspace is unique defined explicitly by ker dpe displaystyle ker d pi e Excluding trivial cases there are an infinite number of horizontal subspaces at each point Also note that arbitrary choices of horizontal space at each point will not in general form a smooth vector bundle they must also vary in an appropriately smooth way The horizontal bundle is one way to formulate the notion of an Ehresmann connection on a fiber bundle Thus for example if E is a principal G bundle then the horizontal bundle is usually required to be G invariant such a choice is equivalent to a connection on the principal bundle 1 This notably occurs when E is the frame bundle associated to some vector bundle which is a principal GLn displaystyle operatorname GL n bundle Contents 1 Formal definition 2 Example 3 Properties 4 Notes 5 ReferencesFormal definition editLet p E B be a smooth fiber bundle over a smooth manifold B The vertical bundle is the kernel VE ker dp of the tangent map dp TE TB 2 Since dpe is surjective at each point e it yields a regular subbundle of TE Furthermore the vertical bundle VE is also integrable An Ehresmann connection on E is a choice of a complementary subbundle HE to VE in TE called the horizontal bundle of the connection At each point e in E the two subspaces form a direct sum such that TeE VeE HeE Example editA simple example of a smooth fiber bundle is a Cartesian product of two manifolds Consider the bundle B1 M N pr1 with bundle projection pr1 M N M x y x Applying the definition in the paragraph above to find the vertical bundle we consider first a point m n in M N Then the image of this point under pr1 is m The preimage of m under this same pr1 is m N so that T m n m N m TN The vertical bundle is then VB1 M TN which is a subbundle of T M N If we take the other projection pr2 M N N x y y to define the fiber bundle B2 M N pr2 then the vertical bundle will be VB2 TM N In both cases the product structure gives a natural choice of horizontal bundle and hence an Ehresmann connection the horizontal bundle of B1 is the vertical bundle of B2 and vice versa Properties editVarious important tensors and differential forms from differential geometry take on specific properties on the vertical and horizontal bundles or even can be defined in terms of them Some of these are A vertical vector field is a vector field that is in the vertical bundle That is for each point e of E one chooses a vector ve VeE displaystyle v e in V e E nbsp where VeE TeE Te Ep e displaystyle V e E subset T e E T e E pi e nbsp is the vertical vector space at e 2 A differentiable r form a displaystyle alpha nbsp on E is said to be a horizontal form if a v1 vr 0 displaystyle alpha v 1 v r 0 nbsp whenever at least one of the vectors v1 vr displaystyle v 1 v r nbsp is vertical The connection form vanishes on the horizontal bundle and is non zero only on the vertical bundle In this way the connection form can be used to define the horizontal bundle The horizontal bundle is the kernel of the connection form The solder form or tautological one form vanishes on the vertical bundle and is non zero only on the horizontal bundle By definition the solder form takes its values entirely in the horizontal bundle For the case of a frame bundle the torsion form vanishes on the vertical bundle and can be used to define exactly that part that needs to be added to an arbitrary connection to turn it into a Levi Civita connection i e to make a connection be torsionless Indeed if one writes 8 for the solder form then the torsion tensor 8 is given by 8 D 8 with D the exterior covariant derivative For any given connection w there is a unique one form s on TE called the contorsion tensor that is vanishing in the vertical bundle and is such that w s is another connection 1 form that is torsion free The resulting one form w s is nothing other than the Levi Civita connection One can take this as a definition since the torsion is given by 8 D8 d8 w 8 displaystyle Theta D theta d theta omega wedge theta nbsp the vanishing of the torsion is equivalent to having d8 w s 8 displaystyle d theta omega sigma wedge theta nbsp and it is not hard to show that s must vanish on the vertical bundle and that s must be G invariant on each fibre more precisely that s transforms in the adjoint representation of G Note that this defines the Levi Civita connection without making any explicit reference to any metric tensor although the metric tensor can be understood to be a special case of a solder form as it establishes a mapping between the tangent and cotangent bundles of the base space i e between the horizontal and vertical subspaces of the frame bundle In the case where E is a principal bundle then the fundamental vector field must necessarily live in the vertical bundle and vanish in any horizontal bundle Notes edit David Bleecker Gauge Theory and Variational Principles 1981 Addison Wesely Publishing Company ISBN 0 201 10096 7 See theorem 1 2 4 a b Kolar Ivan Michor Peter Slovak Jan 1993 Natural Operations in Differential Geometry PDF Springer Verlag page 77 References editChoquet Bruhat Yvonne DeWitt Morette Cecile 1977 Analysis Manifolds and Physics Amsterdam Elsevier ISBN 978 0 7204 0494 4 Kobayashi Shoshichi Nomizu Katsumi 1996 Foundations of Differential Geometry Vol 1 New ed Wiley Interscience ISBN 0 471 15733 3 Kolar Ivan Michor Peter Slovak Jan 1993 Natural Operations in Differential Geometry PDF Springer Verlag Krupka Demeter Janyska Josef 1990 Lectures on differential invariants Univerzita J E Purkyne V Brne ISBN 80 210 0165 8 Saunders D J 1989 The geometry of jet bundles Cambridge University Press ISBN 0 521 36948 7 Retrieved from https en wikipedia org w index php title Vertical and horizontal bundles amp oldid 1117700976, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.