fbpx
Wikipedia

Ultra-conserved element

An ultra-conserved element (UCE) was originally defined as a genome segment longer than 200 base pairs (bp) that is absolutely conserved, with no insertions or deletions and 100% identity, between orthologous regions of the human, rat, and mouse genomes.[1][2] 481 ultra-conserved elements have been identified in the human genome.[1][2] If ribosomal DNA (rDNA regions) are excluded, these range in size from 200 bp to 781 bp.[2] UCRs are found on all chromosomes except for 21 and Y.[3] A database collecting genomic information about ultra-conserved elements (UCbase) is available at http://ucbase.unimore.it.[4]

Since its creation, this term's usage has broadened to include more evolutionary distant species or shorter segments, for example 100 bp instead of 200 bp.[1][2] By some definitions, segments need not be syntetic between species.[1] Human UCEs also show high conservation with more evolutionarily distant species, such as chicken and fugu.[2] Out of 481 identified human UCEs, approximately 97% align with high identity to the chicken genome, though only 4% of human genome can only be reliably aligned to the chicken genome.[2] Similarly, the same sequences in the fugu genome have 68% identity to human UCEs, despite the human genome only reliably aligning to 1.8% of the fugu genome.[2] Despite often being noncoding DNA,[5] some ultra-conserved elements have been found to be transcriptionally active, producing non-coding RNA molecules.[6]

Evolution

Researchers originally assumed that perfect conservation of these long stretches of DNA implied evolutionary importance, as these regions appear to have experienced strong negative (purifying) selection for 300-400 million years.[2][5][7] More recently, this assumption has been replaced by two main hypotheses: that UCEs are created through a reduced negative selection rate, or through reduced mutation rates, also known as a “cold spot” of evolution.[1] [2] Many studies have examined the validity of each hypothesis. The probability of finding ultra-conserved elements by chance (under neutral evolution) has been estimated at less than 10−22 in 2.9 billion bases.[2] In support of the cold spot hypothesis, UCEs were found to be mutating 20 fold less than expected under conservative models for neutral mutation rates.[2] This fold change difference in mutation rates was consistent between humans, chimpanzees, and chickens.[2] Ultra-conserved elements are not exempt from mutations, as exemplified by the presence of 29,983 polymorphisms in the UCE regions of the human genome assembly GRCh38.[8] However, affected phenotypes were only caused by 112 of these polymorphisms, most of which were located in coding regions of the UCEs.[8] A study performed in mice determined that deleting UCEs from the genome did not create obvious deleterious phenotypes, despite deletion of UCEs in proximity to promoters and protein coding genes.[9] Affected mice were fertile and targeted screens of the nearby coding genes showed no altered phenotype.[9] A separate mouse study demonstrated that ultra-conserved enhancers were robust to mutagenesis, concluding that perfect conservation of UCE sequences is not required for their function, which would suggest another reason for the sequence consistency besides evolutionary importance.[10] Computational analysis of human ultra-conserved noncoding elements (UCNEs) found that the regions are enriched for A-T sequences and are generally GC poor.[11] However, the UNCEs were found to be enriched for CpG, or highly methylated.[11] This may indicate that there is some change to DNA structure in these regions favoring their precise retention, but this possibility has not been validated through testing.[11]

Function

Often, ultra-conserved elements are located near transcriptional regulators or developmental genes performing functions such as gene enhancing and splicing regulation.[1][2][12] A study comparing ultra-conserved elements between humans and the Japanese puffer fish Takifugu rubripes proposed an importance in vertebrate development.[13] Double-knockouts of UCEs near the ARX gene in mice caused a shrunken hippocampus in the brain, though the effect was not lethal.[14] Some UCEs are not transcribed, and are referred to as ultra-conserved noncoding elements.[11] However, many UCRs in humans are extensively transcribed.[6] A small number of those which are transcribed, known as transcribed UTRs (T-UTRs), have been connected with human carcinomas and leukemias.[6] For example, TUC338 is strongly upregulated in human hepatocellular carcinoma cells.[15] Indeed, UCEs are often affected by copy number variation in cancer cells much more than in healthy contexts, suggesting that altering the copy number of T-UCEs may be deleterious.[16][17][18]

Role in Human Disease

Research has demonstrated that T-UCRs have a tissue-specific expression, and a differential expression profile between tumors and other diseases.[3] The tables below highlight transcripts and polymorphisms within UCRs that have been shown to contribute to human diseases.[3][8] For example, UCRs tend to accumulate less mutations than flanking segments, in both neoplastic and non-neoplastic samples from persons with hereditary non-polyposis colorectal cancer.[19]

Regulation Mechanisms of Disease Related Ultra-conserved Element Transcripts

miR/methylation/transcript factor associated with T-UCRs Disease References
miR-24-1/uc.160 Leukemia Calin et al., 2007 [6]
miR-130b/uc.63 Prostate CA Sekino et al., 2017 [20]
miR-153/uc.416 Colorectal and renal CA Goto et al., 2016; [21] Sekino et al., 2017[20]
miR-155/uc.160 Gastric CA Calin et al., 2007; [6] Pang et al., 2018[22]
miR-155/uc346A Leukemia Calin et al., 2007 [6]
mir-195/uc.283 Bladder CA Liz et al., 2014 [23]
miR-195, miR-4668/uc.372 Lipid metabolism Guo et al., 2018 [24]
mir-195/uc.173 Gastrointestinal tract Xiao et al., 2018[25]
miR-214/uc.276 Colorectal CA Wojcik et al., 2010[26]
miR-291a-3p/uc.173 Nervous system Nan et al., 2016 [27]
miR-29b/uc.173 Gastrointestinal tract J. Y. Wang et al., 2018 [28]
miR-339-3p, miR-663b-3p, miR-95-5p/uc.339 Lung CA Vannini et al., 2017[29]
miR-596/uc.8 Bladder CA Olivieri et al., 2016 [30]
DNA methylation/uc.160, uc.283, and uc.346 Colorectal CA Kottorou et al., 2018 [31]
DNA methylation/uc.158 + A, uc.160+, uc.241 + A, uc.283 + A, uc.346 + A Gastric CA Goto et al., 2016;[21] Lujambio et al., 2010 [20]
Transcription factor SP1/uc.138 (TRA2β4) Colorectal CA Kajita et al., 2016 [32]
Transcription factor YY1/uc.8 Bladder CA Terreri et al., 2016 [33]

Phenotype-Associated Polymorphisms within Ultra-conserved Elements

Polymorphism name Associated phenotype description Source
rs17105335 Amyotrophic lateral sclerosis Cronin et al. (2008)[34]
rs2020906 Lynch syndrome Hansen et al. (2014)[35]
rs10496382 Height Chiang et al. (2012)[36]
rs13382811 Severe myopia Khor et al. (2013)[37]
rs104893634 Vertical talus congenital Dobbs et al. (2006);[38] Shrimpton et al. (2004)[39]
rs2307121 Central corneal thickness Lu et al. (2013)[40]
rs587777277 Bosch-Boonstra-Schaaf optic atrophy syndrome Bosch et al. (2014)[41]
rs587777275 Bosch-Boonstra-Schaaf optic atrophy syndrome Bosch et al. (2014)[41]
rs587777274 Bosch-Boonstra-Schaaf optic atrophy syndrome Bosch et al. (2014)[41]
rs387906239 Familial adenomatous polyposis 1 attenuated Soravia et al. (1999)[42]
rs3797704 No association with breast cancer Chang et al. (2016)[43]
rs387906232 Familial adenomatous polyposis 1 Fodde et al. (1992)[44]
rs387906237 Familial adenomatous polyposis 1 attenuated Curia et al. (1998)[45]
rs121434591 Distal myopathy Senderek et al. (2009)[12]
rs587777300 Amyotrophic lateral sclerosis 21 Johnson et al. (2014)[46]
rs863223403 Au-Kline syndrome Au et al. (2015)[47]
rs121917900 Cockayne syndrome B Mallery et al. (1998)[48]
rs75462234 Papillorenal syndrome Schimmenti et al. (1999)[49]
rs77453353 Renal coloboma syndrome Amiel et al. (2000)[50]
rs76675173 Papillorenal syndrome Schimmenti et al. (1997)[51]
rs587777708 Focal segmental glomerulosclerosis 7 Barua et al. (2014)[52]
rs11190870 Adolescent idiopathic scoliosis, no association with breast cancer Chettier et al. (2015);[53] Gao et al. (2013);[54] Grauers et al. (2015);[55] Jiang et al. (2013);[56] Londono et al. (2014);[57] Miyake et al. (2013);[58] Shen et al. (2011);[59] Takahashi et al. (2011)[60]
rs724159963 Peroxisomal fatty acyl-CoA reductase 1 disorder Buchert et al. (2014)[61]
rs16932455 Capecitabine sensitivity O’Donnell et al. (2012)[62]
rs997295 Motion sickness; BMI De et al. (2015);[63] Guo et al. (2013);[64] Hromatka et al.[65]
rs587777373 Congenital heart defects multiple types 4 Al Turki et al. (2014)[66]
rs398123839 Duchenne muscular dystrophy Hofstra et al. (2004);[67] Roberts et al. (1992)[68]
rs863224976 Becker muscular dystrophy Tuffery-Giraud et al. (2005)[69]
rs132630295 Spastic paraplegia 2 X-linked Gorman et al. (2007)[70]
rs132630287 Spastic paraplegia 2 X-linked Saugier-Veber et al. (1994)[71]
rs132630292 Pelizaeus/Merzbacher disease atypical Hodes et al. (1997)[72]
rs137852350 Mental retardation X-linked 94 Wu et al. (2007)[73]
rs122459149 Emery-Dreifuss muscular dystrophy 6 X-linked Gueneau et al. (2009);[74] Knoblauch et al. (2010)[75]
rs122458141 Myopathy X-linked with postural muscle atrophy Schoser et al. (2009);[76] Windpassinger et al. (2008)[77]
rs786200914 Myopathy X-linked with postural muscle atrophy Schoser et al. (2009)[76]
rs267606811 Myopathy X-linked with postural muscle atrophy Windpassinger et al. (2008)[77]
rs62621672 Rett syndrome (nonpathogenic variant) Zahorakova et al. (2007)[78]

See also

References

  1. ^ a b c d e f Reneker J, Lyons E, Conant GC, Pires JC, Freeling M, Shyu CR, Korkin D (May 2012). "Long identical multispecies elements in plant and animal genomes". Proceedings of the National Academy of Sciences of the United States of America. 109 (19): E1183–E1191. doi:10.1073/pnas.1121356109. PMC 3358895. PMID 22496592.
  2. ^ a b c d e f g h i j k l m Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (May 2004). "Ultraconserved elements in the human genome". Science. 304 (5675): 1321–1325. Bibcode:2004Sci...304.1321B. CiteSeerX 10.1.1.380.9305. doi:10.1126/science.1098119. PMID 15131266. S2CID 2790337.
  3. ^ a b c Pereira Zambalde E, Mathias C, Rodrigues AC, de Souza Fonseca Ribeiro EM, Fiori Gradia D, Calin GA, Carvalho de Oliveira J (March 2020). "Highlighting transcribed ultraconserved regions in human diseases". Wiley Interdisciplinary Reviews. RNA. 11 (2): e1567. doi:10.1002/wrna.1567. PMID 31489780. S2CID 201844414.
  4. ^ Taccioli C, Fabbri E, Visone R, Volinia S, Calin GA, Fong LY, et al. (January 2009). "UCbase & miRfunc: a database of ultraconserved sequences and microRNA function". Nucleic Acids Research. 37 (Database issue): D41–D48. doi:10.1093/nar/gkn702. PMC 2686429. PMID 18945703.
  5. ^ a b Katzman S, Kern AD, Bejerano G, Fewell G, Fulton L, Wilson RK, et al. (August 2007). "Human genome ultraconserved elements are ultraselected". Science. 317 (5840): 915. Bibcode:2007Sci...317..915K. doi:10.1126/science.1142430. PMID 17702936. S2CID 35322654.
  6. ^ a b c d e f Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, et al. (September 2007). "Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas". Cancer Cell. 12 (3): 215–229. doi:10.1016/j.ccr.2007.07.027. PMID 17785203.
  7. ^ Sathirapongsasuti JF, Sathira N, Suzuki Y, Huttenhower C, Sugano S (March 2011). "Ultraconserved cDNA segments in the human transcriptome exhibit resistance to folding and implicate function in translation and alternative splicing". Nucleic Acids Research. 39 (6): 1967–1979. doi:10.1093/nar/gkq949. PMC 3064809. PMID 21062826.
  8. ^ a b c Habic A, Mattick JS, Calin GA, Krese R, Konc J, Kunej T (November 2019). "Genetic Variations of Ultraconserved Elements in the Human Genome". Omics. 23 (11): 549–559. doi:10.1089/omi.2019.0156. PMC 6857462. PMID 31689173.
  9. ^ a b Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, Pennacchio LA, Rubin EM (September 2007). "Deletion of ultraconserved elements yields viable mice". PLOS Biology. 5 (9): e234. doi:10.1371/journal.pbio.0050234. PMC 1964772. PMID 17803355.
  10. ^ Snetkova V, Ypsilanti AR, Akiyama JA, Mannion BJ, Plajzer-Frick I, Novak CS, et al. (April 2021). "Ultraconserved enhancer function does not require perfect sequence conservation". Nature Genetics. 53 (4): 521–528. doi:10.1038/s41588-021-00812-3. PMC 8038972. PMID 33782603.
  11. ^ a b c d Fedorova L, Mulyar OA, Lim J, Fedorov A (November 2022). "Nucleotide Composition of Ultra-Conserved Elements Shows Excess of GpC and Depletion of GG and CC Dinucleotides". Genes. 13 (11): 2053. doi:10.3390/genes13112053. PMC 9690913. PMID 36360290.
  12. ^ a b Saygin D, Tabib T, Bittar HE, Valenzi E, Sembrat J, Chan SY, et al. (January 2005). "Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension". Pulmonary Circulation. 10 (1): e19. doi:10.1371/journal.pbio.0030019. PMC 544543. PMID 32166015.  
  13. ^ Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, et al. (January 2005). "Highly conserved non-coding sequences are associated with vertebrate development". PLOS Biology. 3 (1): e7. doi:10.1371/journal.pbio.0030007. PMC 526512. PMID 15630479.  
  14. ^ Elizabeth Pennisi (2017) Mysterious unchanging DNA finds a purpose in life, Science 02 Jun 2017]
  15. ^ Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ, et al. (January 2011). "Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma". Proceedings of the National Academy of Sciences of the United States of America. 108 (2): 786–791. Bibcode:2011PNAS..108..786B. doi:10.1073/pnas.1011098108. PMC 3021052. PMID 21187392.
  16. ^ McCole RB, Fonseka CY, Koren A, Wu CT (October 2014). "Abnormal dosage of ultraconserved elements is highly disfavored in healthy cells but not cancer cells". PLOS Genetics. 10 (10): e1004646. doi:10.1371/journal.pgen.1004646. PMC 4207606. PMID 25340765.
  17. ^ Derti A, Roth FP, Church GM, Wu CT (October 2006). "Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants". Nature Genetics. 38 (10): 1216–1220. doi:10.1038/ng1888. PMID 16998490. S2CID 10671674.
  18. ^ Chiang CW, Derti A, Schwartz D, Chou MF, Hirschhorn JN, Wu CT (December 2008). "Ultraconserved elements: analyses of dosage sensitivity, motifs and boundaries". Genetics. 180 (4): 2277–2293. doi:10.1534/genetics.108.096537. PMC 2600958. PMID 18957701.
  19. ^ De Grassi A, Segala C, Iannelli F, Volorio S, Bertario L, Radice P, et al. (January 2010). Hastie N (ed.). "Ultradeep sequencing of a human ultraconserved region reveals somatic and constitutional genomic instability". PLOS Biology. 8 (1): e1000275. doi:10.1371/journal.pbio.1000275. PMC 2794366. PMID 20052272.
  20. ^ a b c Sekino Y, Sakamoto N, Goto K, Honma R, Shigematsu Y, Sentani K, et al. (November 2017). "Transcribed ultraconserved region Uc.63+ promotes resistance to docetaxel through regulation of androgen receptor signaling in prostate cancer". Oncotarget. 8 (55): 94259–94270. doi:10.18632/oncotarget.21688. PMC 5706872. PMID 29212226.
  21. ^ a b Goto K, Ishikawa S, Honma R, Tanimoto K, Sakamoto N, Sentani K, et al. (July 2016). "The transcribed-ultraconserved regions in prostate and gastric cancer: DNA hypermethylation and microRNA-associated regulation" (PDF). Oncogene. 35 (27): 3598–3606. doi:10.1038/onc.2015.445. PMID 26640143. S2CID 8494774.
  22. ^ Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, et al. (October 2015). "Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts". Cancer Science. 106 (10): 1362–1369. doi:10.1111/cas.12747. PMC 4638007. PMID 26195069.
  23. ^ Liz J, Portela A, Soler M, Gómez A, Ling H, Michlewski G, et al. (July 2014). "Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region". Molecular Cell. 55 (1): 138–147. doi:10.1016/j.molcel.2014.05.005. PMID 24910097.
  24. ^ Guo J, Fang W, Sun L, Lu Y, Dou L, Huang X, et al. (February 2018). "Ultraconserved element uc.372 drives hepatic lipid accumulation by suppressing miR-195/miR4668 maturation". Nature Communications. 9 (1): 612. Bibcode:2018NatCo...9..612G. doi:10.1038/s41467-018-03072-8. PMC 5807361. PMID 29426937.
  25. ^ Xiao L, Wu J, Wang JY, Chung HK, Kalakonda S, Rao JN, et al. (February 2018). "Long Noncoding RNA uc.173 Promotes Renewal of the Intestinal Mucosa by Inducing Degradation of MicroRNA 195". Gastroenterology. 154 (3): 599–611. doi:10.1053/j.gastro.2017.10.009. PMC 5811324. PMID 29042220.
  26. ^ Wojcik SE, Rossi S, Shimizu M, Nicoloso MS, Cimmino A, Alder H, et al. (February 2010). "Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer". Carcinogenesis. 31 (2): 208–215. doi:10.1093/carcin/bgp209. PMC 2812567. PMID 19926640.
  27. ^ Nan A, Zhou X, Chen L, Liu M, Zhang N, Zhang L, et al. (January 2016). "A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis". Oncotarget. 7 (1): 112–124. doi:10.18632/oncotarget.6590. PMC 4807986. PMID 26683706.
  28. ^ Wang JY, Cui YH, Xiao L, Chung HK, Zhang Y, Rao JN, et al. (July 2018). "Regulation of Intestinal Epithelial Barrier Function by Long Noncoding RNA uc.173 through Interaction with MicroRNA 29b". Molecular and Cellular Biology. 38 (13): e00010–18. doi:10.1128/MCB.00010-18. PMC 6002690. PMID 29632078.
  29. ^ Vannini I, Wise PM, Challagundla KB, Plousiou M, Raffini M, Bandini E, et al. (November 2017). "Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs". Nature Communications. 8 (1): 1801. Bibcode:2017NatCo...8.1801V. doi:10.1038/s41467-017-01562-9. PMC 5703849. PMID 29180617.
  30. ^ Olivieri M, Ferro M, Terreri S, Durso M, Romanelli A, Avitabile C, et al. (April 2016). "Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis". Oncotarget. 7 (15): 20636–20654. doi:10.18632/oncotarget.7833. PMC 4991481. PMID 26943042.
  31. ^ Kottorou AE, Antonacopoulou AG, Dimitrakopoulos FD, Diamantopoulou G, Sirinian C, Kalofonou M, et al. (April 2018). "Deregulation of methylation of transcribed-ultra conserved regions in colorectal cancer and their value for detection of adenomas and adenocarcinomas". Oncotarget. 9 (30): 21411–21428. doi:10.18632/oncotarget.25115. PMC 5940382. PMID 29765549.
  32. ^ Kajita K, Kuwano Y, Satake Y, Kano S, Kurokawa K, Akaike Y, et al. (April 2016). "Ultraconserved region-containing Transformer 2β4 controls senescence of colon cancer cells". Oncogenesis. 5 (4): e213. doi:10.1038/oncsis.2016.18. PMC 4848834. PMID 27043659.
  33. ^ Terreri S, Durso M, Colonna V, Romanelli A, Terracciano D, Ferro M, et al. (December 2016). "New Cross-Talk Layer between Ultraconserved Non-Coding RNAs, MicroRNAs and Polycomb Protein YY1 in Bladder Cancer". Genes. 7 (12): 127. doi:10.3390/genes7120127. PMC 5192503. PMID 27983635.
  34. ^ Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, et al. (March 2008). "A genome-wide association study of sporadic ALS in a homogenous Irish population". Human Molecular Genetics. 17 (5): 768–774. doi:10.1093/hmg/ddm361. PMID 18057069.
  35. ^ Hansen MF, Neckmann U, Lavik LA, Vold T, Gilde B, Toft RK, Sjursen W (March 2014). "A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes". Molecular Genetics & Genomic Medicine. 2 (2): 186–200. doi:10.1002/mgg3.62. PMC 3960061. PMID 24689082.
  36. ^ Chiang CW, Liu CT, Lettre G, Lange LA, Jorgensen NW, Keating BJ, et al. (September 2012). "Ultraconserved elements in the human genome: association and transmission analyses of highly constrained single-nucleotide polymorphisms". Genetics. 192 (1): 253–266. doi:10.1534/genetics.112.141945. PMC 3430540. PMID 22714408.
  37. ^ Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F, et al. (December 2013). "Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia". Human Molecular Genetics. 22 (25): 5288–5294. doi:10.1093/hmg/ddt385. PMID 23933737.
  38. ^ Dobbs MB, Gurnett CA, Pierce B, Exner GU, Robarge J, Morcuende JA, et al. (March 2006). "HOXD10 M319K mutation in a family with isolated congenital vertical talus". Journal of Orthopaedic Research. 24 (3): 448–453. doi:10.1002/jor.20052. PMID 16450407. S2CID 28670628.
  39. ^ Dobbs MB, Gurnett CA, Pierce B, Exner GU, Robarge J, Morcuende JA, et al. (March 2006). "HOXD10 M319K mutation in a family with isolated congenital vertical talus". Journal of Orthopaedic Research. 24 (3): 448–453. doi:10.1002/jor.20052. PMID 16450407. S2CID 28670628.
  40. ^ Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, et al. (February 2013). "Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus". Nature Genetics. 45 (2): 155–163. doi:10.1038/ng.2506. PMC 3720123. PMID 23291589.
  41. ^ a b c Bosch DG, Boonstra FN, Gonzaga-Jauregui C, Xu M, de Ligt J, Jhangiani S, et al. (February 2014). "NR2F1 mutations cause optic atrophy with intellectual disability". American Journal of Human Genetics. 94 (2): 303–309. doi:10.1016/j.ajhg.2014.01.002. PMC 3928641. PMID 24462372.
  42. ^ Soravia C, Sugg SL, Berk T, Mitri A, Cheng H, Gallinger S, et al. (January 1999). "Familial adenomatous polyposis-associated thyroid cancer: a clinical, pathological, and molecular genetics study". The American Journal of Pathology. 154 (1): 127–135. doi:10.1016/S0002-9440(10)65259-5. PMC 1853451. PMID 9916927.
  43. ^ Chang YS, Lin CY, Yang SF, Ho CM, Chang JG (2016-03-28). "Analysing the mutational status of adenomatous polyposis coli (APC) gene in breast cancer". Cancer Cell International. 16: 23. doi:10.1186/s12935-016-0297-2. PMC 4810512. PMID 27028212.
  44. ^ Fodde R, van der Luijt R, Wijnen J, Tops C, van der Klift H, van Leeuwen-Cornelisse I, et al. (August 1992). "Eight novel inactivating germ line mutations at the APC gene identified by denaturing gradient gel electrophoresis". Genomics. 13 (4): 1162–1168. doi:10.1016/0888-7543(92)90032-n. PMID 1324223.
  45. ^ Curia MC, Esposito DL, Aceto G, Palmirotta R, Crognale S, Valanzano R, et al. (1998). "Transcript dosage effect in familial adenomatous polyposis: model offered by two kindreds with exon 9 APC gene mutations". Human Mutation. 11 (3): 197–201. doi:10.1002/(SICI)1098-1004(1998)11:3<197::AID-HUMU3>3.0.CO;2-F. PMID 9521420. S2CID 7241178.
  46. ^ Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE, et al. (May 2014). "Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis". Nature Neuroscience. 17 (5): 664–666. doi:10.1038/nn.3688. PMC 4000579. PMID 24686783.
  47. ^ Au PY, You J, Caluseriu O, Schwartzentruber J, Majewski J, Bernier FP, et al. (October 2015). "GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability, unique facial dysmorphisms, and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK". Human Mutation. 36 (10): 1009–1014. doi:10.1002/humu.22837. PMC 4589226. PMID 26173930.
  48. ^ Mallery DL, Tanganelli B, Colella S, Steingrimsdottir H, van Gool AJ, Troelstra C, et al. (January 1998). "Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome". American Journal of Human Genetics. 62 (1): 77–85. doi:10.1086/301686. PMC 1376810. PMID 9443879.
  49. ^ Schimmenti LA, Shim HH, Wirtschafter JD, Panzarino VA, Kashtan CE, Kirkpatrick SJ, et al. (1999). "Homonucleotide expansion and contraction mutations of PAX2 and inclusion of Chiari 1 malformation as part of renal-coloboma syndrome". Human Mutation. 14 (5): 369–376. doi:10.1002/(SICI)1098-1004(199911)14:5<369::AID-HUMU2>3.0.CO;2-E. PMID 10533062. S2CID 25564812.
  50. ^ Amiel J, Audollent S, Joly D, Dureau P, Salomon R, Tellier AL, et al. (November 2000). "PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism". European Journal of Human Genetics. 8 (11): 820–826. doi:10.1038/sj.ejhg.5200539. PMID 11093271. S2CID 30359554.
  51. ^ Schimmenti LA, Cunliffe HE, McNoe LA, Ward TA, French MC, Shim HH, et al. (April 1997). "Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations". American Journal of Human Genetics. 60 (4): 869–878. PMC 1712484. PMID 9106533.
  52. ^ Barua M, Stellacci E, Stella L, Weins A, Genovese G, Muto V, et al. (September 2014). "Mutations in PAX2 associate with adult-onset FSGS". Journal of the American Society of Nephrology. 25 (9): 1942–1953. doi:10.1681/ASN.2013070686. PMC 4147972. PMID 24676634.
  53. ^ Chettier R, Nelson L, Ogilvie JW, Albertsen HM, Ward K (2015-02-12). Fang S (ed.). "Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis". PLOS ONE. 10 (2): e0117708. Bibcode:2015PLoSO..1017708C. doi:10.1371/journal.pone.0117708. PMC 4326419. PMID 25675428.
  54. ^ Gao W, Peng Y, Liang G, Liang A, Ye W, Zhang L, et al. (2013-01-04). "Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population". PLOS ONE. 8 (1): e53234. Bibcode:2013PLoSO...853234G. doi:10.1371/journal.pone.0053234. PMC 3537668. PMID 23308168.
  55. ^ Grauers A, Wang J, Einarsdottir E, Simony A, Danielsson A, Åkesson K, et al. (October 2015). "Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis". The Spine Journal. 15 (10): 2239–2246. doi:10.1016/j.spinee.2015.05.013. hdl:10616/44765. PMID 25987191.
  56. ^ Jiang H, Qiu X, Dai J, Yan H, Zhu Z, Qian B, Qiu Y (February 2013). "Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population". European Spine Journal. 22 (2): 282–286. doi:10.1007/s00586-012-2532-4. PMC 3555620. PMID 23096252.
  57. ^ Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, et al. (June 2014). "A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups". Journal of Medical Genetics. 51 (6): 401–406. doi:10.1136/jmedgenet-2013-102067. PMID 24721834. S2CID 23646905.
  58. ^ Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, et al. (2013-09-04). "Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3". PLOS ONE. 8 (9): e72802. Bibcode:2013PLoSO...872802M. doi:10.1371/journal.pone.0072802. PMC 3762929. PMID 24023777.
  59. ^ Jiang Y, Ben Q, Shen H, Lu W, Zhang Y, Zhu J (November 2011). "Diabetes mellitus and incidence and mortality of colorectal cancer: a systematic review and meta-analysis of cohort studies". European Journal of Epidemiology. 26 (11): 863–876. doi:10.1007/s10654-011-9617-y. PMID 21938478. S2CID 99605.
  60. ^ Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, et al. (October 2011). "A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis". Nature Genetics. 43 (12): 1237–1240. doi:10.1038/ng.974. PMID 22019779. S2CID 7533298.
  61. ^ Buchert R, Tawamie H, Smith C, Uebe S, Innes AM, Al Hallak B, et al. (November 2014). "A peroxisomal disorder of severe intellectual disability, epilepsy, and cataracts due to fatty acyl-CoA reductase 1 deficiency". American Journal of Human Genetics. 95 (5): 602–610. doi:10.1016/j.ajhg.2014.10.003. PMC 4225589. PMID 25439727.
  62. ^ O'Donnell PH, Stark AL, Gamazon ER, Wheeler HE, McIlwee BE, Gorsic L, et al. (August 2012). "Identification of novel germline polymorphisms governing capecitabine sensitivity". Cancer. 118 (16): 4063–4073. doi:10.1002/cncr.26737. PMC 3413892. PMID 22864933.
  63. ^ De R, Verma SS, Drenos F, Holzinger ER, Holmes MV, Hall MA, et al. (June 2015). "Identifying gene-gene interactions that are highly associated with Body Mass Index using Quantitative Multifactor Dimensionality Reduction (QMDR)". BioData Mining. 8 (1): 41. doi:10.1186/s13040-015-0074-0. PMC 4678717. PMID 26674805.
  64. ^ Guo Y, Lanktree MB, Taylor KC, Hakonarson H, Lange LA, Keating BJ (January 2013). "Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals". Human Molecular Genetics. 22 (1): 184–201. doi:10.1093/hmg/dds396. PMC 3522401. PMID 23001569.
  65. ^ Hromatka BS, Tung JY, Kiefer AK, Do CB, Hinds DA, Eriksson N (May 2015). "Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis". Human Molecular Genetics. 24 (9): 2700–2708. doi:10.1093/hmg/ddv028. PMC 4383869. PMID 25628336.
  66. ^ Al Turki S, Manickaraj AK, Mercer CL, Gerety SS, Hitz MP, Lindsay S, et al. (April 2014). "Rare variants in NR2F2 cause congenital heart defects in humans". American Journal of Human Genetics. 94 (4): 574–585. doi:10.1016/j.ajhg.2014.03.007. PMC 3980509. PMID 24702954.
  67. ^ Hofstra RM, Mulder IM, Vossen R, de Koning-Gans PA, Kraak M, Ginjaar IB, et al. (January 2004). "DGGE-based whole-gene mutation scanning of the dystrophin gene in Duchenne and Becker muscular dystrophy patients". Human Mutation. 23 (1): 57–66. doi:10.1002/humu.10283. PMID 14695533. S2CID 36020079.
  68. ^ Roberts RG, Bobrow M, Bentley DR (March 1992). "Point mutations in the dystrophin gene". Proceedings of the National Academy of Sciences of the United States of America. 89 (6): 2331–2335. Bibcode:1992PNAS...89.2331R. doi:10.1073/pnas.89.6.2331. PMC 48651. PMID 1549596.
  69. ^ Tuffery-Giraud S, Saquet C, Thorel D, Disset A, Rivier F, Malcolm S, Claustres M (December 2005). "Mutation spectrum leading to an attenuated phenotype in dystrophinopathies". European Journal of Human Genetics. 13 (12): 1254–1260. doi:10.1038/sj.ejhg.5201478. PMID 16077730. S2CID 22585201.
  70. ^ Gorman MP, Golomb MR, Walsh LE, Hobson GM, Garbern JY, Kinkel RP, et al. (April 2007). "Steroid-responsive neurologic relapses in a child with a proteolipid protein-1 mutation". Neurology. 68 (16): 1305–1307. doi:10.1212/01.wnl.0000259522.49388.53. PMID 17438221. S2CID 45639125.
  71. ^ Saugier-Veber P, Munnich A, Bonneau D, Rozet JM, Le Merrer M, Gil R, Boespflug-Tanguy O (March 1994). "X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus". Nature Genetics. 6 (3): 257–262. doi:10.1038/ng0394-257. PMID 8012387. S2CID 13607673.
  72. ^ Hodes ME, Blank CA, Pratt VM, Morales J, Napier J, Dlouhy SR (March 1997). "Nonsense mutation in exon 3 of the proteolipid protein gene (PLP) in a family with an unusual form of Pelizaeus-Merzbacher disease". American Journal of Medical Genetics. 69 (2): 121–125. doi:10.1002/(SICI)1096-8628(19970317)69:2<121::AID-AJMG2>3.0.CO;2-S. PMID 9056547.
  73. ^ Wu Y, Arai AC, Rumbaugh G, Srivastava AK, Turner G, Hayashi T, et al. (November 2007). "Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans". Proceedings of the National Academy of Sciences of the United States of America. 104 (46): 18163–18168. Bibcode:2007PNAS..10418163W. doi:10.1073/pnas.0708699104. PMC 2084314. PMID 17989220.
  74. ^ Gueneau L, Bertrand AT, Jais JP, Salih MA, Stojkovic T, Wehnert M, et al. (September 2009). "Mutations of the FHL1 gene cause Emery-Dreifuss muscular dystrophy". American Journal of Human Genetics. 85 (3): 338–353. doi:10.1016/j.ajhg.2009.07.015. PMC 2771595. PMID 19716112.
  75. ^ Knoblauch H, Geier C, Adams S, Budde B, Rudolph A, Zacharias U, et al. (January 2010). "Contractures and hypertrophic cardiomyopathy in a novel FHL1 mutation". Annals of Neurology. 67 (1): 136–140. doi:10.1002/ana.21839. PMID 20186852. S2CID 30441775.
  76. ^ a b Schoser B, Goebel HH, Janisch I, Quasthoff S, Rother J, Bergmann M, et al. (August 2009). "Consequences of mutations within the C terminus of the FHL1 gene". Neurology. 73 (7): 543–551. doi:10.1212/WNL.0b013e3181b2a4b3. PMID 19687455. S2CID 13107330.
  77. ^ a b Windpassinger C, Schoser B, Straub V, Hochmeister S, Noor A, Lohberger B, et al. (January 2008). "An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA, is caused by mutations in FHL1". American Journal of Human Genetics. 82 (1): 88–99. doi:10.1016/j.ajhg.2007.09.004. PMC 2253986. PMID 18179888.
  78. ^ Zahorakova D, Rosipal R, Hadac J, Zumrova A, Bzduch V, Misovicova N, et al. (2007). "Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms". Journal of Human Genetics. 52 (4): 342–348. doi:10.1007/s10038-007-0121-x. PMID 17387578. S2CID 7962500.

ultra, conserved, element, ultra, conserved, element, originally, defined, genome, segment, longer, than, base, pairs, that, absolutely, conserved, with, insertions, deletions, identity, between, orthologous, regions, human, mouse, genomes, ultra, conserved, e. An ultra conserved element UCE was originally defined as a genome segment longer than 200 base pairs bp that is absolutely conserved with no insertions or deletions and 100 identity between orthologous regions of the human rat and mouse genomes 1 2 481 ultra conserved elements have been identified in the human genome 1 2 If ribosomal DNA rDNA regions are excluded these range in size from 200 bp to 781 bp 2 UCRs are found on all chromosomes except for 21 and Y 3 A database collecting genomic information about ultra conserved elements UCbase is available at http ucbase unimore it 4 Since its creation this term s usage has broadened to include more evolutionary distant species or shorter segments for example 100 bp instead of 200 bp 1 2 By some definitions segments need not be syntetic between species 1 Human UCEs also show high conservation with more evolutionarily distant species such as chicken and fugu 2 Out of 481 identified human UCEs approximately 97 align with high identity to the chicken genome though only 4 of human genome can only be reliably aligned to the chicken genome 2 Similarly the same sequences in the fugu genome have 68 identity to human UCEs despite the human genome only reliably aligning to 1 8 of the fugu genome 2 Despite often being noncoding DNA 5 some ultra conserved elements have been found to be transcriptionally active producing non coding RNA molecules 6 Contents 1 Evolution 2 Function 3 Role in Human Disease 3 1 Regulation Mechanisms of Disease Related Ultra conserved Element Transcripts 3 2 Phenotype Associated Polymorphisms within Ultra conserved Elements 4 See also 5 ReferencesEvolution EditResearchers originally assumed that perfect conservation of these long stretches of DNA implied evolutionary importance as these regions appear to have experienced strong negative purifying selection for 300 400 million years 2 5 7 More recently this assumption has been replaced by two main hypotheses that UCEs are created through a reduced negative selection rate or through reduced mutation rates also known as a cold spot of evolution 1 2 Many studies have examined the validity of each hypothesis The probability of finding ultra conserved elements by chance under neutral evolution has been estimated at less than 10 22 in 2 9 billion bases 2 In support of the cold spot hypothesis UCEs were found to be mutating 20 fold less than expected under conservative models for neutral mutation rates 2 This fold change difference in mutation rates was consistent between humans chimpanzees and chickens 2 Ultra conserved elements are not exempt from mutations as exemplified by the presence of 29 983 polymorphisms in the UCE regions of the human genome assembly GRCh38 8 However affected phenotypes were only caused by 112 of these polymorphisms most of which were located in coding regions of the UCEs 8 A study performed in mice determined that deleting UCEs from the genome did not create obvious deleterious phenotypes despite deletion of UCEs in proximity to promoters and protein coding genes 9 Affected mice were fertile and targeted screens of the nearby coding genes showed no altered phenotype 9 A separate mouse study demonstrated that ultra conserved enhancers were robust to mutagenesis concluding that perfect conservation of UCE sequences is not required for their function which would suggest another reason for the sequence consistency besides evolutionary importance 10 Computational analysis of human ultra conserved noncoding elements UCNEs found that the regions are enriched for A T sequences and are generally GC poor 11 However the UNCEs were found to be enriched for CpG or highly methylated 11 This may indicate that there is some change to DNA structure in these regions favoring their precise retention but this possibility has not been validated through testing 11 Function EditOften ultra conserved elements are located near transcriptional regulators or developmental genes performing functions such as gene enhancing and splicing regulation 1 2 12 A study comparing ultra conserved elements between humans and the Japanese puffer fish Takifugu rubripes proposed an importance in vertebrate development 13 Double knockouts of UCEs near the ARX gene in mice caused a shrunken hippocampus in the brain though the effect was not lethal 14 Some UCEs are not transcribed and are referred to as ultra conserved noncoding elements 11 However many UCRs in humans are extensively transcribed 6 A small number of those which are transcribed known as transcribed UTRs T UTRs have been connected with human carcinomas and leukemias 6 For example TUC338 is strongly upregulated in human hepatocellular carcinoma cells 15 Indeed UCEs are often affected by copy number variation in cancer cells much more than in healthy contexts suggesting that altering the copy number of T UCEs may be deleterious 16 17 18 Role in Human Disease EditResearch has demonstrated that T UCRs have a tissue specific expression and a differential expression profile between tumors and other diseases 3 The tables below highlight transcripts and polymorphisms within UCRs that have been shown to contribute to human diseases 3 8 For example UCRs tend to accumulate less mutations than flanking segments in both neoplastic and non neoplastic samples from persons with hereditary non polyposis colorectal cancer 19 Regulation Mechanisms of Disease Related Ultra conserved Element Transcripts Edit miR methylation transcript factor associated with T UCRs Disease ReferencesmiR 24 1 uc 160 Leukemia Calin et al 2007 6 miR 130b uc 63 Prostate CA Sekino et al 2017 20 miR 153 uc 416 Colorectal and renal CA Goto et al 2016 21 Sekino et al 2017 20 miR 155 uc 160 Gastric CA Calin et al 2007 6 Pang et al 2018 22 miR 155 uc346A Leukemia Calin et al 2007 6 mir 195 uc 283 Bladder CA Liz et al 2014 23 miR 195 miR 4668 uc 372 Lipid metabolism Guo et al 2018 24 mir 195 uc 173 Gastrointestinal tract Xiao et al 2018 25 miR 214 uc 276 Colorectal CA Wojcik et al 2010 26 miR 291a 3p uc 173 Nervous system Nan et al 2016 27 miR 29b uc 173 Gastrointestinal tract J Y Wang et al 2018 28 miR 339 3p miR 663b 3p miR 95 5p uc 339 Lung CA Vannini et al 2017 29 miR 596 uc 8 Bladder CA Olivieri et al 2016 30 DNA methylation uc 160 uc 283 and uc 346 Colorectal CA Kottorou et al 2018 31 DNA methylation uc 158 A uc 160 uc 241 A uc 283 A uc 346 A Gastric CA Goto et al 2016 21 Lujambio et al 2010 20 Transcription factor SP1 uc 138 TRA2b4 Colorectal CA Kajita et al 2016 32 Transcription factor YY1 uc 8 Bladder CA Terreri et al 2016 33 Phenotype Associated Polymorphisms within Ultra conserved Elements Edit Polymorphism name Associated phenotype description Sourcers17105335 Amyotrophic lateral sclerosis Cronin et al 2008 34 rs2020906 Lynch syndrome Hansen et al 2014 35 rs10496382 Height Chiang et al 2012 36 rs13382811 Severe myopia Khor et al 2013 37 rs104893634 Vertical talus congenital Dobbs et al 2006 38 Shrimpton et al 2004 39 rs2307121 Central corneal thickness Lu et al 2013 40 rs587777277 Bosch Boonstra Schaaf optic atrophy syndrome Bosch et al 2014 41 rs587777275 Bosch Boonstra Schaaf optic atrophy syndrome Bosch et al 2014 41 rs587777274 Bosch Boonstra Schaaf optic atrophy syndrome Bosch et al 2014 41 rs387906239 Familial adenomatous polyposis 1 attenuated Soravia et al 1999 42 rs3797704 No association with breast cancer Chang et al 2016 43 rs387906232 Familial adenomatous polyposis 1 Fodde et al 1992 44 rs387906237 Familial adenomatous polyposis 1 attenuated Curia et al 1998 45 rs121434591 Distal myopathy Senderek et al 2009 12 rs587777300 Amyotrophic lateral sclerosis 21 Johnson et al 2014 46 rs863223403 Au Kline syndrome Au et al 2015 47 rs121917900 Cockayne syndrome B Mallery et al 1998 48 rs75462234 Papillorenal syndrome Schimmenti et al 1999 49 rs77453353 Renal coloboma syndrome Amiel et al 2000 50 rs76675173 Papillorenal syndrome Schimmenti et al 1997 51 rs587777708 Focal segmental glomerulosclerosis 7 Barua et al 2014 52 rs11190870 Adolescent idiopathic scoliosis no association with breast cancer Chettier et al 2015 53 Gao et al 2013 54 Grauers et al 2015 55 Jiang et al 2013 56 Londono et al 2014 57 Miyake et al 2013 58 Shen et al 2011 59 Takahashi et al 2011 60 rs724159963 Peroxisomal fatty acyl CoA reductase 1 disorder Buchert et al 2014 61 rs16932455 Capecitabine sensitivity O Donnell et al 2012 62 rs997295 Motion sickness BMI De et al 2015 63 Guo et al 2013 64 Hromatka et al 65 rs587777373 Congenital heart defects multiple types 4 Al Turki et al 2014 66 rs398123839 Duchenne muscular dystrophy Hofstra et al 2004 67 Roberts et al 1992 68 rs863224976 Becker muscular dystrophy Tuffery Giraud et al 2005 69 rs132630295 Spastic paraplegia 2 X linked Gorman et al 2007 70 rs132630287 Spastic paraplegia 2 X linked Saugier Veber et al 1994 71 rs132630292 Pelizaeus Merzbacher disease atypical Hodes et al 1997 72 rs137852350 Mental retardation X linked 94 Wu et al 2007 73 rs122459149 Emery Dreifuss muscular dystrophy 6 X linked Gueneau et al 2009 74 Knoblauch et al 2010 75 rs122458141 Myopathy X linked with postural muscle atrophy Schoser et al 2009 76 Windpassinger et al 2008 77 rs786200914 Myopathy X linked with postural muscle atrophy Schoser et al 2009 76 rs267606811 Myopathy X linked with postural muscle atrophy Windpassinger et al 2008 77 rs62621672 Rett syndrome nonpathogenic variant Zahorakova et al 2007 78 See also EditHuman accelerated regions SyntenyReferences Edit a b c d e f Reneker J Lyons E Conant GC Pires JC Freeling M Shyu CR Korkin D May 2012 Long identical multispecies elements in plant and animal genomes Proceedings of the National Academy of Sciences of the United States of America 109 19 E1183 E1191 doi 10 1073 pnas 1121356109 PMC 3358895 PMID 22496592 a b c d e f g h i j k l m Bejerano G Pheasant M Makunin I Stephen S Kent WJ Mattick JS Haussler D May 2004 Ultraconserved elements in the human genome Science 304 5675 1321 1325 Bibcode 2004Sci 304 1321B CiteSeerX 10 1 1 380 9305 doi 10 1126 science 1098119 PMID 15131266 S2CID 2790337 a b c Pereira Zambalde E Mathias C Rodrigues AC de Souza Fonseca Ribeiro EM Fiori Gradia D Calin GA Carvalho de Oliveira J March 2020 Highlighting transcribed ultraconserved regions in human diseases Wiley Interdisciplinary Reviews RNA 11 2 e1567 doi 10 1002 wrna 1567 PMID 31489780 S2CID 201844414 Taccioli C Fabbri E Visone R Volinia S Calin GA Fong LY et al January 2009 UCbase amp miRfunc a database of ultraconserved sequences and microRNA function Nucleic Acids Research 37 Database issue D41 D48 doi 10 1093 nar gkn702 PMC 2686429 PMID 18945703 a b Katzman S Kern AD Bejerano G Fewell G Fulton L Wilson RK et al August 2007 Human genome ultraconserved elements are ultraselected Science 317 5840 915 Bibcode 2007Sci 317 915K doi 10 1126 science 1142430 PMID 17702936 S2CID 35322654 a b c d e f Calin GA Liu CG Ferracin M Hyslop T Spizzo R Sevignani C et al September 2007 Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas Cancer Cell 12 3 215 229 doi 10 1016 j ccr 2007 07 027 PMID 17785203 Sathirapongsasuti JF Sathira N Suzuki Y Huttenhower C Sugano S March 2011 Ultraconserved cDNA segments in the human transcriptome exhibit resistance to folding and implicate function in translation and alternative splicing Nucleic Acids Research 39 6 1967 1979 doi 10 1093 nar gkq949 PMC 3064809 PMID 21062826 a b c Habic A Mattick JS Calin GA Krese R Konc J Kunej T November 2019 Genetic Variations of Ultraconserved Elements in the Human Genome Omics 23 11 549 559 doi 10 1089 omi 2019 0156 PMC 6857462 PMID 31689173 a b Ahituv N Zhu Y Visel A Holt A Afzal V Pennacchio LA Rubin EM September 2007 Deletion of ultraconserved elements yields viable mice PLOS Biology 5 9 e234 doi 10 1371 journal pbio 0050234 PMC 1964772 PMID 17803355 Snetkova V Ypsilanti AR Akiyama JA Mannion BJ Plajzer Frick I Novak CS et al April 2021 Ultraconserved enhancer function does not require perfect sequence conservation Nature Genetics 53 4 521 528 doi 10 1038 s41588 021 00812 3 PMC 8038972 PMID 33782603 a b c d Fedorova L Mulyar OA Lim J Fedorov A November 2022 Nucleotide Composition of Ultra Conserved Elements Shows Excess of GpC and Depletion of GG and CC Dinucleotides Genes 13 11 2053 doi 10 3390 genes13112053 PMC 9690913 PMID 36360290 a b Saygin D Tabib T Bittar HE Valenzi E Sembrat J Chan SY et al January 2005 Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension Pulmonary Circulation 10 1 e19 doi 10 1371 journal pbio 0030019 PMC 544543 PMID 32166015 Woolfe A Goodson M Goode DK Snell P McEwen GK Vavouri T et al January 2005 Highly conserved non coding sequences are associated with vertebrate development PLOS Biology 3 1 e7 doi 10 1371 journal pbio 0030007 PMC 526512 PMID 15630479 Elizabeth Pennisi 2017 Mysterious unchanging DNA finds a purpose in life Science 02 Jun 2017 Braconi C Valeri N Kogure T Gasparini P Huang N Nuovo GJ et al January 2011 Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma Proceedings of the National Academy of Sciences of the United States of America 108 2 786 791 Bibcode 2011PNAS 108 786B doi 10 1073 pnas 1011098108 PMC 3021052 PMID 21187392 McCole RB Fonseka CY Koren A Wu CT October 2014 Abnormal dosage of ultraconserved elements is highly disfavored in healthy cells but not cancer cells PLOS Genetics 10 10 e1004646 doi 10 1371 journal pgen 1004646 PMC 4207606 PMID 25340765 Derti A Roth FP Church GM Wu CT October 2006 Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants Nature Genetics 38 10 1216 1220 doi 10 1038 ng1888 PMID 16998490 S2CID 10671674 Chiang CW Derti A Schwartz D Chou MF Hirschhorn JN Wu CT December 2008 Ultraconserved elements analyses of dosage sensitivity motifs and boundaries Genetics 180 4 2277 2293 doi 10 1534 genetics 108 096537 PMC 2600958 PMID 18957701 De Grassi A Segala C Iannelli F Volorio S Bertario L Radice P et al January 2010 Hastie N ed Ultradeep sequencing of a human ultraconserved region reveals somatic and constitutional genomic instability PLOS Biology 8 1 e1000275 doi 10 1371 journal pbio 1000275 PMC 2794366 PMID 20052272 a b c Sekino Y Sakamoto N Goto K Honma R Shigematsu Y Sentani K et al November 2017 Transcribed ultraconserved region Uc 63 promotes resistance to docetaxel through regulation of androgen receptor signaling in prostate cancer Oncotarget 8 55 94259 94270 doi 10 18632 oncotarget 21688 PMC 5706872 PMID 29212226 a b Goto K Ishikawa S Honma R Tanimoto K Sakamoto N Sentani K et al July 2016 The transcribed ultraconserved regions in prostate and gastric cancer DNA hypermethylation and microRNA associated regulation PDF Oncogene 35 27 3598 3606 doi 10 1038 onc 2015 445 PMID 26640143 S2CID 8494774 Pang W Su J Wang Y Feng H Dai X Yuan Y et al October 2015 Pancreatic cancer secreted miR 155 implicates in the conversion from normal fibroblasts to cancer associated fibroblasts Cancer Science 106 10 1362 1369 doi 10 1111 cas 12747 PMC 4638007 PMID 26195069 Liz J Portela A Soler M Gomez A Ling H Michlewski G et al July 2014 Regulation of pri miRNA processing by a long noncoding RNA transcribed from an ultraconserved region Molecular Cell 55 1 138 147 doi 10 1016 j molcel 2014 05 005 PMID 24910097 Guo J Fang W Sun L Lu Y Dou L Huang X et al February 2018 Ultraconserved element uc 372 drives hepatic lipid accumulation by suppressing miR 195 miR4668 maturation Nature Communications 9 1 612 Bibcode 2018NatCo 9 612G doi 10 1038 s41467 018 03072 8 PMC 5807361 PMID 29426937 Xiao L Wu J Wang JY Chung HK Kalakonda S Rao JN et al February 2018 Long Noncoding RNA uc 173 Promotes Renewal of the Intestinal Mucosa by Inducing Degradation of MicroRNA 195 Gastroenterology 154 3 599 611 doi 10 1053 j gastro 2017 10 009 PMC 5811324 PMID 29042220 Wojcik SE Rossi S Shimizu M Nicoloso MS Cimmino A Alder H et al February 2010 Non codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer Carcinogenesis 31 2 208 215 doi 10 1093 carcin bgp209 PMC 2812567 PMID 19926640 Nan A Zhou X Chen L Liu M Zhang N Zhang L et al January 2016 A transcribed ultraconserved noncoding RNA Uc 173 is a key molecule for the inhibition of lead induced neuronal apoptosis Oncotarget 7 1 112 124 doi 10 18632 oncotarget 6590 PMC 4807986 PMID 26683706 Wang JY Cui YH Xiao L Chung HK Zhang Y Rao JN et al July 2018 Regulation of Intestinal Epithelial Barrier Function by Long Noncoding RNA uc 173 through Interaction with MicroRNA 29b Molecular and Cellular Biology 38 13 e00010 18 doi 10 1128 MCB 00010 18 PMC 6002690 PMID 29632078 Vannini I Wise PM Challagundla KB Plousiou M Raffini M Bandini E et al November 2017 Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs Nature Communications 8 1 1801 Bibcode 2017NatCo 8 1801V doi 10 1038 s41467 017 01562 9 PMC 5703849 PMID 29180617 Olivieri M Ferro M Terreri S Durso M Romanelli A Avitabile C et al April 2016 Long non coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis Oncotarget 7 15 20636 20654 doi 10 18632 oncotarget 7833 PMC 4991481 PMID 26943042 Kottorou AE Antonacopoulou AG Dimitrakopoulos FD Diamantopoulou G Sirinian C Kalofonou M et al April 2018 Deregulation of methylation of transcribed ultra conserved regions in colorectal cancer and their value for detection of adenomas and adenocarcinomas Oncotarget 9 30 21411 21428 doi 10 18632 oncotarget 25115 PMC 5940382 PMID 29765549 Kajita K Kuwano Y Satake Y Kano S Kurokawa K Akaike Y et al April 2016 Ultraconserved region containing Transformer 2b4 controls senescence of colon cancer cells Oncogenesis 5 4 e213 doi 10 1038 oncsis 2016 18 PMC 4848834 PMID 27043659 Terreri S Durso M Colonna V Romanelli A Terracciano D Ferro M et al December 2016 New Cross Talk Layer between Ultraconserved Non Coding RNAs MicroRNAs and Polycomb Protein YY1 in Bladder Cancer Genes 7 12 127 doi 10 3390 genes7120127 PMC 5192503 PMID 27983635 Cronin S Berger S Ding J Schymick JC Washecka N Hernandez DG et al March 2008 A genome wide association study of sporadic ALS in a homogenous Irish population Human Molecular Genetics 17 5 768 774 doi 10 1093 hmg ddm361 PMID 18057069 Hansen MF Neckmann U Lavik LA Vold T Gilde B Toft RK Sjursen W March 2014 A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes Molecular Genetics amp Genomic Medicine 2 2 186 200 doi 10 1002 mgg3 62 PMC 3960061 PMID 24689082 Chiang CW Liu CT Lettre G Lange LA Jorgensen NW Keating BJ et al September 2012 Ultraconserved elements in the human genome association and transmission analyses of highly constrained single nucleotide polymorphisms Genetics 192 1 253 266 doi 10 1534 genetics 112 141945 PMC 3430540 PMID 22714408 Khor CC Miyake M Chen LJ Shi Y Barathi VA Qiao F et al December 2013 Genome wide association study identifies ZFHX1B as a susceptibility locus for severe myopia Human Molecular Genetics 22 25 5288 5294 doi 10 1093 hmg ddt385 PMID 23933737 Dobbs MB Gurnett CA Pierce B Exner GU Robarge J Morcuende JA et al March 2006 HOXD10 M319K mutation in a family with isolated congenital vertical talus Journal of Orthopaedic Research 24 3 448 453 doi 10 1002 jor 20052 PMID 16450407 S2CID 28670628 Dobbs MB Gurnett CA Pierce B Exner GU Robarge J Morcuende JA et al March 2006 HOXD10 M319K mutation in a family with isolated congenital vertical talus Journal of Orthopaedic Research 24 3 448 453 doi 10 1002 jor 20052 PMID 16450407 S2CID 28670628 Lu Y Vitart V Burdon KP Khor CC Bykhovskaya Y Mirshahi A et al February 2013 Genome wide association analyses identify multiple loci associated with central corneal thickness and keratoconus Nature Genetics 45 2 155 163 doi 10 1038 ng 2506 PMC 3720123 PMID 23291589 a b c Bosch DG Boonstra FN Gonzaga Jauregui C Xu M de Ligt J Jhangiani S et al February 2014 NR2F1 mutations cause optic atrophy with intellectual disability American Journal of Human Genetics 94 2 303 309 doi 10 1016 j ajhg 2014 01 002 PMC 3928641 PMID 24462372 Soravia C Sugg SL Berk T Mitri A Cheng H Gallinger S et al January 1999 Familial adenomatous polyposis associated thyroid cancer a clinical pathological and molecular genetics study The American Journal of Pathology 154 1 127 135 doi 10 1016 S0002 9440 10 65259 5 PMC 1853451 PMID 9916927 Chang YS Lin CY Yang SF Ho CM Chang JG 2016 03 28 Analysing the mutational status of adenomatous polyposis coli APC gene in breast cancer Cancer Cell International 16 23 doi 10 1186 s12935 016 0297 2 PMC 4810512 PMID 27028212 Fodde R van der Luijt R Wijnen J Tops C van der Klift H van Leeuwen Cornelisse I et al August 1992 Eight novel inactivating germ line mutations at the APC gene identified by denaturing gradient gel electrophoresis Genomics 13 4 1162 1168 doi 10 1016 0888 7543 92 90032 n PMID 1324223 Curia MC Esposito DL Aceto G Palmirotta R Crognale S Valanzano R et al 1998 Transcript dosage effect in familial adenomatous polyposis model offered by two kindreds with exon 9 APC gene mutations Human Mutation 11 3 197 201 doi 10 1002 SICI 1098 1004 1998 11 3 lt 197 AID HUMU3 gt 3 0 CO 2 F PMID 9521420 S2CID 7241178 Johnson JO Pioro EP Boehringer A Chia R Feit H Renton AE et al May 2014 Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis Nature Neuroscience 17 5 664 666 doi 10 1038 nn 3688 PMC 4000579 PMID 24686783 Au PY You J Caluseriu O Schwartzentruber J Majewski J Bernier FP et al October 2015 GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability unique facial dysmorphisms and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK Human Mutation 36 10 1009 1014 doi 10 1002 humu 22837 PMC 4589226 PMID 26173930 Mallery DL Tanganelli B Colella S Steingrimsdottir H van Gool AJ Troelstra C et al January 1998 Molecular analysis of mutations in the CSB ERCC6 gene in patients with Cockayne syndrome American Journal of Human Genetics 62 1 77 85 doi 10 1086 301686 PMC 1376810 PMID 9443879 Schimmenti LA Shim HH Wirtschafter JD Panzarino VA Kashtan CE Kirkpatrick SJ et al 1999 Homonucleotide expansion and contraction mutations of PAX2 and inclusion of Chiari 1 malformation as part of renal coloboma syndrome Human Mutation 14 5 369 376 doi 10 1002 SICI 1098 1004 199911 14 5 lt 369 AID HUMU2 gt 3 0 CO 2 E PMID 10533062 S2CID 25564812 Amiel J Audollent S Joly D Dureau P Salomon R Tellier AL et al November 2000 PAX2 mutations in renal coloboma syndrome mutational hotspot and germline mosaicism European Journal of Human Genetics 8 11 820 826 doi 10 1038 sj ejhg 5200539 PMID 11093271 S2CID 30359554 Schimmenti LA Cunliffe HE McNoe LA Ward TA French MC Shim HH et al April 1997 Further delineation of renal coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations American Journal of Human Genetics 60 4 869 878 PMC 1712484 PMID 9106533 Barua M Stellacci E Stella L Weins A Genovese G Muto V et al September 2014 Mutations in PAX2 associate with adult onset FSGS Journal of the American Society of Nephrology 25 9 1942 1953 doi 10 1681 ASN 2013070686 PMC 4147972 PMID 24676634 Chettier R Nelson L Ogilvie JW Albertsen HM Ward K 2015 02 12 Fang S ed Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis PLOS ONE 10 2 e0117708 Bibcode 2015PLoSO 1017708C doi 10 1371 journal pone 0117708 PMC 4326419 PMID 25675428 Gao W Peng Y Liang G Liang A Ye W Zhang L et al 2013 01 04 Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population PLOS ONE 8 1 e53234 Bibcode 2013PLoSO 853234G doi 10 1371 journal pone 0053234 PMC 3537668 PMID 23308168 Grauers A Wang J Einarsdottir E Simony A Danielsson A Akesson K et al October 2015 Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis The Spine Journal 15 10 2239 2246 doi 10 1016 j spinee 2015 05 013 hdl 10616 44765 PMID 25987191 Jiang H Qiu X Dai J Yan H Zhu Z Qian B Qiu Y February 2013 Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population European Spine Journal 22 2 282 286 doi 10 1007 s00586 012 2532 4 PMC 3555620 PMID 23096252 Londono D Kou I Johnson TA Sharma S Ogura Y Tsunoda T et al June 2014 A meta analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups Journal of Medical Genetics 51 6 401 406 doi 10 1136 jmedgenet 2013 102067 PMID 24721834 S2CID 23646905 Miyake A Kou I Takahashi Y Johnson TA Ogura Y Dai J et al 2013 09 04 Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24 3 PLOS ONE 8 9 e72802 Bibcode 2013PLoSO 872802M doi 10 1371 journal pone 0072802 PMC 3762929 PMID 24023777 Jiang Y Ben Q Shen H Lu W Zhang Y Zhu J November 2011 Diabetes mellitus and incidence and mortality of colorectal cancer a systematic review and meta analysis of cohort studies European Journal of Epidemiology 26 11 863 876 doi 10 1007 s10654 011 9617 y PMID 21938478 S2CID 99605 Takahashi Y Kou I Takahashi A Johnson TA Kono K Kawakami N et al October 2011 A genome wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis Nature Genetics 43 12 1237 1240 doi 10 1038 ng 974 PMID 22019779 S2CID 7533298 Buchert R Tawamie H Smith C Uebe S Innes AM Al Hallak B et al November 2014 A peroxisomal disorder of severe intellectual disability epilepsy and cataracts due to fatty acyl CoA reductase 1 deficiency American Journal of Human Genetics 95 5 602 610 doi 10 1016 j ajhg 2014 10 003 PMC 4225589 PMID 25439727 O Donnell PH Stark AL Gamazon ER Wheeler HE McIlwee BE Gorsic L et al August 2012 Identification of novel germline polymorphisms governing capecitabine sensitivity Cancer 118 16 4063 4073 doi 10 1002 cncr 26737 PMC 3413892 PMID 22864933 De R Verma SS Drenos F Holzinger ER Holmes MV Hall MA et al June 2015 Identifying gene gene interactions that are highly associated with Body Mass Index using Quantitative Multifactor Dimensionality Reduction QMDR BioData Mining 8 1 41 doi 10 1186 s13040 015 0074 0 PMC 4678717 PMID 26674805 Guo Y Lanktree MB Taylor KC Hakonarson H Lange LA Keating BJ January 2013 Gene centric meta analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals Human Molecular Genetics 22 1 184 201 doi 10 1093 hmg dds396 PMC 3522401 PMID 23001569 Hromatka BS Tung JY Kiefer AK Do CB Hinds DA Eriksson N May 2015 Genetic variants associated with motion sickness point to roles for inner ear development neurological processes and glucose homeostasis Human Molecular Genetics 24 9 2700 2708 doi 10 1093 hmg ddv028 PMC 4383869 PMID 25628336 Al Turki S Manickaraj AK Mercer CL Gerety SS Hitz MP Lindsay S et al April 2014 Rare variants in NR2F2 cause congenital heart defects in humans American Journal of Human Genetics 94 4 574 585 doi 10 1016 j ajhg 2014 03 007 PMC 3980509 PMID 24702954 Hofstra RM Mulder IM Vossen R de Koning Gans PA Kraak M Ginjaar IB et al January 2004 DGGE based whole gene mutation scanning of the dystrophin gene in Duchenne and Becker muscular dystrophy patients Human Mutation 23 1 57 66 doi 10 1002 humu 10283 PMID 14695533 S2CID 36020079 Roberts RG Bobrow M Bentley DR March 1992 Point mutations in the dystrophin gene Proceedings of the National Academy of Sciences of the United States of America 89 6 2331 2335 Bibcode 1992PNAS 89 2331R doi 10 1073 pnas 89 6 2331 PMC 48651 PMID 1549596 Tuffery Giraud S Saquet C Thorel D Disset A Rivier F Malcolm S Claustres M December 2005 Mutation spectrum leading to an attenuated phenotype in dystrophinopathies European Journal of Human Genetics 13 12 1254 1260 doi 10 1038 sj ejhg 5201478 PMID 16077730 S2CID 22585201 Gorman MP Golomb MR Walsh LE Hobson GM Garbern JY Kinkel RP et al April 2007 Steroid responsive neurologic relapses in a child with a proteolipid protein 1 mutation Neurology 68 16 1305 1307 doi 10 1212 01 wnl 0000259522 49388 53 PMID 17438221 S2CID 45639125 Saugier Veber P Munnich A Bonneau D Rozet JM Le Merrer M Gil R Boespflug Tanguy O March 1994 X linked spastic paraplegia and Pelizaeus Merzbacher disease are allelic disorders at the proteolipid protein locus Nature Genetics 6 3 257 262 doi 10 1038 ng0394 257 PMID 8012387 S2CID 13607673 Hodes ME Blank CA Pratt VM Morales J Napier J Dlouhy SR March 1997 Nonsense mutation in exon 3 of the proteolipid protein gene PLP in a family with an unusual form of Pelizaeus Merzbacher disease American Journal of Medical Genetics 69 2 121 125 doi 10 1002 SICI 1096 8628 19970317 69 2 lt 121 AID AJMG2 gt 3 0 CO 2 S PMID 9056547 Wu Y Arai AC Rumbaugh G Srivastava AK Turner G Hayashi T et al November 2007 Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans Proceedings of the National Academy of Sciences of the United States of America 104 46 18163 18168 Bibcode 2007PNAS 10418163W doi 10 1073 pnas 0708699104 PMC 2084314 PMID 17989220 Gueneau L Bertrand AT Jais JP Salih MA Stojkovic T Wehnert M et al September 2009 Mutations of the FHL1 gene cause Emery Dreifuss muscular dystrophy American Journal of Human Genetics 85 3 338 353 doi 10 1016 j ajhg 2009 07 015 PMC 2771595 PMID 19716112 Knoblauch H Geier C Adams S Budde B Rudolph A Zacharias U et al January 2010 Contractures and hypertrophic cardiomyopathy in a novel FHL1 mutation Annals of Neurology 67 1 136 140 doi 10 1002 ana 21839 PMID 20186852 S2CID 30441775 a b Schoser B Goebel HH Janisch I Quasthoff S Rother J Bergmann M et al August 2009 Consequences of mutations within the C terminus of the FHL1 gene Neurology 73 7 543 551 doi 10 1212 WNL 0b013e3181b2a4b3 PMID 19687455 S2CID 13107330 a b Windpassinger C Schoser B Straub V Hochmeister S Noor A Lohberger B et al January 2008 An X linked myopathy with postural muscle atrophy and generalized hypertrophy termed XMPMA is caused by mutations in FHL1 American Journal of Human Genetics 82 1 88 99 doi 10 1016 j ajhg 2007 09 004 PMC 2253986 PMID 18179888 Zahorakova D Rosipal R Hadac J Zumrova A Bzduch V Misovicova N et al 2007 Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome novel mutations and polymorphisms Journal of Human Genetics 52 4 342 348 doi 10 1007 s10038 007 0121 x PMID 17387578 S2CID 7962500 Retrieved from https en wikipedia org w index php title Ultra conserved element amp oldid 1128234567, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.