fbpx
Wikipedia

List of aperiodic sets of tiles

In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles).[1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself. Such a tiling is composed of a single fundamental unit or primitive cell which repeats endlessly and regularly in two independent directions.[2] An example of such a tiling is shown in the adjacent diagram (see the image description for more information). A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic.[3] The tilings obtained from an aperiodic set of tiles are often called aperiodic tilings, though strictly speaking it is the tiles themselves that are aperiodic. (The tiling itself is said to be "nonperiodic".)

Click "show" for description.
A periodic tiling with a fundamental unit (triangle) and a primitive cell (hexagon) highlighted. A tiling of the entire plane can be generated by fitting copies of these triangular patches together. In order to do this, the basic triangle needs to be rotated 180 degrees in order to fit it edge-to-edge to a neighboring triangle. Thus a triangular tiling of fundamental units will be generated that is mutually locally derivable from the tiling by the colored tiles. The other figure drawn onto the tiling, the white hexagon, represents a primitive cell of the tiling. Copies of the corresponding patch of coloured tiles can be translated to form an infinite tiling of the plane. It is not necessary to rotate this patch in order to achieve this.

The first table explains the abbreviations used in the second table. The second table contains all known aperiodic sets of tiles and gives some additional basic information about each set. This list of tiles is still incomplete.

Explanations edit

Abbreviation Meaning Explanation
E2 Euclidean plane normal flat plane
H2 hyperbolic plane plane, where the parallel postulate does not hold
E3 Euclidean 3 space space defined by three perpendicular coordinate axes
MLD Mutually locally derivable two tilings are said to be mutually locally derivable from each other, if one tiling can be obtained from the other by a simple local rule (such as deleting or inserting an edge)

List edit

Image Name Number of tiles Space Publication Date Refs. Comments
 
Trilobite and cross tiles 2 E2 1999 [4] Tilings MLD from the chair tilings.
 
Penrose P1 tiles 6 E2 1974[5] [6] Tilings MLD from the tilings by P2 and P3, Robinson triangles, and "Starfish, ivy leaf, hex".
 
Penrose P2 tiles 2 E2 1977[7] [8] Tilings MLD from the tilings by P1 and P3, Robinson triangles, and "Starfish, ivy leaf, hex".
 
Penrose P3 tiles 2 E2 1978[9] [10] Tilings MLD from the tilings by P1 and P2, Robinson triangles, and "Starfish, ivy leaf, hex".
 
Binary tiles 2 E2 1988 [11][12] Although similar in shape to the P3 tiles, the tilings are not MLD from each other. Developed in an attempt to model the atomic arrangement in binary alloys.
 
Robinson tiles 6 E2 1971[13] [14] Tiles enforce aperiodicity by forming an infinite hierarchy of square lattices.
 
Ammann A1 tiles 6 E2 1977[15] [16] Tiles enforce aperiodicity by forming an infinite hierarchal binary tree.
 
Ammann A2 tiles 2 E2 1986[17] [18]
 
Ammann A3 tiles 3 E2 1986[17] [18]
 
Ammann A4 tiles 2 E2 1986[17] [18][19] Tilings MLD with Ammann A5.
 
Ammann A5 tiles 2 E2 1982[20] [21][22] Tilings MLD with Ammann A4.
No image Penrose hexagon-triangle tiles 3 E2 1997[23] [23][24] Uses mirror images of tiles for tiling.
No image Pegasus tiles 2 E2 2016[25] [25][26] Variant of the Penrose hexagon-triangle tiles. Discovered in 2003 or earlier.
 
Golden triangle tiles 10 E2 2001[27] [28] Date is for discovery of matching rules. Dual to Ammann A2.
 
Socolar tiles 3 E2 1989[29] [30][31] Tilings MLD from the tilings by the Shield tiles.
 
Shield tiles 4 E2 1988[32] [33][34] Tilings MLD from the tilings by the Socolar tiles.
 
Square triangle tiles 5 E2 1986[35] [36]
 
Starfish, ivy leaf and hex tiles 3 E2 [37][38][39] Tiling is MLD to Penrose P1, P2, P3, and Robinson triangles.
 
Robinson triangle 4 E2 [17] Tiling is MLD to Penrose P1, P2, P3, and "Starfish, ivy leaf, hex".
 
Danzer triangles 6 E2 1996[40] [41]
 
Pinwheel tiles E2 1994[42][43] [44][45] Date is for publication of matching rules.
 
Socolar–Taylor tile 1 E2 2010 [46][47] Not a connected set. Aperiodic hierarchical tiling.
No image Wang tiles 20426 E2 1966 [48]
No image Wang tiles 104 E2 2008 [49]
No image Wang tiles 52 E2 1971[13] [50] Tiles enforce aperiodicity by forming an infinite hierarchy of square lattices.
 
Wang tiles 32 E2 1986 [51] Locally derivable from the Penrose tiles.
No image Wang tiles 24 E2 1986 [51] Locally derivable from the A2 tiling.
 
Wang tiles 16 E2 1986 [17][52] Derived from tiling A2 and its Ammann bars.
 
Wang tiles 14 E2 1996 [53][54]
 
Wang tiles 13 E2 1996 [55][56]
 
Wang tiles 11 E2 2015 [57] Smallest aperiodic set of Wang tiles.
No image Decagonal Sponge tile 1 E2 2002 [58][59] Porous tile consisting of non-overlapping point sets.
No image Goodman-Strauss strongly aperiodic tiles 85 H2 2005 [60]
No image Goodman-Strauss strongly aperiodic tiles 26 H2 2005 [61]
 
Böröczky hyperbolic tile 1 Hn 1974[62][63] [61][64] Only weakly aperiodic.
No image Schmitt tile 1 E3 1988 [65] Screw-periodic.
 
Schmitt–Conway–Danzer tile 1 E3 [65] Screw-periodic and convex.
 
Socolar–Taylor tile 1 E3 2010 [46][47] Periodic in third dimension.
No image Penrose rhombohedra 2 E3 1981[66] [67][68][69][70][71][72][73]
 
Mackay–Amman rhombohedra 4 E3 1981 [37] Icosahedral symmetry. These are decorated Penrose rhombohedra with a matching rule that force aperiodicity.
No image Wang cubes 21 E3 1996 [74]
No image Wang cubes 18 E3 1999 [75]
No image Danzer tetrahedra 4 E3 1989[76] [77]
 
I and L tiles 2 En for all n ≥ 3 1999 [78]
 
Aperiodic monotile construction diagram, based on Smith (2023)
Smith–Myers–Kaplan–Goodman-Strauss or "Hat" polytile 1 E2 2023 [79] Mirrored monotiles, the first example of an "einstein".
 
Aperiodic monotile construction diagram, based on Smith (2023)
Smith–Myers–Kaplan–Goodman-Strauss or "Spectre" polytile 1 E2 2023 [80] "Strictly chiral" aperiodic monotile, the first example of a real "einstein".
 
Supertile made of 2 tiles.
TS1 2 E2 2014 [81]

References edit

  1. ^ Grünbaum, Branko; Shephard, Geoffrey C. (1977), "Tilings by Regular Polygons", Math. Mag., 50 (5): 227–247, doi:10.2307/2689529, JSTOR 2689529
  2. ^ Edwards, Steve, "Fundamental Regions and Primitive cells", Tiling Plane & Fancy, Kennesaw State University, from the original on 2010-07-05, retrieved 2017-01-11
  3. ^ Wagon, Steve (2010), Mathematica in Action (3rd ed.), Springer Science & Business Media, p. 268, ISBN 9780387754772
  4. ^ Goodman-Strauss, Chaim (1999), "A Small Aperiodic Set of Planar Tiles", European J. Combin., 20 (5): 375–384, doi:10.1006/eujc.1998.0281 (preprint available)
  5. ^ Penrose, Roger (1974), "The role of Aesthetics in Pure and Applied Mathematical Research", Bulletin of the Institute of Mathematics and Its Applications, 10 (2): 266–271
  6. ^ Mikhael, Jules (2010), Colloidal Monolayers On Quasiperiodic Laser Fields (PDF) (Dr. rer. nat thesis), p. 23, doi:10.18419/opus-4924, (PDF) from the original on 2011-07-17
  7. ^ Gardner, Martin (January 1977), "Mathematical Games: Extraordinary nonperiodic tiling that enriches the theory of tiles", Scientific American, 236 (1): 110–121, Bibcode:1977SciAm.236a.110G, doi:10.1038/scientificamerican0177-110
  8. ^ Gardner, Martin (1997), Penrose Tiles to Trapdoor Ciphers (Revised ed.), The Mathematical Association of America, p. 86, ISBN 9780883855218
  9. ^ Penrose, Roger (1978), "Pentaplexity" (PDF), Eureka, 39: 16–22
  10. ^ Penrose, Roger (1979), "Pentaplexity", Math. Intell., 2 (1): 32–37, doi:10.1007/bf03024384, S2CID 120305260, from the original on 2011-06-07, retrieved 2010-07-26
  11. ^ Lançon, F.; Billard, L. (1988), "Two-dimensional system with a quasi-crystalline ground state" (PDF), Journal de Physique, 49 (2): 249–256, CiteSeerX 10.1.1.700.3611, doi:10.1051/jphys:01988004902024900, (PDF) from the original on 2011-05-09
  12. ^ Godrèche, C.; Lançon, F. (1992), "A simple example of a non-Pisot tiling with five-fold symmetry" (PDF), Journal de Physique I, 2 (2): 207–220, Bibcode:1992JPhy1...2..207G, doi:10.1051/jp1:1992134, S2CID 120168483, (PDF) from the original on 2012-03-07
  13. ^ a b Robinson, Raphael M. (1971), "Undecidability and nonperiodicity of tilings in the plane", Inventiones Mathematicae, 12 (3): 177–209, Bibcode:1971InMat..12..177R, doi:10.1007/BF01418780, S2CID 14259496
  14. ^ Goodman-Strauss, Chaim (1999), Sadoc, J. F.; Rivier, N. (eds.), "Aperiodic Hierarchical tilings", NATO ASI Series, Series E: Applied Sciences, 354 (Foams and Emulsions): 481–496, doi:10.1007/978-94-015-9157-7_28, ISBN 978-90-481-5180-6
  15. ^ Gardner, Martin (2001), The Colossal Book of Mathematics, W. W. Norton & Company, p. 76, ISBN 978-0393020236
  16. ^ Grünbaum, Branko & Shephard, Geoffrey C. (1986), Tilings and Patterns, New York: W. H. Freeman, ISBN 978-0-7167-1194-0, according to Dutch, Steven (2003), , University of Wisconsin - Green Bay, archived from the original on 2006-08-30, retrieved 2011-04-02; cf. Savard, John J. G., Aperiodic Tilings Within Conventional Lattices
  17. ^ a b c d e Grünbaum, Branko & Shephard, Geoffrey C. (1986), Tilings and Patterns, New York: W. H. Freeman, ISBN 978-0-7167-1194-0
  18. ^ a b c Ammann, Robert; Grünbaum, Branko; Shephard, Geoffrey C. (July 1992), "Aperiodic tiles", Discrete & Computational Geometry, 8 (1): 1–25, doi:10.1007/BF02293033, S2CID 39158680
  19. ^ Harriss, Edmund; Frettlöh, Dirk, "Ammann A4", Tilings Encyclopedia, Bielefeld University
  20. ^ Beenker, F. P. M. (1982), Algebraic theory of non-periodic tilings of the plane by two simple building blocks: a square and a rhombus, TH Report, vol. 82-WSK04, Eindhoven University of Technology
  21. ^ Komatsu, Kazushi; Nomakuchi, Kentaro; Sakamoto, Kuniko; Tokitou, Takashi (2004), "Representation of Ammann-Beenker tilings by an automaton", Nihonkai Math. J., 15 (2): 109–118, from the original on 2012-09-22, retrieved 2017-01-12
  22. ^ Harriss, Edmund; Frettlöh, Dirk, "Ammann-Beenker", Tilings Encyclopedia, Bielefeld University
  23. ^ a b Penrose, R. (1997), "Remarks on tiling: Details of a (1+ε+ε2) aperiodic set.", NATO ASI Series, Series C: Mathematical and Physical Sciences, 489 (The Mathematics of Long-Range Aperiodic Order): 467–497, doi:10.1007/978-94-015-8784-6_18, ISBN 978-0-7923-4506-0
  24. ^ Baake, Michael; Gähler, Franz; Grimm, Uwe (2012). "Hexagonal inflation tilings and planar monotiles". arXiv:1210.3967 [math.DS].
  25. ^ a b Goodman-Strauss, Chaim (2016). "The Pegasus Tiles: an aperiodic pair of tiles". arXiv:1608.07166 [math.CO].
  26. ^ Goodman-Strauss, Chaim (2003), An aperiodic pair of tiles (PDF), University of Arkansas
  27. ^ Danzer, Ludwig; van Ophuysen, Gerrit (2001), "A species of planar triangular tilings with inflation factor  ", Res. Bull. Panjab Univ. Sci., 50 (1–4): 137–175, MR 1914493
  28. ^ Gelbrich, G (1997), "Fractal Penrose tiles II. Tiles with fractal boundary as duals of Penrose triangles", Aequationes Mathematicae, 54 (1–2): 108–116, doi:10.1007/bf02755450, MR 1466298, S2CID 120531480
  29. ^ Socolar, Joshua E. S. (1989), "Simple octagonal and dodecagonal quasicrystals", Physical Review B, 39 (15): 10519–51, Bibcode:1989PhRvB..3910519S, doi:10.1103/PhysRevB.39.10519, PMID 9947860
  30. ^ Gähler, Franz; Lück, Reinhard; Ben-Abraham, Shelomo I.; Gummelt, Petra (2001), "Dodecagonal tilings as maximal cluster coverings", Ferroelectrics, 250 (1): 335–338, Bibcode:2001Fer...250..335G, doi:10.1080/00150190108225095, S2CID 123171399
  31. ^ Savard, John J. G., The Socolar tiling
  32. ^ Gähler, Franz (1988), "Crystallography of dodecagonal quasicrystals"" (PDF), in Janot, Christian (ed.), Quasicrystalline materials: Proceedings of the I.L.L. / Codest Workshop, Grenoble, 21–25 March 1988, Singapore: World Scientific, pp. 272–284
  33. ^ Gähler, Franz; Frettlöh, Dirk, "Shield", Tilings Encyclopedia, Bielefeld University
  34. ^ Gähler, Franz (1993), "Matching rules for quasicrystals: the composition-decomposition method" (PDF), Journal of Non-Crystalline Solids, 153–154 (Proceddings of the Fourth International Conference on Quasicrystals): 160–164, Bibcode:1993JNCS..153..160G, CiteSeerX 10.1.1.69.2823, doi:10.1016/0022-3093(93)90335-u, (PDF) from the original on 2011-07-17
  35. ^ Stampfli, P. (1986), "A Dodecagonal Quasiperiodic Lattice in Two Dimensions", Helv. Phys. Acta, 59: 1260–1263
  36. ^ Hermisson, Joachim; Richard, Christoph; Baake, Michael (1997), "A Guide to the Symmetry Structure of Quasiperiodic Tiling Classes", Journal de Physique I, 7 (8): 1003–1018, Bibcode:1997JPhy1...7.1003H, CiteSeerX 10.1.1.46.5796, doi:10.1051/jp1:1997200
  37. ^ a b Lord, Eric. A. (1991), "Quasicrystals and Penrose patterns" (PDF), Current Science, 61 (5): 313–319, (PDF) from the original on October 24, 2016
  38. ^ Olamy, Z.; Kléman, M. (1989), "A two dimensional aperiodic dense tiling" (PDF), Journal de Physique, 50 (1): 19–33, doi:10.1051/jphys:0198900500101900, (PDF) from the original on 2011-05-09
  39. ^ Mihalkovič, M.; Henley, C. L.; Widom, M. (2004), "Combined energy-diffraction data refinement of decagonal AlNiCo", Journal of Non-Crystalline Solids, 334–335 (8th International Conference on Quasicrystals): 177–183, arXiv:cond-mat/0311613, Bibcode:2004JNCS..334..177M, doi:10.1016/j.jnoncrysol.2003.11.034, S2CID 18958430
  40. ^ Nischke, K.-P.; Danzer, L. (1996), "A construction of inflation rules based on n-fold symmetry", Discrete & Computational Geometry, 15 (2): 221–236, doi:10.1007/bf02717732, S2CID 22538367
  41. ^ Hayashi, Hiroko; Kawachi, Yuu; Komatsu, Kazushi; Konda, Aya; Kurozoe, Miho; Nakano, Fumihiko; Odawara, Naomi; Onda, Rika; Sugio, Akinobu; Yamauchi, Masatetsu (2009), "Abstract: Notes on vertex atlas of planar Danzer tiling" (PDF), Japan Conference on Computational Geometry and Graphs, Kanazawa, November 11–13, 2009
  42. ^ Radin, Charles (1994), "The pinwheel tilings of the plane", Annals of Mathematics, Second Series, 139 (3): 661–702, CiteSeerX 10.1.1.44.9723, doi:10.2307/2118575, JSTOR 2118575, MR 1283873
  43. ^ Radin, Charles (1993), "Symmetry of Tilings of the Plane", Bull. Amer. Math. Soc., 29 (2): 213–217, arXiv:math/9310234, Bibcode:1993math.....10234R, CiteSeerX 10.1.1.45.5319, doi:10.1090/s0273-0979-1993-00425-7, S2CID 14935227
  44. ^ Radin, Charles; Wolff, Mayhew (1992), "Space tilings and local isomorphism", Geom. Dedicata, 42 (3): 355–360, doi:10.1007/bf02414073, MR 1164542, S2CID 16334831
  45. ^ Radin, C (1997), "Aperiodic tilings, ergodic theory, and rotations", NATO ASI Series, Series C: Mathematical and Physical Sciences, 489 (The mathematics of long-range aperiodic order), Kluwer Acad. Publ., Dordrecht, MR 1460035
  46. ^ a b Socolar, Joshua E. S.; Taylor, Joan M. (2011), "An aperiodic hexagonal tile", Journal of Combinatorial Theory, Series A, 118 (8): 2207–2231, arXiv:1003.4279v1, doi:10.1016/j.jcta.2011.05.001, S2CID 27912253
  47. ^ a b Socolar, Joshua E. S.; Taylor, Joan M. (2011), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer, 34 (1): 18–28, arXiv:1009.1419v1, doi:10.1007/s00283-011-9255-y, S2CID 10747746
  48. ^ Berger, Robert (1966), "The Undecidability of the Domino Problem", Memoirs of the American Mathematical Society, 66 (66), doi:10.1090/memo/0066, ISBN 978-0-8218-1266-2
  49. ^ Ollinger, Nicolas (2008), "Two-by-two Substitution Systems and the Undecidability of the Domino Problem" (PDF), Logic and Theory of Algorithms, Lecture Notes in Computer Science, vol. 5028, Springer, pp. 476–485, CiteSeerX 10.1.1.371.9357, doi:10.1007/978-3-540-69407-6_51, ISBN 978-3-540-69405-2
  50. ^ Kari, J.; Papasoglu, P. (1999), "Deterministic Aperiodic Tile Sets", Geometric and Functional Analysis, 9 (2): 353–369, doi:10.1007/s000390050090, S2CID 8775966
  51. ^ a b Lagae, Ares; Kari, Jarkko; Dutré, Phillip (2006), Aperiodic Sets of Square Tiles with Colored Corners, Report CW, vol. 460, KU Leuven, p. 15, CiteSeerX 10.1.1.89.1294
  52. ^ Carbone, Alessandra; Gromov, Mikhael; Prusinkiewicz, Przemyslaw (2000), Pattern Formation in Biology, Vision and Dynamics, Singapore: World Scientific, ISBN 978-981-02-3792-9
  53. ^ Kari, Jarkko (1996), "A small aperiodic set of Wang tiles", Discrete Mathematics, 160 (1–3): 259–264, doi:10.1016/0012-365X(95)00120-L
  54. ^ Lagae, Ares (2007), (PDF) (PhD thesis), KU Leuven, p. 149, ISBN 978-90-5682-789-2, archived from the original (PDF) on 2011-07-20
  55. ^ Culik, Karel; Kari, Jarkko (1997), "On aperiodic sets of Wang tiles", Foundations of Computer Science, Lecture Notes in Computer Science, vol. 1337, pp. 153–162, doi:10.1007/BFb0052084, ISBN 978-3-540-63746-2
  56. ^ Culik, Karel (1996), "An aperiodic set of 13 Wang tiles", Discrete Mathematics, 160 (1–3): 245–251, CiteSeerX 10.1.1.53.5421, doi:10.1016/S0012-365X(96)00118-5
  57. ^ Jeandel, Emmanuel; Rao, Michaël (2021), "An aperiodic set of 11 Wang tiles", Advances in Combinatorics: Paper No. 1, 37, arXiv:1506.06492, doi:10.19086/aic.18614, MR 4210631, S2CID 13261182
  58. ^ Zhu, Feng (2002), The Search for a Universal Tile (PDF) (BA thesis), Williams College
  59. ^ Bailey, Duane A.; Zhu, Feng (2001), A Sponge-Like (Almost) Universal Tile (PDF), CiteSeerX 10.1.1.103.3739
  60. ^ Goodman-Strauss, Chaim (2010), "A hierarchical strongly aperiodic set of tiles in the hyperbolic plane" (PDF), Theoretical Computer Science, 411 (7–9): 1085–1093, doi:10.1016/j.tcs.2009.11.018
  61. ^ a b Goodman-Strauss, Chaim (2005), "A strongly aperiodic set of tiles in the hyperbolic plane", Invent. Math., 159 (1): 130–132, Bibcode:2004InMat.159..119G, CiteSeerX 10.1.1.477.1974, doi:10.1007/s00222-004-0384-1, S2CID 5348203
  62. ^ Böröczky, K. (1974), "Gömbkitöltések állandó görbületü terekben I", Matematikai Lapok, 25: 265–306
  63. ^ Böröczky, K. (1974), "Gömbkitöltések állandó görbületü terekben II", Matematikai Lapok, 26: 67–90
  64. ^ Dolbilin, Nikkolai; Frettlöh, Dirk (2010), "Properties of Böröczky tilings in high dimensional hyperbolic spaces" (PDF), European J. Combin., 31 (4): 1181–1195, arXiv:0705.0291, CiteSeerX 10.1.1.246.9821, doi:10.1016/j.ejc.2009.11.016, S2CID 13607905
  65. ^ a b Radin, Charles (1995), "Aperiodic tilings in higher dimensions" (PDF), Proceedings of the American Mathematical Society, 123 (11), American Mathematical Society: 3543–3548, doi:10.2307/2161105, JSTOR 2161105, retrieved 2013-09-25
  66. ^ Mackay, Alan L. (1981), "De Nive Quinquangula: On the pentagonal snowflake" (PDF), Sov. Phys. Crystallogr., 26 (5): 517–522, (PDF) from the original on 2011-07-21
  67. ^ Meisterernst, Götz, Experimente zur Wachstumskinetik Dekagonaler Quasikristalle (PDF) (Dissertation), Ludwig Maximilian University of Munich, pp. 18–19, (PDF) from the original on 2011-06-17
  68. ^ Jirong, Sun (1993), "Structure Transition of the Three-Dimensional Penrose Tiling Under Phason Strain Field", Chinese Physics Letters, 10 (8): 449–452, Bibcode:1993ChPhL..10..449S, doi:10.1088/0256-307x/10/8/001, S2CID 250911962
  69. ^ Inchbald, Guy (2002), A 3-D Quasicrystal Structure
  70. ^ Lord, E. A.; Ranganathan, S.; Kulkarni, U. D. (2001), "Quasicrystals: tiling versus clustering" (PDF), Philosophical Magazine A, 81 (11): 2645–2651, Bibcode:2001PMagA..81.2645L, CiteSeerX 10.1.1.487.2640, doi:10.1080/01418610108216660, S2CID 138403519, (PDF) from the original on 2011-07-21
  71. ^ Rudhart, Christoph Paul (June 1999), Zur numerischen Simulation des Bruchs von Quasikristallen (Thesis), University of Stuttgart, p. 11, doi:10.18419/opus-4639
  72. ^ Lord, E. A.; Ranganathan, S.; Kulkarni, U. D. (2000), "Tilings, coverings, clusters and quasicrystals" (PDF), Current Science, 78 (1): 64–72, (PDF) from the original on 2011-07-21
  73. ^ Katz, A. (1988), "Theory of Matching Rules for the 3-Dimensional Penrose Tilings", Communications in Mathematical Physics, 118 (2): 263–288, Bibcode:1988CMaPh.118..263K, doi:10.1007/BF01218580, S2CID 121086829
  74. ^ Culik, Karel; Kari, Jarkko (1995), "An aperiodic set of Wang cubes", Journal of Universal Computer Science, 1 (10), CiteSeerX 10.1.1.54.5897, doi:10.3217/jucs-001-10-0675
  75. ^ Walther. Gerd; Selter, Christoph, eds. (1999), Mathematikdidaktik als design science : Festschrift für Erich Christian Wittmann, Leipzig: Ernst Klett Grundschulverlag, ISBN 978-3-12-200060-8
  76. ^ Danzer, L. (1989), "Three-Dimensional Analogs of the Planar Penrose Tilings and Quasicrystals", Discrete Mathematics, 76 (1): 1–7, doi:10.1016/0012-365X(89)90282-3
  77. ^ Zerhusen, Aaron (1997), Danzer's three dimensional tiling, University of Kentucky
  78. ^ Goodman-Strauss, Chaim (1999), "An Aperiodic Pair of Tiles in En for all n ≥ 3", European J. Combin., 20 (5): 385–395, doi:10.1006/eujc.1998.0282 (preprint available)
  79. ^ Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2023). "An aperiodic monotile". arXiv:2303.10798 [math.CO].
  80. ^ Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2023). "A chiral aperiodic monotile". arXiv:2305.17743 [math.CO].
  81. ^ Mehta, Chirag (2021-04-03). "The art of what if". Journal of Mathematics and the Arts. 15 (2): 198–200. doi:10.1080/17513472.2021.1919977. ISSN 1751-3472.

External links edit

  • Stephens P. W., Goldman A. I.
  • Levine D., Steinhardt P. J. Quasicrystals I Definition and structure
  • Tilings Encyclopedia

list, aperiodic, sets, tiles, geometry, tiling, partition, plane, other, geometric, setting, into, closed, sets, called, tiles, without, gaps, overlaps, other, than, boundaries, tiles, tiling, considered, periodic, there, exist, translations, independent, dire. In geometry a tiling is a partition of the plane or any other geometric setting into closed sets called tiles without gaps or overlaps other than the boundaries of the tiles 1 A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself Such a tiling is composed of a single fundamental unit or primitive cell which repeats endlessly and regularly in two independent directions 2 An example of such a tiling is shown in the adjacent diagram see the image description for more information A tiling that cannot be constructed from a single primitive cell is called nonperiodic If a given set of tiles allows only nonperiodic tilings then this set of tiles is called aperiodic 3 The tilings obtained from an aperiodic set of tiles are often called aperiodic tilings though strictly speaking it is the tiles themselves that are aperiodic The tiling itself is said to be nonperiodic Click show for description A periodic tiling with a fundamental unit triangle and a primitive cell hexagon highlighted A tiling of the entire plane can be generated by fitting copies of these triangular patches together In order to do this the basic triangle needs to be rotated 180 degrees in order to fit it edge to edge to a neighboring triangle Thus a triangular tiling of fundamental units will be generated that is mutually locally derivable from the tiling by the colored tiles The other figure drawn onto the tiling the white hexagon represents a primitive cell of the tiling Copies of the corresponding patch of coloured tiles can be translated to form an infinite tiling of the plane It is not necessary to rotate this patch in order to achieve this The first table explains the abbreviations used in the second table The second table contains all known aperiodic sets of tiles and gives some additional basic information about each set This list of tiles is still incomplete Contents 1 Explanations 2 List 3 References 4 External linksExplanations editAbbreviation Meaning ExplanationE2 Euclidean plane normal flat planeH2 hyperbolic plane plane where the parallel postulate does not holdE3 Euclidean 3 space space defined by three perpendicular coordinate axesMLD Mutually locally derivable two tilings are said to be mutually locally derivable from each other if one tiling can be obtained from the other by a simple local rule such as deleting or inserting an edge List editThis is a dynamic list and may never be able to satisfy particular standards for completeness You can help by adding missing items with reliable sources Image Name Number of tiles Space Publication Date Refs Comments nbsp Trilobite and cross tiles 2 E2 1999 4 Tilings MLD from the chair tilings nbsp Penrose P1 tiles 6 E2 1974 5 6 Tilings MLD from the tilings by P2 and P3 Robinson triangles and Starfish ivy leaf hex nbsp Penrose P2 tiles 2 E2 1977 7 8 Tilings MLD from the tilings by P1 and P3 Robinson triangles and Starfish ivy leaf hex nbsp Penrose P3 tiles 2 E2 1978 9 10 Tilings MLD from the tilings by P1 and P2 Robinson triangles and Starfish ivy leaf hex nbsp Binary tiles 2 E2 1988 11 12 Although similar in shape to the P3 tiles the tilings are not MLD from each other Developed in an attempt to model the atomic arrangement in binary alloys nbsp Robinson tiles 6 E2 1971 13 14 Tiles enforce aperiodicity by forming an infinite hierarchy of square lattices nbsp Ammann A1 tiles 6 E2 1977 15 16 Tiles enforce aperiodicity by forming an infinite hierarchal binary tree nbsp Ammann A2 tiles 2 E2 1986 17 18 nbsp Ammann A3 tiles 3 E2 1986 17 18 nbsp Ammann A4 tiles 2 E2 1986 17 18 19 Tilings MLD with Ammann A5 nbsp Ammann A5 tiles 2 E2 1982 20 21 22 Tilings MLD with Ammann A4 No image Penrose hexagon triangle tiles 3 E2 1997 23 23 24 Uses mirror images of tiles for tiling No image Pegasus tiles 2 E2 2016 25 25 26 Variant of the Penrose hexagon triangle tiles Discovered in 2003 or earlier nbsp Golden triangle tiles 10 E2 2001 27 28 Date is for discovery of matching rules Dual to Ammann A2 nbsp Socolar tiles 3 E2 1989 29 30 31 Tilings MLD from the tilings by the Shield tiles nbsp Shield tiles 4 E2 1988 32 33 34 Tilings MLD from the tilings by the Socolar tiles nbsp Square triangle tiles 5 E2 1986 35 36 nbsp Starfish ivy leaf and hex tiles 3 E2 37 38 39 Tiling is MLD to Penrose P1 P2 P3 and Robinson triangles nbsp Robinson triangle 4 E2 17 Tiling is MLD to Penrose P1 P2 P3 and Starfish ivy leaf hex nbsp Danzer triangles 6 E2 1996 40 41 nbsp Pinwheel tiles E2 1994 42 43 44 45 Date is for publication of matching rules nbsp Socolar Taylor tile 1 E2 2010 46 47 Not a connected set Aperiodic hierarchical tiling No image Wang tiles 20426 E2 1966 48 No image Wang tiles 104 E2 2008 49 No image Wang tiles 52 E2 1971 13 50 Tiles enforce aperiodicity by forming an infinite hierarchy of square lattices nbsp Wang tiles 32 E2 1986 51 Locally derivable from the Penrose tiles No image Wang tiles 24 E2 1986 51 Locally derivable from the A2 tiling nbsp Wang tiles 16 E2 1986 17 52 Derived from tiling A2 and its Ammann bars nbsp Wang tiles 14 E2 1996 53 54 nbsp Wang tiles 13 E2 1996 55 56 nbsp Wang tiles 11 E2 2015 57 Smallest aperiodic set of Wang tiles No image Decagonal Sponge tile 1 E2 2002 58 59 Porous tile consisting of non overlapping point sets No image Goodman Strauss strongly aperiodic tiles 85 H2 2005 60 No image Goodman Strauss strongly aperiodic tiles 26 H2 2005 61 nbsp Boroczky hyperbolic tile 1 Hn 1974 62 63 61 64 Only weakly aperiodic No image Schmitt tile 1 E3 1988 65 Screw periodic nbsp Schmitt Conway Danzer tile 1 E3 65 Screw periodic and convex nbsp Socolar Taylor tile 1 E3 2010 46 47 Periodic in third dimension No image Penrose rhombohedra 2 E3 1981 66 67 68 69 70 71 72 73 nbsp Mackay Amman rhombohedra 4 E3 1981 37 Icosahedral symmetry These are decorated Penrose rhombohedra with a matching rule that force aperiodicity No image Wang cubes 21 E3 1996 74 No image Wang cubes 18 E3 1999 75 No image Danzer tetrahedra 4 E3 1989 76 77 nbsp I and L tiles 2 En for all n 3 1999 78 nbsp Aperiodic monotile construction diagram based on Smith 2023 Smith Myers Kaplan Goodman Strauss or Hat polytile 1 E2 2023 79 Mirrored monotiles the first example of an einstein nbsp Aperiodic monotile construction diagram based on Smith 2023 Smith Myers Kaplan Goodman Strauss or Spectre polytile 1 E2 2023 80 Strictly chiral aperiodic monotile the first example of a real einstein nbsp Supertile made of 2 tiles TS1 2 E2 2014 81 References edit Grunbaum Branko Shephard Geoffrey C 1977 Tilings by Regular Polygons Math Mag 50 5 227 247 doi 10 2307 2689529 JSTOR 2689529 Edwards Steve Fundamental Regions and Primitive cells Tiling Plane amp Fancy Kennesaw State University archived from the original on 2010 07 05 retrieved 2017 01 11 Wagon Steve 2010 Mathematica in Action 3rd ed Springer Science amp Business Media p 268 ISBN 9780387754772 Goodman Strauss Chaim 1999 A Small Aperiodic Set of Planar Tiles European J Combin 20 5 375 384 doi 10 1006 eujc 1998 0281 preprint available Penrose Roger 1974 The role of Aesthetics in Pure and Applied Mathematical Research Bulletin of the Institute of Mathematics and Its Applications 10 2 266 271 Mikhael Jules 2010 Colloidal Monolayers On Quasiperiodic Laser Fields PDF Dr rer nat thesis p 23 doi 10 18419 opus 4924 archived PDF from the original on 2011 07 17 Gardner Martin January 1977 Mathematical Games Extraordinary nonperiodic tiling that enriches the theory of tiles Scientific American 236 1 110 121 Bibcode 1977SciAm 236a 110G doi 10 1038 scientificamerican0177 110 Gardner Martin 1997 Penrose Tiles to Trapdoor Ciphers Revised ed The Mathematical Association of America p 86 ISBN 9780883855218 Penrose Roger 1978 Pentaplexity PDF Eureka 39 16 22 Penrose Roger 1979 Pentaplexity Math Intell 2 1 32 37 doi 10 1007 bf03024384 S2CID 120305260 archived from the original on 2011 06 07 retrieved 2010 07 26 Lancon F Billard L 1988 Two dimensional system with a quasi crystalline ground state PDF Journal de Physique 49 2 249 256 CiteSeerX 10 1 1 700 3611 doi 10 1051 jphys 01988004902024900 archived PDF from the original on 2011 05 09 Godreche C Lancon F 1992 A simple example of a non Pisot tiling with five fold symmetry PDF Journal de Physique I 2 2 207 220 Bibcode 1992JPhy1 2 207G doi 10 1051 jp1 1992134 S2CID 120168483 archived PDF from the original on 2012 03 07 a b Robinson Raphael M 1971 Undecidability and nonperiodicity of tilings in the plane Inventiones Mathematicae 12 3 177 209 Bibcode 1971InMat 12 177R doi 10 1007 BF01418780 S2CID 14259496 Goodman Strauss Chaim 1999 Sadoc J F Rivier N eds Aperiodic Hierarchical tilings NATO ASI Series Series E Applied Sciences 354 Foams and Emulsions 481 496 doi 10 1007 978 94 015 9157 7 28 ISBN 978 90 481 5180 6 Gardner Martin 2001 The Colossal Book of Mathematics W W Norton amp Company p 76 ISBN 978 0393020236 Grunbaum Branko amp Shephard Geoffrey C 1986 Tilings and Patterns New York W H Freeman ISBN 978 0 7167 1194 0 according to Dutch Steven 2003 Aperiodic Tilings University of Wisconsin Green Bay archived from the original on 2006 08 30 retrieved 2011 04 02 cf Savard John J G Aperiodic Tilings Within Conventional Lattices a b c d e Grunbaum Branko amp Shephard Geoffrey C 1986 Tilings and Patterns New York W H Freeman ISBN 978 0 7167 1194 0 a b c Ammann Robert Grunbaum Branko Shephard Geoffrey C July 1992 Aperiodic tiles Discrete amp Computational Geometry 8 1 1 25 doi 10 1007 BF02293033 S2CID 39158680 Harriss Edmund Frettloh Dirk Ammann A4 Tilings Encyclopedia Bielefeld University Beenker F P M 1982 Algebraic theory of non periodic tilings of the plane by two simple building blocks a square and a rhombus TH Report vol 82 WSK04 Eindhoven University of Technology Komatsu Kazushi Nomakuchi Kentaro Sakamoto Kuniko Tokitou Takashi 2004 Representation of Ammann Beenker tilings by an automaton Nihonkai Math J 15 2 109 118 archived from the original on 2012 09 22 retrieved 2017 01 12 Harriss Edmund Frettloh Dirk Ammann Beenker Tilings Encyclopedia Bielefeld University a b Penrose R 1997 Remarks on tiling Details of a 1 e e2 aperiodic set NATO ASI Series Series C Mathematical and Physical Sciences 489 The Mathematics of Long Range Aperiodic Order 467 497 doi 10 1007 978 94 015 8784 6 18 ISBN 978 0 7923 4506 0 Baake Michael Gahler Franz Grimm Uwe 2012 Hexagonal inflation tilings and planar monotiles arXiv 1210 3967 math DS a b Goodman Strauss Chaim 2016 The Pegasus Tiles an aperiodic pair of tiles arXiv 1608 07166 math CO Goodman Strauss Chaim 2003 An aperiodic pair of tiles PDF University of Arkansas Danzer Ludwig van Ophuysen Gerrit 2001 A species of planar triangular tilings with inflation factor t displaystyle sqrt tau nbsp Res Bull Panjab Univ Sci 50 1 4 137 175 MR 1914493 Gelbrich G 1997 Fractal Penrose tiles II Tiles with fractal boundary as duals of Penrose triangles Aequationes Mathematicae 54 1 2 108 116 doi 10 1007 bf02755450 MR 1466298 S2CID 120531480 Socolar Joshua E S 1989 Simple octagonal and dodecagonal quasicrystals Physical Review B 39 15 10519 51 Bibcode 1989PhRvB 3910519S doi 10 1103 PhysRevB 39 10519 PMID 9947860 Gahler Franz Luck Reinhard Ben Abraham Shelomo I Gummelt Petra 2001 Dodecagonal tilings as maximal cluster coverings Ferroelectrics 250 1 335 338 Bibcode 2001Fer 250 335G doi 10 1080 00150190108225095 S2CID 123171399 Savard John J G The Socolar tiling Gahler Franz 1988 Crystallography of dodecagonal quasicrystals PDF in Janot Christian ed Quasicrystalline materials Proceedings of the I L L Codest Workshop Grenoble 21 25 March 1988 Singapore World Scientific pp 272 284 Gahler Franz Frettloh Dirk Shield Tilings Encyclopedia Bielefeld University Gahler Franz 1993 Matching rules for quasicrystals the composition decomposition method PDF Journal of Non Crystalline Solids 153 154 Proceddings of the Fourth International Conference on Quasicrystals 160 164 Bibcode 1993JNCS 153 160G CiteSeerX 10 1 1 69 2823 doi 10 1016 0022 3093 93 90335 u archived PDF from the original on 2011 07 17 Stampfli P 1986 A Dodecagonal Quasiperiodic Lattice in Two Dimensions Helv Phys Acta 59 1260 1263 Hermisson Joachim Richard Christoph Baake Michael 1997 A Guide to the Symmetry Structure of Quasiperiodic Tiling Classes Journal de Physique I 7 8 1003 1018 Bibcode 1997JPhy1 7 1003H CiteSeerX 10 1 1 46 5796 doi 10 1051 jp1 1997200 a b Lord Eric A 1991 Quasicrystals and Penrose patterns PDF Current Science 61 5 313 319 archived PDF from the original on October 24 2016 Olamy Z Kleman M 1989 A two dimensional aperiodic dense tiling PDF Journal de Physique 50 1 19 33 doi 10 1051 jphys 0198900500101900 archived PDF from the original on 2011 05 09 Mihalkovic M Henley C L Widom M 2004 Combined energy diffraction data refinement of decagonal AlNiCo Journal of Non Crystalline Solids 334 335 8th International Conference on Quasicrystals 177 183 arXiv cond mat 0311613 Bibcode 2004JNCS 334 177M doi 10 1016 j jnoncrysol 2003 11 034 S2CID 18958430 Nischke K P Danzer L 1996 A construction of inflation rules based on n fold symmetry Discrete amp Computational Geometry 15 2 221 236 doi 10 1007 bf02717732 S2CID 22538367 Hayashi Hiroko Kawachi Yuu Komatsu Kazushi Konda Aya Kurozoe Miho Nakano Fumihiko Odawara Naomi Onda Rika Sugio Akinobu Yamauchi Masatetsu 2009 Abstract Notes on vertex atlas of planar Danzer tiling PDF Japan Conference on Computational Geometry and Graphs Kanazawa November 11 13 2009 Radin Charles 1994 The pinwheel tilings of the plane Annals of Mathematics Second Series 139 3 661 702 CiteSeerX 10 1 1 44 9723 doi 10 2307 2118575 JSTOR 2118575 MR 1283873 Radin Charles 1993 Symmetry of Tilings of the Plane Bull Amer Math Soc 29 2 213 217 arXiv math 9310234 Bibcode 1993math 10234R CiteSeerX 10 1 1 45 5319 doi 10 1090 s0273 0979 1993 00425 7 S2CID 14935227 Radin Charles Wolff Mayhew 1992 Space tilings and local isomorphism Geom Dedicata 42 3 355 360 doi 10 1007 bf02414073 MR 1164542 S2CID 16334831 Radin C 1997 Aperiodic tilings ergodic theory and rotations NATO ASI Series Series C Mathematical and Physical Sciences 489 The mathematics of long range aperiodic order Kluwer Acad Publ Dordrecht MR 1460035 a b Socolar Joshua E S Taylor Joan M 2011 An aperiodic hexagonal tile Journal of Combinatorial Theory Series A 118 8 2207 2231 arXiv 1003 4279v1 doi 10 1016 j jcta 2011 05 001 S2CID 27912253 a b Socolar Joshua E S Taylor Joan M 2011 Forcing nonperiodicity with a single tile The Mathematical Intelligencer 34 1 18 28 arXiv 1009 1419v1 doi 10 1007 s00283 011 9255 y S2CID 10747746 Berger Robert 1966 The Undecidability of the Domino Problem Memoirs of the American Mathematical Society 66 66 doi 10 1090 memo 0066 ISBN 978 0 8218 1266 2 Ollinger Nicolas 2008 Two by two Substitution Systems and the Undecidability of the Domino Problem PDF Logic and Theory of Algorithms Lecture Notes in Computer Science vol 5028 Springer pp 476 485 CiteSeerX 10 1 1 371 9357 doi 10 1007 978 3 540 69407 6 51 ISBN 978 3 540 69405 2 Kari J Papasoglu P 1999 Deterministic Aperiodic Tile Sets Geometric and Functional Analysis 9 2 353 369 doi 10 1007 s000390050090 S2CID 8775966 a b Lagae Ares Kari Jarkko Dutre Phillip 2006 Aperiodic Sets of Square Tiles with Colored Corners Report CW vol 460 KU Leuven p 15 CiteSeerX 10 1 1 89 1294 Carbone Alessandra Gromov Mikhael Prusinkiewicz Przemyslaw 2000 Pattern Formation in Biology Vision and Dynamics Singapore World Scientific ISBN 978 981 02 3792 9 Kari Jarkko 1996 A small aperiodic set of Wang tiles Discrete Mathematics 160 1 3 259 264 doi 10 1016 0012 365X 95 00120 L Lagae Ares 2007 Tile Based Methods in Computer Graphics PDF PhD thesis KU Leuven p 149 ISBN 978 90 5682 789 2 archived from the original PDF on 2011 07 20 Culik Karel Kari Jarkko 1997 On aperiodic sets of Wang tiles Foundations of Computer Science Lecture Notes in Computer Science vol 1337 pp 153 162 doi 10 1007 BFb0052084 ISBN 978 3 540 63746 2 Culik Karel 1996 An aperiodic set of 13 Wang tiles Discrete Mathematics 160 1 3 245 251 CiteSeerX 10 1 1 53 5421 doi 10 1016 S0012 365X 96 00118 5 Jeandel Emmanuel Rao Michael 2021 An aperiodic set of 11 Wang tiles Advances in Combinatorics Paper No 1 37 arXiv 1506 06492 doi 10 19086 aic 18614 MR 4210631 S2CID 13261182 Zhu Feng 2002 The Search for a Universal Tile PDF BA thesis Williams College Bailey Duane A Zhu Feng 2001 A Sponge Like Almost Universal Tile PDF CiteSeerX 10 1 1 103 3739 Goodman Strauss Chaim 2010 A hierarchical strongly aperiodic set of tiles in the hyperbolic plane PDF Theoretical Computer Science 411 7 9 1085 1093 doi 10 1016 j tcs 2009 11 018 a b Goodman Strauss Chaim 2005 A strongly aperiodic set of tiles in the hyperbolic plane Invent Math 159 1 130 132 Bibcode 2004InMat 159 119G CiteSeerX 10 1 1 477 1974 doi 10 1007 s00222 004 0384 1 S2CID 5348203 Boroczky K 1974 Gombkitoltesek allando gorbuletu terekben I Matematikai Lapok 25 265 306 Boroczky K 1974 Gombkitoltesek allando gorbuletu terekben II Matematikai Lapok 26 67 90 Dolbilin Nikkolai Frettloh Dirk 2010 Properties of Boroczky tilings in high dimensional hyperbolic spaces PDF European J Combin 31 4 1181 1195 arXiv 0705 0291 CiteSeerX 10 1 1 246 9821 doi 10 1016 j ejc 2009 11 016 S2CID 13607905 a b Radin Charles 1995 Aperiodic tilings in higher dimensions PDF Proceedings of the American Mathematical Society 123 11 American Mathematical Society 3543 3548 doi 10 2307 2161105 JSTOR 2161105 retrieved 2013 09 25 Mackay Alan L 1981 De Nive Quinquangula On the pentagonal snowflake PDF Sov Phys Crystallogr 26 5 517 522 archived PDF from the original on 2011 07 21 Meisterernst Gotz Experimente zur Wachstumskinetik Dekagonaler Quasikristalle PDF Dissertation Ludwig Maximilian University of Munich pp 18 19 archived PDF from the original on 2011 06 17 Jirong Sun 1993 Structure Transition of the Three Dimensional Penrose Tiling Under Phason Strain Field Chinese Physics Letters 10 8 449 452 Bibcode 1993ChPhL 10 449S doi 10 1088 0256 307x 10 8 001 S2CID 250911962 Inchbald Guy 2002 A 3 D Quasicrystal Structure Lord E A Ranganathan S Kulkarni U D 2001 Quasicrystals tiling versus clustering PDF Philosophical Magazine A 81 11 2645 2651 Bibcode 2001PMagA 81 2645L CiteSeerX 10 1 1 487 2640 doi 10 1080 01418610108216660 S2CID 138403519 archived PDF from the original on 2011 07 21 Rudhart Christoph Paul June 1999 Zur numerischen Simulation des Bruchs von Quasikristallen Thesis University of Stuttgart p 11 doi 10 18419 opus 4639 Lord E A Ranganathan S Kulkarni U D 2000 Tilings coverings clusters and quasicrystals PDF Current Science 78 1 64 72 archived PDF from the original on 2011 07 21 Katz A 1988 Theory of Matching Rules for the 3 Dimensional Penrose Tilings Communications in Mathematical Physics 118 2 263 288 Bibcode 1988CMaPh 118 263K doi 10 1007 BF01218580 S2CID 121086829 Culik Karel Kari Jarkko 1995 An aperiodic set of Wang cubes Journal of Universal Computer Science 1 10 CiteSeerX 10 1 1 54 5897 doi 10 3217 jucs 001 10 0675 Walther Gerd Selter Christoph eds 1999 Mathematikdidaktik als design science Festschrift fur Erich Christian Wittmann Leipzig Ernst Klett Grundschulverlag ISBN 978 3 12 200060 8 Danzer L 1989 Three Dimensional Analogs of the Planar Penrose Tilings and Quasicrystals Discrete Mathematics 76 1 1 7 doi 10 1016 0012 365X 89 90282 3 Zerhusen Aaron 1997 Danzer s three dimensional tiling University of Kentucky Goodman Strauss Chaim 1999 An Aperiodic Pair of Tiles in En for all n 3 European J Combin 20 5 385 395 doi 10 1006 eujc 1998 0282 preprint available Smith David Myers Joseph Samuel Kaplan Craig S Goodman Strauss Chaim 2023 An aperiodic monotile arXiv 2303 10798 math CO Smith David Myers Joseph Samuel Kaplan Craig S Goodman Strauss Chaim 2023 A chiral aperiodic monotile arXiv 2305 17743 math CO Mehta Chirag 2021 04 03 The art of what if Journal of Mathematics and the Arts 15 2 198 200 doi 10 1080 17513472 2021 1919977 ISSN 1751 3472 External links editStephens P W Goldman A I The Structure of Quasicrystals Levine D Steinhardt P J Quasicrystals I Definition and structure Tilings Encyclopedia Retrieved from https en wikipedia org w index php title List of aperiodic sets of tiles amp oldid 1212587930 List, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.