fbpx
Wikipedia

UDP-glucose 4-epimerase

The enzyme UDP-glucose 4-epimerase (EC 5.1.3.2), also known as UDP-galactose 4-epimerase or GALE, is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in the Leloir pathway of galactose metabolism, catalyzing the reversible conversion of UDP-galactose to UDP-glucose.[1] GALE tightly binds nicotinamide adenine dinucleotide (NAD+), a co-factor required for catalytic activity.[2]

UDP-glucose 4-epimerase
Identifiers
AliasesUDPgalactose 4-epimerase4-epimeraseuridine diphosphate glucose 4-epimeraseUDPG-4-epimeraseUDP-galactose 4-epimeraseuridine diphosphoglucose epimeraseuridine diphospho-galactose-4-epimeraseUDP-D-galactose 4-epimeraseUDP-glucose epimeraseuridine diphosphoglucose 4-epimeraseuridine diphosphate galactose 4-epimerase
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human
UDP-glucose 4-epimerase
H. sapiens UDP-glucose 4-epimerase homodimer bound to NADH and UDP-glucose. Domains: N-terminal and C-terminal.
Identifiers
EC no.5.1.3.2
CAS no.9032-89-7
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
UDP-galactose-4-epimerase
Human GALE bound to NAD+ and UDP-GlcNAc, with N- and C-terminal domains highlighted. Asn 207 contorts to accommodate UDP-GlcNAc within the active site.
Identifiers
SymbolGALE
NCBI gene2582
HGNC4116
OMIM606953
RefSeqNM_000403
UniProtQ14376
Other data
EC number5.1.3.2
LocusChr. 1 p36-p35
Search for
StructuresSwiss-model
DomainsInterPro
NAD-dependent epimerase/dehydratase
Identifiers
Symbol?
PfamPF01370
InterProIPR001509
Membranome330
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Additionally, human and some bacterial GALE isoforms reversibly catalyze the formation of UDP-N-acetylgalactosamine (UDP-GalNAc) from UDP-N-acetylglucosamine (UDP-GlcNAc) in the presence of NAD+, an initial step in glycoprotein or glycolipid synthesis.[3]

Historical significance edit

Dr. Luis Leloir deduced the role of GALE in galactose metabolism during his tenure at the Instituto de Investigaciones Bioquímicas del Fundación Campomar, initially terming the enzyme waldenase.[4] Dr. Leloir was awarded the 1970 Nobel Prize in Chemistry for his discovery of sugar nucleotides and their role in the biosynthesis of carbohydrates.[5]

Structure edit

GALE belongs to the short-chain dehydrogenase/reductase (SDR) superfamily of proteins.[6] This family is characterized by a conserved Tyr-X-X-X-Lys motif necessary for enzymatic activity; one or more Rossmann fold scaffolds; and the ability to bind NAD+.[6]

Tertiary structure edit

GALE structure has been resolved for a number of species, including E. coli[7] and humans.[8] GALE exists as a homodimer in various species.[8]

While subunit size varies from 68 amino acids (Enterococcus faecalis) to 564 amino acids (Rhodococcus jostii), a majority of GALE subunits cluster near 330 amino acids in length.[6] Each subunit contains two distinct domains. An N-terminal domain contains a 7-stranded parallel β-pleated sheet flanked by α-helices.[1] Paired Rossmann folds within this domain allow GALE to tightly bind one NAD+ cofactor per subunit.[2] A 6-stranded β-sheet and 5 α-helices comprise GALE's C-terminal domain.[1] C-terminal residues bind UDP, such that the subunit is responsible for correctly positioning UDP-glucose or UDP-galactose for catalysis.[1]

Active site edit

The cleft between GALE's N- and C-terminal domains constitutes the enzyme's active site. A conserved Tyr-X-X-X Lys motif is necessary for GALE catalytic activity; in humans, this motif is represented by Tyr 157-Gly-Lys-Ser-Lys 161,[6] while E. coli GALE contains Tyr 149-Gly-Lys-Ser-Lys 153.[8] The size and shape of GALE's active site varies across species, allowing for variable GALE substrate specificity.[3] Additionally, the conformation of the active site within a species-specific GALE is malleable; for instance, a bulky UDP-GlcNAc 2' N-acetyl group is accommodated within the human GALE active site by the rotation of the Asn 207 carboxamide side chain.[3]

Known E. coli GALE residue interactions with UDP-glucose and UDP-galactose.[9]
Residue Function
Ala 216, Phe 218 Anchor uracil ring to enzyme.
Asp 295 Interacts with ribose 2' hydroxyl group.
Asn 179, Arg 231, Arg 292 Interact with UDP phosphate groups.
Tyr 299, Asn 179 Interact with galactose 2' hydroxyl or glucose 6' hydroxyl group; properly position sugar within active site.
Tyr 177, Phe 178 Interact with galactose 3' hydroxyl or glucose 6' hydroxyl group; properly position sugar within active site.
Lys 153 Lowers pKa of Tyr 149, allows for abstraction or donation of a hydrogen atom to or from the sugar 4' hydroxyl group.
Tyr 149 Abstracts or donates a hydrogen atom to or from the sugar 4' hydroxyl group, catalyzing formation of 4-ketopyranose intermediate.

Mechanism edit

Conversion of UDP-galactose to UDP-glucose edit

GALE inverts the configuration of the 4' hydroxyl group of UDP-galactose through a series of 4 steps. Upon binding UDP-galactose, a conserved tyrosine residue in the active site abstracts a proton from the 4' hydroxyl group.[7][10]

Concomitantly, the 4' hydride is added to the si-face of NAD+, generating NADH and a 4-ketopyranose intermediate.[1] The 4-ketopyranose intermediate rotates 180° about the pyrophosphoryl linkage between the glycosyl oxygen and β-phosphorus atom, presenting the opposite face of the ketopyranose intermediate to NADH.[10] Hydride transfer from NADH to this opposite face inverts the stereochemistry of the 4' center. The conserved tyrosine residue then donates its proton, regenerating the 4' hydroxyl group.[1]

Conversion of UDP-GlcNAc to UDP-GalNAc edit

Human and some bacterial GALE isoforms reversibly catalyze the conversion of UDP-GlcNAc to UDP-GalNAc through an identical mechanism, inverting the stereochemical configuration at the sugar's 4' hydroxyl group.[3][11]

Biological function edit

 
Intermediates and enzymes in the Leloir pathway of galactose metabolism.[1]

Galactose metabolism edit

No direct catabolic pathways exist for galactose metabolism. Galactose is therefore preferentially converted into glucose-1-phosphate, which may be shunted into glycolysis or the inositol synthesis pathway.[12]

GALE functions as one of four enzymes in the Leloir pathway of galactose conversion of glucose-1-phosphate. First, galactose mutarotase converts β-D-galactose to α-D-galactose.[1] Galactokinase then phosphorylates α-D-galactose at the 1' hydroxyl group, yielding galactose-1-phosphate.[1] In the third step, galactose-1-phosphate uridyltransferase catalyzes the reversible transfer of a UMP moiety from UDP-glucose to galactose-1-phosphate, generating UDP-galactose and glucose-1-phosphate.[1] In the final Leloir step, UDP-glucose is regenerated from UDP-galactose by GALE; UDP-glucose cycles back to the third step of the pathway.[1] As such, GALE regenerates a substrate necessary for continued Leloir pathway cycling.

The glucose-1-phosphate generated in step 3 of the Leloir pathway may be isomerized to glucose-6-phosphate by phosphoglucomutase. Glucose-6-phosphate readily enters glycolysis, leading to the production of ATP and pyruvate.[13] Furthermore, glucose-6-phosphate may be converted to inositol-1-phosphate by inositol-3-phosphate synthase, generating a precursor needed for inositol biosynthesis.[14]

UDP-GalNAc synthesis edit

Human and selected bacterial GALE isoforms bind UDP-GlcNAc, reversibly catalyzing its conversion to UDP-GalNAc. A family of glycosyltransferases known as UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosamine transferases (ppGaNTases) transfers GalNAc from UDP-GalNAc to glycoprotein serine and threonine residues.[15] ppGaNTase-mediated glycosylation regulates protein sorting,[16][17][18][19][20] ligand signaling,[21][22][23] resistance to proteolytic attack,[24][25] and represents the first committed step in mucin biosynthesis.[15]

Role in disease edit

Human GALE deficiency or dysfunction results in Type III galactosemia, which may exist in a mild (peripheral) or more severe (generalized) form.[12]

References edit

  1. ^ a b c d e f g h i j k Holden HM, Rayment I, Thoden JB (November 2003). "Structure and function of enzymes of the Leloir pathway for galactose metabolism". J. Biol. Chem. 278 (45): 43885–8. doi:10.1074/jbc.R300025200. PMID 12923184.
  2. ^ a b Liu Y, Vanhooke JL, Frey PA (June 1996). "UDP-galactose 4-epimerase: NAD+ content and a charge-transfer band associated with the substrate-induced conformational transition". Biochemistry. 35 (23): 7615–20. doi:10.1021/bi960102v. PMID 8652544.
  3. ^ a b c d Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (May 2001). "Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site". J. Biol. Chem. 276 (18): 15131–6. doi:10.1074/jbc.M100220200. PMID 11279032.
  4. ^ LELOIR LF (September 1951). "The enzymatic transformation of uridine diphosphate glucose into a galactose derivative". Arch Biochem. 33 (2): 186–90. doi:10.1016/0003-9861(51)90096-3. hdl:11336/140700. PMID 14885999.
  5. ^ "The Nobel Prize in Chemistry 1970" (Press release). The Royal Swedish Academy of Science. 1970. Retrieved 2010-05-17.
  6. ^ a b c d Kavanagh KL, Jörnvall H, Persson B, Oppermann U (December 2008). "Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes". Cell. Mol. Life Sci. 65 (24): 3895–906. doi:10.1007/s00018-008-8588-y. PMC 2792337. PMID 19011750.
  7. ^ a b PDB: 1EK5​; Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (May 2000). "Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase". Biochemistry. 39 (19): 5691–701. doi:10.1021/bi000215l. PMID 10801319.
  8. ^ a b c PDB: 1XEL​; Thoden JB, Frey PA, Holden HM (April 1996). "Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism". Biochemistry. 35 (16): 5137–44. doi:10.1021/bi9601114. PMID 8611497.
  9. ^ PDB: 1A9Z​; Thoden JB, Holden HM (August 1998). "Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli". Biochemistry. 37 (33): 11469–77. doi:10.1021/bi9808969. PMID 9708982.
  10. ^ a b Liu Y, Thoden JB, Kim J, Berger E, Gulick AM, Ruzicka FJ, Holden HM, Frey PA (September 1997). "Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli". Biochemistry. 36 (35): 10675–84. doi:10.1021/bi970430a. PMID 9271498.
  11. ^ Kingsley DM, Kozarsky KF, Hobbie L, Krieger M (March 1986). "Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant". Cell. 44 (5): 749–59. doi:10.1016/0092-8674(86)90841-X. PMID 3948246. S2CID 28293937.
  12. ^ a b Lai K, Elsas LJ, Wierenga KJ (November 2009). "Galactose toxicity in animals". IUBMB Life. 61 (11): 1063–74. doi:10.1002/iub.262. PMC 2788023. PMID 19859980.
  13. ^ Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. (2008). Biochemistry (Looseleaf). San Francisco: W. H. Freeman. pp. 443–58. ISBN 9780716718437.
  14. ^ Michell RH (February 2008). "Inositol derivatives: evolution and functions". Nat. Rev. Mol. Cell Biol. 9 (2): 151–61. doi:10.1038/nrm2334. PMID 18216771. S2CID 3245927.
  15. ^ a b Ten Hagen KG, Fritz TA, Tabak LA (January 2003). "All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases". Glycobiology. 13 (1): 1R–16R. doi:10.1093/glycob/cwg007. PMID 12634319.
  16. ^ Alfalah M, Jacob R, Preuss U, Zimmer KP, Naim H, Naim HY (June 1999). "O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts". Curr. Biol. 9 (11): 593–6. doi:10.1016/S0960-9822(99)80263-2. PMID 10359703. S2CID 16866875.
  17. ^ Altschuler Y, Kinlough CL, Poland PA, Bruns JB, Apodaca G, Weisz OA, Hughey RP (March 2000). "Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state". Mol. Biol. Cell. 11 (3): 819–31. doi:10.1091/mbc.11.3.819. PMC 14813. PMID 10712502.
  18. ^ Breuza L, Garcia M, Delgrossi MH, Le Bivic A (February 2002). "Role of the membrane-proximal O-glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells". Exp. Cell Res. 273 (2): 178–86. doi:10.1006/excr.2001.5442. PMID 11822873.
  19. ^ Naim HY, Joberty G, Alfalah M, Jacob R (June 1999). "Temporal association of the N- and O-linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase-isomaltase, aminopeptidase N, and dipeptidyl peptidase IV". J. Biol. Chem. 274 (25): 17961–7. doi:10.1074/jbc.274.25.17961. PMID 10364244.
  20. ^ Zheng X, Sadler JE (March 2002). "Mucin-like domain of enteropeptidase directs apical targeting in Madin-Darby canine kidney cells". J. Biol. Chem. 277 (9): 6858–63. doi:10.1074/jbc.M109857200. PMID 11878264.
  21. ^ Hooper LV, Gordon JI (February 2001). "Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity". Glycobiology. 11 (2): 1R–10R. doi:10.1093/glycob/11.2.1R. PMID 11287395.
  22. ^ Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (June 2001). "Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase". Cell. 105 (7): 957–69. doi:10.1016/S0092-8674(01)00394-4. PMID 11439191. S2CID 18674112.
  23. ^ Somers WS, Tang J, Shaw GD, Camphausen RT (October 2000). "Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1". Cell. 103 (3): 467–79. doi:10.1016/S0092-8674(00)00138-0. PMID 11081633. S2CID 12719907.
  24. ^ Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B (December 2000). "Glucoamylase: structure/function relationships, and protein engineering". Biochim. Biophys. Acta. 1543 (2): 275–293. doi:10.1016/s0167-4838(00)00232-6. PMID 11150611.
  25. ^ Garner B, Merry AH, Royle L, Harvey DJ, Rudd PM, Thillet J (June 2001). "Structural elucidation of the N- and O-glycans of human apolipoprotein(a): role of o-glycans in conferring protease resistance". J. Biol. Chem. 276 (25): 22200–8. doi:10.1074/jbc.M102150200. PMID 11294842.

Further reading edit

  • Leloir LF (1953). "Enzymic Isomerization and Related Processes". Advances in Enzymology and Related Areas of Molecular Biology. Advances in Enzymology - and Related Areas of Molecular Biology. Vol. 14. pp. 193–218. doi:10.1002/9780470122594.ch6. ISBN 9780470122594. PMID 13057717. {{cite book}}: |journal= ignored (help)
  • Maxwell ES, de Robichon-Szulmajster H (1960). "Purification of uridine diphosphate galactose-4-epimerase from yeast and the identification of protein-bound diphosphopyridine nucleotide". J. Biol. Chem. 235 (2): 308–312. doi:10.1016/S0021-9258(18)69520-1.
  • Wilson DB, Hogness DS (August 1964). "The enzymes of the galactose operon in Escherichia coli. I Purification and characterization of uridine diphosphogalactose 4-epimerase". J. Biol. Chem. 239: 2469–81. doi:10.1016/S0021-9258(18)93876-7. PMID 14235524.

External links edit

  • GeneReviews/NCBI/NIH/UW entry on Epimerase Deficiency Galactosemia
  • OMIM entries on Epimerase Deficiency Galactosemia
  • UDPgalactose+4-Epimerase at the U.S. National Library of Medicine Medical Subject Headings (MeSH)

glucose, epimerase, gale, redirects, here, darpa, program, global, autonomous, language, exploitation, enzyme, also, known, galactose, epimerase, gale, homodimeric, epimerase, found, bacterial, fungal, plant, mammalian, cells, this, enzyme, performs, final, st. GALE redirects here For the DARPA program see Global Autonomous Language Exploitation The enzyme UDP glucose 4 epimerase EC 5 1 3 2 also known as UDP galactose 4 epimerase or GALE is a homodimeric epimerase found in bacterial fungal plant and mammalian cells This enzyme performs the final step in the Leloir pathway of galactose metabolism catalyzing the reversible conversion of UDP galactose to UDP glucose 1 GALE tightly binds nicotinamide adenine dinucleotide NAD a co factor required for catalytic activity 2 UDP glucose 4 epimeraseIdentifiersAliasesUDPgalactose 4 epimerase4 epimeraseuridine diphosphate glucose 4 epimeraseUDPG 4 epimeraseUDP galactose 4 epimeraseuridine diphosphoglucose epimeraseuridine diphospho galactose 4 epimeraseUDP D galactose 4 epimeraseUDP glucose epimeraseuridine diphosphoglucose 4 epimeraseuridine diphosphate galactose 4 epimeraseExternal IDsGeneCards 1 OrthologsSpeciesHumanMouseEntrezn an aEnsembln an aUniProtnan aRefSeq mRNA n an aRefSeq protein n an aLocation UCSC n an aPubMed searchn an aWikidataView Edit HumanUDP glucose 4 epimeraseH sapiens UDP glucose 4 epimerase homodimer bound to NADH and UDP glucose Domains N terminal and C terminal IdentifiersEC no 5 1 3 2CAS no 9032 89 7DatabasesIntEnzIntEnz viewBRENDABRENDA entryExPASyNiceZyme viewKEGGKEGG entryMetaCycmetabolic pathwayPRIAMprofilePDB structuresRCSB PDB PDBe PDBsumGene OntologyAmiGO QuickGOSearchPMCarticlesPubMedarticlesNCBIproteinsUDP galactose 4 epimeraseHuman GALE bound to NAD and UDP GlcNAc with N and C terminal domains highlighted Asn 207 contorts to accommodate UDP GlcNAc within the active site IdentifiersSymbolGALENCBI gene2582HGNC4116OMIM606953RefSeqNM 000403UniProtQ14376Other dataEC number5 1 3 2LocusChr 1 p36 p35Search forStructuresSwiss modelDomainsInterProNAD dependent epimerase dehydrataseIdentifiersSymbol PfamPF01370InterProIPR001509Membranome330Available protein structures Pfam structures ECOD PDBRCSB PDB PDBe PDBjPDBsumstructure summaryAdditionally human and some bacterial GALE isoforms reversibly catalyze the formation of UDP N acetylgalactosamine UDP GalNAc from UDP N acetylglucosamine UDP GlcNAc in the presence of NAD an initial step in glycoprotein or glycolipid synthesis 3 Contents 1 Historical significance 2 Structure 2 1 Tertiary structure 2 2 Active site 3 Mechanism 3 1 Conversion of UDP galactose to UDP glucose 3 2 Conversion of UDP GlcNAc to UDP GalNAc 4 Biological function 4 1 Galactose metabolism 4 2 UDP GalNAc synthesis 5 Role in disease 6 References 7 Further reading 8 External linksHistorical significance editDr Luis Leloir deduced the role of GALE in galactose metabolism during his tenure at the Instituto de Investigaciones Bioquimicas del Fundacion Campomar initially terming the enzyme waldenase 4 Dr Leloir was awarded the 1970 Nobel Prize in Chemistry for his discovery of sugar nucleotides and their role in the biosynthesis of carbohydrates 5 Structure editGALE belongs to the short chain dehydrogenase reductase SDR superfamily of proteins 6 This family is characterized by a conserved Tyr X X X Lys motif necessary for enzymatic activity one or more Rossmann fold scaffolds and the ability to bind NAD 6 Tertiary structure edit GALE structure has been resolved for a number of species including E coli 7 and humans 8 GALE exists as a homodimer in various species 8 While subunit size varies from 68 amino acids Enterococcus faecalis to 564 amino acids Rhodococcus jostii a majority of GALE subunits cluster near 330 amino acids in length 6 Each subunit contains two distinct domains An N terminal domain contains a 7 stranded parallel b pleated sheet flanked by a helices 1 Paired Rossmann folds within this domain allow GALE to tightly bind one NAD cofactor per subunit 2 A 6 stranded b sheet and 5 a helices comprise GALE s C terminal domain 1 C terminal residues bind UDP such that the subunit is responsible for correctly positioning UDP glucose or UDP galactose for catalysis 1 Active site edit The cleft between GALE s N and C terminal domains constitutes the enzyme s active site A conserved Tyr X X X Lys motif is necessary for GALE catalytic activity in humans this motif is represented by Tyr 157 Gly Lys Ser Lys 161 6 while E coli GALE contains Tyr 149 Gly Lys Ser Lys 153 8 The size and shape of GALE s active site varies across species allowing for variable GALE substrate specificity 3 Additionally the conformation of the active site within a species specific GALE is malleable for instance a bulky UDP GlcNAc 2 N acetyl group is accommodated within the human GALE active site by the rotation of the Asn 207 carboxamide side chain 3 Known E coli GALE residue interactions with UDP glucose and UDP galactose 9 Residue FunctionAla 216 Phe 218 Anchor uracil ring to enzyme Asp 295 Interacts with ribose 2 hydroxyl group Asn 179 Arg 231 Arg 292 Interact with UDP phosphate groups Tyr 299 Asn 179 Interact with galactose 2 hydroxyl or glucose 6 hydroxyl group properly position sugar within active site Tyr 177 Phe 178 Interact with galactose 3 hydroxyl or glucose 6 hydroxyl group properly position sugar within active site Lys 153 Lowers pKa of Tyr 149 allows for abstraction or donation of a hydrogen atom to or from the sugar 4 hydroxyl group Tyr 149 Abstracts or donates a hydrogen atom to or from the sugar 4 hydroxyl group catalyzing formation of 4 ketopyranose intermediate Mechanism editConversion of UDP galactose to UDP glucose edit GALE inverts the configuration of the 4 hydroxyl group of UDP galactose through a series of 4 steps Upon binding UDP galactose a conserved tyrosine residue in the active site abstracts a proton from the 4 hydroxyl group 7 10 Concomitantly the 4 hydride is added to the si face of NAD generating NADH and a 4 ketopyranose intermediate 1 The 4 ketopyranose intermediate rotates 180 about the pyrophosphoryl linkage between the glycosyl oxygen and b phosphorus atom presenting the opposite face of the ketopyranose intermediate to NADH 10 Hydride transfer from NADH to this opposite face inverts the stereochemistry of the 4 center The conserved tyrosine residue then donates its proton regenerating the 4 hydroxyl group 1 Conversion of UDP GlcNAc to UDP GalNAc edit Human and some bacterial GALE isoforms reversibly catalyze the conversion of UDP GlcNAc to UDP GalNAc through an identical mechanism inverting the stereochemical configuration at the sugar s 4 hydroxyl group 3 11 Biological function edit nbsp Intermediates and enzymes in the Leloir pathway of galactose metabolism 1 Galactose metabolism edit No direct catabolic pathways exist for galactose metabolism Galactose is therefore preferentially converted into glucose 1 phosphate which may be shunted into glycolysis or the inositol synthesis pathway 12 GALE functions as one of four enzymes in the Leloir pathway of galactose conversion of glucose 1 phosphate First galactose mutarotase converts b D galactose to a D galactose 1 Galactokinase then phosphorylates a D galactose at the 1 hydroxyl group yielding galactose 1 phosphate 1 In the third step galactose 1 phosphate uridyltransferase catalyzes the reversible transfer of a UMP moiety from UDP glucose to galactose 1 phosphate generating UDP galactose and glucose 1 phosphate 1 In the final Leloir step UDP glucose is regenerated from UDP galactose by GALE UDP glucose cycles back to the third step of the pathway 1 As such GALE regenerates a substrate necessary for continued Leloir pathway cycling The glucose 1 phosphate generated in step 3 of the Leloir pathway may be isomerized to glucose 6 phosphate by phosphoglucomutase Glucose 6 phosphate readily enters glycolysis leading to the production of ATP and pyruvate 13 Furthermore glucose 6 phosphate may be converted to inositol 1 phosphate by inositol 3 phosphate synthase generating a precursor needed for inositol biosynthesis 14 UDP GalNAc synthesis edit Human and selected bacterial GALE isoforms bind UDP GlcNAc reversibly catalyzing its conversion to UDP GalNAc A family of glycosyltransferases known as UDP N acetylgalactosamine polypeptide N acetylgalactosamine transferases ppGaNTases transfers GalNAc from UDP GalNAc to glycoprotein serine and threonine residues 15 ppGaNTase mediated glycosylation regulates protein sorting 16 17 18 19 20 ligand signaling 21 22 23 resistance to proteolytic attack 24 25 and represents the first committed step in mucin biosynthesis 15 Role in disease editMain article Galactose epimerase deficiency Human GALE deficiency or dysfunction results in Type III galactosemia which may exist in a mild peripheral or more severe generalized form 12 References edit a b c d e f g h i j k Holden HM Rayment I Thoden JB November 2003 Structure and function of enzymes of the Leloir pathway for galactose metabolism J Biol Chem 278 45 43885 8 doi 10 1074 jbc R300025200 PMID 12923184 a b Liu Y Vanhooke JL Frey PA June 1996 UDP galactose 4 epimerase NAD content and a charge transfer band associated with the substrate induced conformational transition Biochemistry 35 23 7615 20 doi 10 1021 bi960102v PMID 8652544 a b c d Thoden JB Wohlers TM Fridovich Keil JL Holden HM May 2001 Human UDP galactose 4 epimerase Accommodation of UDP N acetylglucosamine within the active site J Biol Chem 276 18 15131 6 doi 10 1074 jbc M100220200 PMID 11279032 LELOIR LF September 1951 The enzymatic transformation of uridine diphosphate glucose into a galactose derivative Arch Biochem 33 2 186 90 doi 10 1016 0003 9861 51 90096 3 hdl 11336 140700 PMID 14885999 The Nobel Prize in Chemistry 1970 Press release The Royal Swedish Academy of Science 1970 Retrieved 2010 05 17 a b c d Kavanagh KL Jornvall H Persson B Oppermann U December 2008 Medium and short chain dehydrogenase reductase gene and protein families the SDR superfamily functional and structural diversity within a family of metabolic and regulatory enzymes Cell Mol Life Sci 65 24 3895 906 doi 10 1007 s00018 008 8588 y PMC 2792337 PMID 19011750 a b PDB 1EK5 Thoden JB Wohlers TM Fridovich Keil JL Holden HM May 2000 Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP galactose 4 epimerase Biochemistry 39 19 5691 701 doi 10 1021 bi000215l PMID 10801319 a b c PDB 1XEL Thoden JB Frey PA Holden HM April 1996 Molecular structure of the NADH UDP glucose abortive complex of UDP galactose 4 epimerase from Escherichia coli implications for the catalytic mechanism Biochemistry 35 16 5137 44 doi 10 1021 bi9601114 PMID 8611497 PDB 1A9Z Thoden JB Holden HM August 1998 Dramatic differences in the binding of UDP galactose and UDP glucose to UDP galactose 4 epimerase from Escherichia coli Biochemistry 37 33 11469 77 doi 10 1021 bi9808969 PMID 9708982 a b Liu Y Thoden JB Kim J Berger E Gulick AM Ruzicka FJ Holden HM Frey PA September 1997 Mechanistic roles of tyrosine 149 and serine 124 in UDP galactose 4 epimerase from Escherichia coli Biochemistry 36 35 10675 84 doi 10 1021 bi970430a PMID 9271498 Kingsley DM Kozarsky KF Hobbie L Krieger M March 1986 Reversible defects in O linked glycosylation and LDL receptor expression in a UDP Gal UDP GalNAc 4 epimerase deficient mutant Cell 44 5 749 59 doi 10 1016 0092 8674 86 90841 X PMID 3948246 S2CID 28293937 a b Lai K Elsas LJ Wierenga KJ November 2009 Galactose toxicity in animals IUBMB Life 61 11 1063 74 doi 10 1002 iub 262 PMC 2788023 PMID 19859980 Stryer Lubert Berg Jeremy Mark Tymoczko John L 2008 Biochemistry Looseleaf San Francisco W H Freeman pp 443 58 ISBN 9780716718437 Michell RH February 2008 Inositol derivatives evolution and functions Nat Rev Mol Cell Biol 9 2 151 61 doi 10 1038 nrm2334 PMID 18216771 S2CID 3245927 a b Ten Hagen KG Fritz TA Tabak LA January 2003 All in the family the UDP GalNAc polypeptide N acetylgalactosaminyltransferases Glycobiology 13 1 1R 16R doi 10 1093 glycob cwg007 PMID 12634319 Alfalah M Jacob R Preuss U Zimmer KP Naim H Naim HY June 1999 O linked glycans mediate apical sorting of human intestinal sucrase isomaltase through association with lipid rafts Curr Biol 9 11 593 6 doi 10 1016 S0960 9822 99 80263 2 PMID 10359703 S2CID 16866875 Altschuler Y Kinlough CL Poland PA Bruns JB Apodaca G Weisz OA Hughey RP March 2000 Clathrin mediated endocytosis of MUC1 is modulated by its glycosylation state Mol Biol Cell 11 3 819 31 doi 10 1091 mbc 11 3 819 PMC 14813 PMID 10712502 Breuza L Garcia M Delgrossi MH Le Bivic A February 2002 Role of the membrane proximal O glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells Exp Cell Res 273 2 178 86 doi 10 1006 excr 2001 5442 PMID 11822873 Naim HY Joberty G Alfalah M Jacob R June 1999 Temporal association of the N and O linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase isomaltase aminopeptidase N and dipeptidyl peptidase IV J Biol Chem 274 25 17961 7 doi 10 1074 jbc 274 25 17961 PMID 10364244 Zheng X Sadler JE March 2002 Mucin like domain of enteropeptidase directs apical targeting in Madin Darby canine kidney cells J Biol Chem 277 9 6858 63 doi 10 1074 jbc M109857200 PMID 11878264 Hooper LV Gordon JI February 2001 Glycans as legislators of host microbial interactions spanning the spectrum from symbiosis to pathogenicity Glycobiology 11 2 1R 10R doi 10 1093 glycob 11 2 1R PMID 11287395 Yeh JC Hiraoka N Petryniak B Nakayama J Ellies LG Rabuka D Hindsgaul O Marth JD Lowe JB Fukuda M June 2001 Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1 3 N acetylglucosaminyltransferase Cell 105 7 957 69 doi 10 1016 S0092 8674 01 00394 4 PMID 11439191 S2CID 18674112 Somers WS Tang J Shaw GD Camphausen RT October 2000 Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P and E selectin bound to SLe X and PSGL 1 Cell 103 3 467 79 doi 10 1016 S0092 8674 00 00138 0 PMID 11081633 S2CID 12719907 Sauer J Sigurskjold BW Christensen U Frandsen TP Mirgorodskaya E Harrison M Roepstorff P Svensson B December 2000 Glucoamylase structure function relationships and protein engineering Biochim Biophys Acta 1543 2 275 293 doi 10 1016 s0167 4838 00 00232 6 PMID 11150611 Garner B Merry AH Royle L Harvey DJ Rudd PM Thillet J June 2001 Structural elucidation of the N and O glycans of human apolipoprotein a role of o glycans in conferring protease resistance J Biol Chem 276 25 22200 8 doi 10 1074 jbc M102150200 PMID 11294842 Further reading editLeloir LF 1953 Enzymic Isomerization and Related Processes Advances in Enzymology and Related Areas of Molecular Biology Advances in Enzymology and Related Areas of Molecular Biology Vol 14 pp 193 218 doi 10 1002 9780470122594 ch6 ISBN 9780470122594 PMID 13057717 a href Template Cite book html title Template Cite book cite book a journal ignored help Maxwell ES de Robichon Szulmajster H 1960 Purification of uridine diphosphate galactose 4 epimerase from yeast and the identification of protein bound diphosphopyridine nucleotide J Biol Chem 235 2 308 312 doi 10 1016 S0021 9258 18 69520 1 Wilson DB Hogness DS August 1964 The enzymes of the galactose operon in Escherichia coli I Purification and characterization of uridine diphosphogalactose 4 epimerase J Biol Chem 239 2469 81 doi 10 1016 S0021 9258 18 93876 7 PMID 14235524 External links editGeneReviews NCBI NIH UW entry on Epimerase Deficiency Galactosemia OMIM entries on Epimerase Deficiency Galactosemia UDPgalactose 4 Epimerase at the U S National Library of Medicine Medical Subject Headings MeSH Portal nbsp Biology Retrieved from https en wikipedia org w index php title UDP glucose 4 epimerase amp oldid 1172364639, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.