fbpx
Wikipedia

List of trigonometric identities

In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle.

These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

Pythagorean identities Edit

 
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse. The triangle shaded blue illustrates the identity  , and the red triangle shows that  .

The basic relationship between the sine and cosine is given by the Pythagorean identity:

 

where   means   and   means  

This can be viewed as a version of the Pythagorean theorem, and follows from the equation   for the unit circle. This equation can be solved for either the sine or the cosine:

 

where the sign depends on the quadrant of  

Dividing this identity by  ,  , or both yields the following identities:

 

Using these identities, it is possible to express any trigonometric function in terms of any other (up to a plus or minus sign):

Each trigonometric function in terms of each of the other five.[1]
in terms of            
             
             
             
             
             
             

Reflections, shifts, and periodicity Edit

By examining the unit circle, one can establish the following properties of the trigonometric functions.

Reflections Edit

 
Transformation of coordinates (a,b) when shifting the reflection angle   in increments of  .

When the direction of a Euclidean vector is represented by an angle   this is the angle determined by the free vector (starting at the origin) and the positive  -unit vector. The same concept may also be applied to lines in a Euclidean space, where the angle is that determined by a parallel to the given line through the origin and the positive  -axis. If a line (vector) with direction   is reflected about a line with direction   then the direction angle   of this reflected line (vector) has the value

 

The values of the trigonometric functions of these angles   for specific angles   satisfy simple identities: either they are equal, or have opposite signs, or employ the complementary trigonometric function. These are also known as reduction formulae.[2]

  reflected in  [3]
odd/even identities
  reflected in     reflected in     reflected in     reflected in  
compare to  
         
         
         
         
         
         

Shifts and periodicity Edit

 
Transformation of coordinates (a,b) when shifting the angle   in increments of  .
Shift by one quarter period Shift by one half period Shift by full periods[4] Period
       
       
       
       
       
       

Signs Edit

The sign of trigonometric functions depends on quadrant of the angle. If   and sgn is the sign function,

 

The trigonometric functions are periodic with common period   so for values of θ outside the interval   they take repeating values (see § Shifts and periodicity above).

Angle sum and difference identities Edit

 
Illustration of angle addition formulae for the sine and cosine of acute angles. Emphasized segment is of unit length.
 
Diagram showing the angle difference identities for   and  .

These are also known as the angle addition and subtraction theorems (or formulae).

 

The angle difference identities for   and   can be derived from the angle sum versions by substituting   for   and using the facts that   and  . They can also be derived by using a slightly modified version of the figure for the angle sum identities, both of which are shown here.

These identities are summarized in the first two rows of the following table, which also includes sum and difference identities for the other trigonometric functions.

Sine      [5][6]
Cosine      [6][7]
Tangent      [6][8]
Cosecant      [9]
Secant      [9]
Cotangent      [6][10]
Arcsine      [11]
Arccosine      [12]
Arctangent      [13]
Arccotangent      

Sines and cosines of sums of infinitely many angles Edit

When the series   converges absolutely then

 

Because the series   converges absolutely, it is necessarily the case that     and   In particular, in these two identities an asymmetry appears that is not seen in the case of sums of finitely many angles: in each product, there are only finitely many sine factors but there are cofinitely many cosine factors. Terms with infinitely many sine factors would necessarily be equal to zero.

When only finitely many of the angles   are nonzero then only finitely many of the terms on the right side are nonzero because all but finitely many sine factors vanish. Furthermore, in each term all but finitely many of the cosine factors are unity.

Tangents and cotangents of sums Edit

Let   (for  ) be the kth-degree elementary symmetric polynomial in the variables

 
for   that is,
 

Then

 
using the sine and cosine sum formulae above.

The number of terms on the right side depends on the number of terms on the left side.

For example:

 

and so on. The case of only finitely many terms can be proved by mathematical induction.[14]

Secants and cosecants of sums Edit

 
where   is the kth-degree elementary symmetric polynomial in the n variables     and the number of terms in the denominator and the number of factors in the product in the numerator depend on the number of terms in the sum on the left.[15] The case of only finitely many terms can be proved by mathematical induction on the number of such terms.

For example,

 

Ptolemy's theorem Edit

 
Diagram illustrating the relation between Ptolemy's theorem and the angle sum trig identity for sine. Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

Ptolemy's theorem is important in the history of trigonometric identities, as it is how results equivalent to the sum and difference formulas for sine and cosine were first proved. It states that in a cyclic quadrilateral  , as shown in the accompanying figure, the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. In the special cases of one of the diagonals or sides being a diameter of the circle, this theorem gives rise directly to the angle sum and difference trigonometric identities.[16] The relationship follows most easily when the circle is constructed to have a diameter of length one, as shown here.

By Thales's theorem,   and   are both right angles. The right-angled triangles   and   both share the hypotenuse   of length 1. Thus, the side  ,  ,   and  .

By the inscribed angle theorem, the central angle subtended by the chord   at the circle's center is twice the angle  , i.e.  . Therefore, the symmetrical pair of red triangles each has the angle   at the center. Each of these triangles has a hypotenuse of length  , so the length of   is  , i.e. simply  . The quadrilateral's other diagonal is the diameter of length 1, so the product of the diagonals' lengths is also  .

When these values are substituted into the statement of Ptolemy's theorem that  , this yields the angle sum trigonometric identity for sine:  . The angle difference formula for   can be similarly derived by letting the side   serve as a diameter instead of  .[17]

Multiple-angle formulae Edit

Tn is the nth Chebyshev polynomial  [18]
de Moivre's formula, i is the imaginary unit  [19]

Multiple-angle formulae Edit

Double-angle formulae Edit

 
Visual demonstration of the double-angle formula for sine. The area, 1/2 × base × height, of an isosceles triangle is calculated, first when upright, and then on its side. When upright, the area =  . When on its side, the area =  . Rotating the triangle does not change its area, so these two expressions are equal. Therefore,  

Formulae for twice an angle.[20]

  •  
  •  
  •  
  •  
  •  
  •  

Triple-angle formulae Edit

Formulae for triple angles.[20]

  •  
  •  
  •  
  •  
  •  
  •  

Multiple-angle and half-angle formulae Edit

Formula for multiple angles.[21]

  •  
  •  
  •  
  •  
  •  

Chebyshev method Edit

The Chebyshev method is a recursive algorithm for finding the nth multiple angle formula knowing the  th and  th values.[22]

  can be computed from  ,  , and   with

 

This can be proved by adding together the formulae

 

It follows by induction that   is a polynomial of   the so-called Chebyshev polynomial of the first kind, see Chebyshev polynomials#Trigonometric definition.

Similarly,

list, trigonometric, identities, trigonometry, trigonometric, identities, equalities, that, involve, trigonometric, functions, true, every, value, occurring, variables, which, both, sides, equality, defined, geometrically, these, identities, involving, certain. In trigonometry trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined Geometrically these are identities involving certain functions of one or more angles They are distinct from triangle identities which are identities potentially involving angles but also involving side lengths or other lengths of a triangle These identities are useful whenever expressions involving trigonometric functions need to be simplified An important application is the integration of non trigonometric functions a common technique involves first using the substitution rule with a trigonometric function and then simplifying the resulting integral with a trigonometric identity Contents 1 Pythagorean identities 2 Reflections shifts and periodicity 2 1 Reflections 2 2 Shifts and periodicity 2 3 Signs 3 Angle sum and difference identities 3 1 Sines and cosines of sums of infinitely many angles 3 2 Tangents and cotangents of sums 3 3 Secants and cosecants of sums 3 4 Ptolemy s theorem 4 Multiple angle formulae 4 1 Multiple angle formulae 4 1 1 Double angle formulae 4 1 2 Triple angle formulae 4 1 3 Multiple angle and half angle formulae 4 1 4 Chebyshev method 4 2 Half angle formulae 4 3 Table 5 Power reduction formulae 6 Product to sum and sum to product identities 6 1 Product to sum identities 6 2 Sum to product identities 6 3 Hermite s cotangent identity 6 4 Finite products of trigonometric functions 7 Linear combinations 7 1 Sine and cosine 7 2 Arbitrary phase shift 7 3 More than two sinusoids 8 Lagrange s trigonometric identities 9 Certain linear fractional transformations 10 Relation to the complex exponential function 11 Infinite product formulae 12 Infinite sums 13 Inverse trigonometric functions 14 Identities without variables 14 1 Computing p 14 2 An identity of Euclid 15 Composition of trigonometric functions 16 Further conditional identities for the case a b g 180 17 Historical shorthands 18 Miscellaneous 18 1 Relationship between all trigonometric ratios 18 2 Dirichlet kernel 18 3 Tangent half angle substitution 18 4 Viete s infinite product 19 See also 20 References 21 Bibliography 22 External linksPythagorean identities EditMain article Pythagorean trigonometric identity nbsp Trigonometric functions and their reciprocals on the unit circle All of the right angled triangles are similar i e the ratios between their corresponding sides are the same For sin cos and tan the unit length radius forms the hypotenuse of the triangle that defines them The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse The triangle shaded blue illustrates the identity 1 cot 2 8 csc 2 8 displaystyle 1 cot 2 theta csc 2 theta nbsp and the red triangle shows that tan 2 8 1 sec 2 8 displaystyle tan 2 theta 1 sec 2 theta nbsp The basic relationship between the sine and cosine is given by the Pythagorean identity sin 2 8 cos 2 8 1 displaystyle sin 2 theta cos 2 theta 1 nbsp where sin 2 8 displaystyle sin 2 theta nbsp means sin 8 2 displaystyle sin theta 2 nbsp and cos 2 8 displaystyle cos 2 theta nbsp means cos 8 2 displaystyle cos theta 2 nbsp This can be viewed as a version of the Pythagorean theorem and follows from the equation x 2 y 2 1 displaystyle x 2 y 2 1 nbsp for the unit circle This equation can be solved for either the sine or the cosine sin 8 1 cos 2 8 cos 8 1 sin 2 8 displaystyle begin aligned sin theta amp pm sqrt 1 cos 2 theta cos theta amp pm sqrt 1 sin 2 theta end aligned nbsp where the sign depends on the quadrant of 8 displaystyle theta nbsp Dividing this identity by sin 2 8 displaystyle sin 2 theta nbsp cos 2 8 displaystyle cos 2 theta nbsp or both yields the following identities 1 cot 2 8 csc 2 8 1 tan 2 8 sec 2 8 sec 2 8 csc 2 8 sec 2 8 csc 2 8 displaystyle begin aligned amp 1 cot 2 theta csc 2 theta amp 1 tan 2 theta sec 2 theta amp sec 2 theta csc 2 theta sec 2 theta csc 2 theta end aligned nbsp Using these identities it is possible to express any trigonometric function in terms of any other up to a plus or minus sign Each trigonometric function in terms of each of the other five 1 in terms of sin 8 displaystyle sin theta nbsp csc 8 displaystyle csc theta nbsp cos 8 displaystyle cos theta nbsp sec 8 displaystyle sec theta nbsp tan 8 displaystyle tan theta nbsp cot 8 displaystyle cot theta nbsp sin 8 displaystyle sin theta nbsp sin 8 displaystyle sin theta nbsp 1 csc 8 displaystyle frac 1 csc theta nbsp 1 cos 2 8 displaystyle pm sqrt 1 cos 2 theta nbsp sec 2 8 1 sec 8 displaystyle pm frac sqrt sec 2 theta 1 sec theta nbsp tan 8 1 tan 2 8 displaystyle pm frac tan theta sqrt 1 tan 2 theta nbsp 1 1 cot 2 8 displaystyle pm frac 1 sqrt 1 cot 2 theta nbsp csc 8 displaystyle csc theta nbsp 1 sin 8 displaystyle frac 1 sin theta nbsp csc 8 displaystyle csc theta nbsp 1 1 cos 2 8 displaystyle pm frac 1 sqrt 1 cos 2 theta nbsp sec 8 sec 2 8 1 displaystyle pm frac sec theta sqrt sec 2 theta 1 nbsp 1 tan 2 8 tan 8 displaystyle pm frac sqrt 1 tan 2 theta tan theta nbsp 1 cot 2 8 displaystyle pm sqrt 1 cot 2 theta nbsp cos 8 displaystyle cos theta nbsp 1 sin 2 8 displaystyle pm sqrt 1 sin 2 theta nbsp csc 2 8 1 csc 8 displaystyle pm frac sqrt csc 2 theta 1 csc theta nbsp cos 8 displaystyle cos theta nbsp 1 sec 8 displaystyle frac 1 sec theta nbsp 1 1 tan 2 8 displaystyle pm frac 1 sqrt 1 tan 2 theta nbsp cot 8 1 cot 2 8 displaystyle pm frac cot theta sqrt 1 cot 2 theta nbsp sec 8 displaystyle sec theta nbsp 1 1 sin 2 8 displaystyle pm frac 1 sqrt 1 sin 2 theta nbsp csc 8 csc 2 8 1 displaystyle pm frac csc theta sqrt csc 2 theta 1 nbsp 1 cos 8 displaystyle frac 1 cos theta nbsp sec 8 displaystyle sec theta nbsp 1 tan 2 8 displaystyle pm sqrt 1 tan 2 theta nbsp 1 cot 2 8 cot 8 displaystyle pm frac sqrt 1 cot 2 theta cot theta nbsp tan 8 displaystyle tan theta nbsp sin 8 1 sin 2 8 displaystyle pm frac sin theta sqrt 1 sin 2 theta nbsp 1 csc 2 8 1 displaystyle pm frac 1 sqrt csc 2 theta 1 nbsp 1 cos 2 8 cos 8 displaystyle pm frac sqrt 1 cos 2 theta cos theta nbsp sec 2 8 1 displaystyle pm sqrt sec 2 theta 1 nbsp tan 8 displaystyle tan theta nbsp 1 cot 8 displaystyle frac 1 cot theta nbsp cot 8 displaystyle cot theta nbsp 1 sin 2 8 sin 8 displaystyle pm frac sqrt 1 sin 2 theta sin theta nbsp csc 2 8 1 displaystyle pm sqrt csc 2 theta 1 nbsp cos 8 1 cos 2 8 displaystyle pm frac cos theta sqrt 1 cos 2 theta nbsp 1 sec 2 8 1 displaystyle pm frac 1 sqrt sec 2 theta 1 nbsp 1 tan 8 displaystyle frac 1 tan theta nbsp cot 8 displaystyle cot theta nbsp Reflections shifts and periodicity EditBy examining the unit circle one can establish the following properties of the trigonometric functions Reflections Edit nbsp Transformation of coordinates a b when shifting the reflection angle a displaystyle alpha nbsp in increments of p 4 displaystyle frac pi 4 nbsp When the direction of a Euclidean vector is represented by an angle 8 displaystyle theta nbsp this is the angle determined by the free vector starting at the origin and the positive x displaystyle x nbsp unit vector The same concept may also be applied to lines in a Euclidean space where the angle is that determined by a parallel to the given line through the origin and the positive x displaystyle x nbsp axis If a line vector with direction 8 displaystyle theta nbsp is reflected about a line with direction a displaystyle alpha nbsp then the direction angle 8 displaystyle theta prime nbsp of this reflected line vector has the value8 2 a 8 displaystyle theta prime 2 alpha theta nbsp The values of the trigonometric functions of these angles 8 8 displaystyle theta theta prime nbsp for specific angles a displaystyle alpha nbsp satisfy simple identities either they are equal or have opposite signs or employ the complementary trigonometric function These are also known as reduction formulae 2 8 displaystyle theta nbsp reflected in a 0 displaystyle alpha 0 nbsp 3 odd even identities 8 displaystyle theta nbsp reflected in a p 4 displaystyle alpha frac pi 4 nbsp 8 displaystyle theta nbsp reflected in a p 2 displaystyle alpha frac pi 2 nbsp 8 displaystyle theta nbsp reflected in a 3 p 4 displaystyle alpha frac 3 pi 4 nbsp 8 displaystyle theta nbsp reflected in a p displaystyle alpha pi nbsp compare to a 0 displaystyle alpha 0 nbsp sin 8 sin 8 displaystyle sin theta sin theta nbsp sin p 2 8 cos 8 displaystyle sin left tfrac pi 2 theta right cos theta nbsp sin p 8 sin 8 displaystyle sin pi theta sin theta nbsp sin 3 p 2 8 cos 8 displaystyle sin left tfrac 3 pi 2 theta right cos theta nbsp sin 2 p 8 sin 8 sin 8 displaystyle sin 2 pi theta sin theta sin theta nbsp cos 8 cos 8 displaystyle cos theta cos theta nbsp cos p 2 8 sin 8 displaystyle cos left tfrac pi 2 theta right sin theta nbsp cos p 8 cos 8 displaystyle cos pi theta cos theta nbsp cos 3 p 2 8 sin 8 displaystyle cos left tfrac 3 pi 2 theta right sin theta nbsp cos 2 p 8 cos 8 cos 8 displaystyle cos 2 pi theta cos theta cos theta nbsp tan 8 tan 8 displaystyle tan theta tan theta nbsp tan p 2 8 cot 8 displaystyle tan left tfrac pi 2 theta right cot theta nbsp tan p 8 tan 8 displaystyle tan pi theta tan theta nbsp tan 3 p 2 8 cot 8 displaystyle tan left tfrac 3 pi 2 theta right cot theta nbsp tan 2 p 8 tan 8 tan 8 displaystyle tan 2 pi theta tan theta tan theta nbsp csc 8 csc 8 displaystyle csc theta csc theta nbsp csc p 2 8 sec 8 displaystyle csc left tfrac pi 2 theta right sec theta nbsp csc p 8 csc 8 displaystyle csc pi theta csc theta nbsp csc 3 p 2 8 sec 8 displaystyle csc left tfrac 3 pi 2 theta right sec theta nbsp csc 2 p 8 csc 8 csc 8 displaystyle csc 2 pi theta csc theta csc theta nbsp sec 8 sec 8 displaystyle sec theta sec theta nbsp sec p 2 8 csc 8 displaystyle sec left tfrac pi 2 theta right csc theta nbsp sec p 8 sec 8 displaystyle sec pi theta sec theta nbsp sec 3 p 2 8 csc 8 displaystyle sec left tfrac 3 pi 2 theta right csc theta nbsp sec 2 p 8 sec 8 sec 8 displaystyle sec 2 pi theta sec theta sec theta nbsp cot 8 cot 8 displaystyle cot theta cot theta nbsp cot p 2 8 tan 8 displaystyle cot left tfrac pi 2 theta right tan theta nbsp cot p 8 cot 8 displaystyle cot pi theta cot theta nbsp cot 3 p 2 8 tan 8 displaystyle cot left tfrac 3 pi 2 theta right tan theta nbsp cot 2 p 8 cot 8 cot 8 displaystyle cot 2 pi theta cot theta cot theta nbsp Shifts and periodicity Edit nbsp Transformation of coordinates a b when shifting the angle 8 displaystyle theta nbsp in increments of p 2 displaystyle frac pi 2 nbsp Shift by one quarter period Shift by one half period Shift by full periods 4 Periodsin 8 p 2 cos 8 displaystyle sin theta pm tfrac pi 2 pm cos theta nbsp sin 8 p sin 8 displaystyle sin theta pi sin theta nbsp sin 8 k 2 p sin 8 displaystyle sin theta k cdot 2 pi sin theta nbsp 2 p displaystyle 2 pi nbsp cos 8 p 2 sin 8 displaystyle cos theta pm tfrac pi 2 mp sin theta nbsp cos 8 p cos 8 displaystyle cos theta pi cos theta nbsp cos 8 k 2 p cos 8 displaystyle cos theta k cdot 2 pi cos theta nbsp 2 p displaystyle 2 pi nbsp csc 8 p 2 sec 8 displaystyle csc theta pm tfrac pi 2 pm sec theta nbsp csc 8 p csc 8 displaystyle csc theta pi csc theta nbsp csc 8 k 2 p csc 8 displaystyle csc theta k cdot 2 pi csc theta nbsp 2 p displaystyle 2 pi nbsp sec 8 p 2 csc 8 displaystyle sec theta pm tfrac pi 2 mp csc theta nbsp sec 8 p sec 8 displaystyle sec theta pi sec theta nbsp sec 8 k 2 p sec 8 displaystyle sec theta k cdot 2 pi sec theta nbsp 2 p displaystyle 2 pi nbsp tan 8 p 4 tan 8 1 1 tan 8 displaystyle tan theta pm tfrac pi 4 tfrac tan theta pm 1 1 mp tan theta nbsp tan 8 p 2 cot 8 displaystyle tan theta tfrac pi 2 cot theta nbsp tan 8 k p tan 8 displaystyle tan theta k cdot pi tan theta nbsp p displaystyle pi nbsp cot 8 p 4 cot 8 1 1 cot 8 displaystyle cot theta pm tfrac pi 4 tfrac cot theta mp 1 1 pm cot theta nbsp cot 8 p 2 tan 8 displaystyle cot theta tfrac pi 2 tan theta nbsp cot 8 k p cot 8 displaystyle cot theta k cdot pi cot theta nbsp p displaystyle pi nbsp Signs Edit The sign of trigonometric functions depends on quadrant of the angle If p lt 8 p displaystyle pi lt theta leq pi nbsp and sgn is the sign function sgn sin 8 sgn csc 8 1 if 0 lt 8 lt p 1 if p lt 8 lt 0 0 if 8 0 p sgn cos 8 sgn sec 8 1 if 1 2 p lt 8 lt 1 2 p 1 if p lt 8 lt 1 2 p or 1 2 p lt 8 lt p 0 if 8 1 2 p 1 2 p sgn tan 8 sgn cot 8 1 if p lt 8 lt 1 2 p or 0 lt 8 lt 1 2 p 1 if 1 2 p lt 8 lt 0 or 1 2 p lt 8 lt p 0 if 8 1 2 p 0 1 2 p p displaystyle begin aligned operatorname sgn sin theta operatorname sgn csc theta amp begin cases 1 amp text if 0 lt theta lt pi 1 amp text if pi lt theta lt 0 0 amp text if theta in 0 pi end cases 5mu operatorname sgn cos theta operatorname sgn sec theta amp begin cases 1 amp text if tfrac 1 2 pi lt theta lt tfrac 1 2 pi 1 amp text if pi lt theta lt tfrac 1 2 pi text or tfrac 1 2 pi lt theta lt pi 0 amp text if theta in bigl tfrac 1 2 pi tfrac 1 2 pi bigr end cases 5mu operatorname sgn tan theta operatorname sgn cot theta amp begin cases 1 amp text if pi lt theta lt tfrac 1 2 pi text or 0 lt theta lt tfrac 1 2 pi 1 amp text if tfrac 1 2 pi lt theta lt 0 text or tfrac 1 2 pi lt theta lt pi 0 amp text if theta in bigl tfrac 1 2 pi 0 tfrac 1 2 pi pi bigr end cases end aligned nbsp The trigonometric functions are periodic with common period 2 p displaystyle 2 pi nbsp so for values of 8 outside the interval p p displaystyle pi pi nbsp they take repeating values see Shifts and periodicity above Angle sum and difference identities EditSee also Proofs of trigonometric identities Angle sum identities and Small angle approximation Angle sum and difference nbsp Illustration of angle addition formulae for the sine and cosine of acute angles Emphasized segment is of unit length nbsp Diagram showing the angle difference identities for sin a b displaystyle sin alpha beta nbsp and cos a b displaystyle cos alpha beta nbsp These are also known as the angle addition and subtraction theorems or formulae sin a b sin a cos b cos a sin b sin a b sin a cos b cos a sin b cos a b cos a cos b sin a sin b cos a b cos a cos b sin a sin b displaystyle begin aligned sin alpha beta amp sin alpha cos beta cos alpha sin beta sin alpha beta amp sin alpha cos beta cos alpha sin beta cos alpha beta amp cos alpha cos beta sin alpha sin beta cos alpha beta amp cos alpha cos beta sin alpha sin beta end aligned nbsp The angle difference identities for sin a b displaystyle sin alpha beta nbsp and cos a b displaystyle cos alpha beta nbsp can be derived from the angle sum versions by substituting b displaystyle beta nbsp for b displaystyle beta nbsp and using the facts that sin b sin b displaystyle sin beta sin beta nbsp and cos b cos b displaystyle cos beta cos beta nbsp They can also be derived by using a slightly modified version of the figure for the angle sum identities both of which are shown here These identities are summarized in the first two rows of the following table which also includes sum and difference identities for the other trigonometric functions Sine sin a b displaystyle sin alpha pm beta nbsp displaystyle nbsp sin a cos b cos a sin b displaystyle sin alpha cos beta pm cos alpha sin beta nbsp 5 6 Cosine cos a b displaystyle cos alpha pm beta nbsp displaystyle nbsp cos a cos b sin a sin b displaystyle cos alpha cos beta mp sin alpha sin beta nbsp 6 7 Tangent tan a b displaystyle tan alpha pm beta nbsp displaystyle nbsp tan a tan b 1 tan a tan b displaystyle frac tan alpha pm tan beta 1 mp tan alpha tan beta nbsp 6 8 Cosecant csc a b displaystyle csc alpha pm beta nbsp displaystyle nbsp sec a sec b csc a csc b sec a csc b csc a sec b displaystyle frac sec alpha sec beta csc alpha csc beta sec alpha csc beta pm csc alpha sec beta nbsp 9 Secant sec a b displaystyle sec alpha pm beta nbsp displaystyle nbsp sec a sec b csc a csc b csc a csc b sec a sec b displaystyle frac sec alpha sec beta csc alpha csc beta csc alpha csc beta mp sec alpha sec beta nbsp 9 Cotangent cot a b displaystyle cot alpha pm beta nbsp displaystyle nbsp cot a cot b 1 cot b cot a displaystyle frac cot alpha cot beta mp 1 cot beta pm cot alpha nbsp 6 10 Arcsine arcsin x arcsin y displaystyle arcsin x pm arcsin y nbsp displaystyle nbsp arcsin x 1 y 2 y 1 x 2 displaystyle arcsin left x sqrt 1 y 2 pm y sqrt 1 x 2 right nbsp 11 Arccosine arccos x arccos y displaystyle arccos x pm arccos y nbsp displaystyle nbsp arccos x y 1 x 2 1 y 2 displaystyle arccos left xy mp sqrt left 1 x 2 right left 1 y 2 right right nbsp 12 Arctangent arctan x arctan y displaystyle arctan x pm arctan y nbsp displaystyle nbsp arctan x y 1 x y displaystyle arctan left frac x pm y 1 mp xy right nbsp 13 Arccotangent arccot x arccot y displaystyle operatorname arccot x pm operatorname arccot y nbsp displaystyle nbsp arccot x y 1 y x displaystyle operatorname arccot left frac xy mp 1 y pm x right nbsp Sines and cosines of sums of infinitely many angles Edit When the series i 1 8 i textstyle sum i 1 infty theta i nbsp converges absolutely thensin i 1 8 i odd k 1 1 k 1 2 A 1 2 3 A k i A sin 8 i i A cos 8 i cos i 1 8 i even k 0 1 k 2 A 1 2 3 A k i A sin 8 i i A cos 8 i displaystyle begin aligned sin left sum i 1 infty theta i right amp sum text odd k geq 1 1 frac k 1 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix left prod i in A sin theta i prod i not in A cos theta i right cos left sum i 1 infty theta i right amp sum text even k geq 0 1 frac k 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix left prod i in A sin theta i prod i not in A cos theta i right end aligned nbsp Because the series i 1 8 i textstyle sum i 1 infty theta i nbsp converges absolutely it is necessarily the case that lim i 8 i 0 textstyle lim i to infty theta i 0 nbsp lim i sin 8 i 0 textstyle lim i to infty sin theta i 0 nbsp and lim i cos 8 i 1 textstyle lim i to infty cos theta i 1 nbsp In particular in these two identities an asymmetry appears that is not seen in the case of sums of finitely many angles in each product there are only finitely many sine factors but there are cofinitely many cosine factors Terms with infinitely many sine factors would necessarily be equal to zero When only finitely many of the angles 8 i displaystyle theta i nbsp are nonzero then only finitely many of the terms on the right side are nonzero because all but finitely many sine factors vanish Furthermore in each term all but finitely many of the cosine factors are unity Tangents and cotangents of sums Edit Let e k displaystyle e k nbsp for k 0 1 2 3 displaystyle k 0 1 2 3 ldots nbsp be the k th degree elementary symmetric polynomial in the variablesx i tan 8 i displaystyle x i tan theta i nbsp for i 0 1 2 3 displaystyle i 0 1 2 3 ldots nbsp that is e 0 1 e 1 i x i i tan 8 i e 2 i lt j x i x j i lt j tan 8 i tan 8 j e 3 i lt j lt k x i x j x k i lt j lt k tan 8 i tan 8 j tan 8 k displaystyle begin aligned e 0 amp 1 6pt e 1 amp sum i x i amp amp sum i tan theta i 6pt e 2 amp sum i lt j x i x j amp amp sum i lt j tan theta i tan theta j 6pt e 3 amp sum i lt j lt k x i x j x k amp amp sum i lt j lt k tan theta i tan theta j tan theta k amp vdots amp amp vdots end aligned nbsp Thentan i 8 i sin i 8 i i cos 8 i cos i 8 i i cos 8 i odd k 1 1 k 1 2 A 1 2 3 A k i A tan 8 i even k 0 1 k 2 A 1 2 3 A k i A tan 8 i e 1 e 3 e 5 e 0 e 2 e 4 cot i 8 i e 0 e 2 e 4 e 1 e 3 e 5 displaystyle begin aligned tan left sum i theta i right amp frac sin left sum i theta i right prod i cos theta i cos left sum i theta i right prod i cos theta i amp frac displaystyle sum text odd k geq 1 1 frac k 1 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix prod i in A tan theta i displaystyle sum text even k geq 0 1 frac k 2 sum begin smallmatrix A subseteq 1 2 3 dots left A right k end smallmatrix prod i in A tan theta i frac e 1 e 3 e 5 cdots e 0 e 2 e 4 cdots cot left sum i theta i right amp frac e 0 e 2 e 4 cdots e 1 e 3 e 5 cdots end aligned nbsp using the sine and cosine sum formulae above The number of terms on the right side depends on the number of terms on the left side For example tan 8 1 8 2 e 1 e 0 e 2 x 1 x 2 1 x 1 x 2 tan 8 1 tan 8 2 1 tan 8 1 tan 8 2 tan 8 1 8 2 8 3 e 1 e 3 e 0 e 2 x 1 x 2 x 3 x 1 x 2 x 3 1 x 1 x 2 x 1 x 3 x 2 x 3 tan 8 1 8 2 8 3 8 4 e 1 e 3 e 0 e 2 e 4 x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 1 x 2 x 4 x 1 x 3 x 4 x 2 x 3 x 4 1 x 1 x 2 x 1 x 3 x 1 x 4 x 2 x 3 x 2 x 4 x 3 x 4 x 1 x 2 x 3 x 4 displaystyle begin aligned tan theta 1 theta 2 amp frac e 1 e 0 e 2 frac x 1 x 2 1 x 1 x 2 frac tan theta 1 tan theta 2 1 tan theta 1 tan theta 2 8pt tan theta 1 theta 2 theta 3 amp frac e 1 e 3 e 0 e 2 frac x 1 x 2 x 3 x 1 x 2 x 3 1 x 1 x 2 x 1 x 3 x 2 x 3 8pt tan theta 1 theta 2 theta 3 theta 4 amp frac e 1 e 3 e 0 e 2 e 4 8pt amp frac x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 1 x 2 x 4 x 1 x 3 x 4 x 2 x 3 x 4 1 x 1 x 2 x 1 x 3 x 1 x 4 x 2 x 3 x 2 x 4 x 3 x 4 x 1 x 2 x 3 x 4 end aligned nbsp and so on The case of only finitely many terms can be proved by mathematical induction 14 Secants and cosecants of sums Edit sec i 8 i i sec 8 i e 0 e 2 e 4 csc i 8 i i sec 8 i e 1 e 3 e 5 displaystyle begin aligned sec left sum i theta i right amp frac prod i sec theta i e 0 e 2 e 4 cdots 8pt csc left sum i theta i right amp frac prod i sec theta i e 1 e 3 e 5 cdots end aligned nbsp where e k displaystyle e k nbsp is the k th degree elementary symmetric polynomial in the n variables x i tan 8 i displaystyle x i tan theta i nbsp i 1 n displaystyle i 1 ldots n nbsp and the number of terms in the denominator and the number of factors in the product in the numerator depend on the number of terms in the sum on the left 15 The case of only finitely many terms can be proved by mathematical induction on the number of such terms For example sec a b g sec a sec b sec g 1 tan a tan b tan a tan g tan b tan g csc a b g sec a sec b sec g tan a tan b tan g tan a tan b tan g displaystyle begin aligned sec alpha beta gamma amp frac sec alpha sec beta sec gamma 1 tan alpha tan beta tan alpha tan gamma tan beta tan gamma 8pt csc alpha beta gamma amp frac sec alpha sec beta sec gamma tan alpha tan beta tan gamma tan alpha tan beta tan gamma end aligned nbsp Ptolemy s theorem Edit nbsp Diagram illustrating the relation between Ptolemy s theorem and the angle sum trig identity for sine Ptolemy s theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals When those side lengths are expressed in terms of the sin and cos values shown in the figure above this yields the angle sum trigonometric identity for sine sin a b sin a cos b cos a sin b Main article Ptolemy s theorem See also History of trigonometry Classical antiquity Ptolemy s theorem is important in the history of trigonometric identities as it is how results equivalent to the sum and difference formulas for sine and cosine were first proved It states that in a cyclic quadrilateral A B C D displaystyle ABCD nbsp as shown in the accompanying figure the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals In the special cases of one of the diagonals or sides being a diameter of the circle this theorem gives rise directly to the angle sum and difference trigonometric identities 16 The relationship follows most easily when the circle is constructed to have a diameter of length one as shown here By Thales s theorem D A B displaystyle angle DAB nbsp and D C B displaystyle angle DCB nbsp are both right angles The right angled triangles D A B displaystyle DAB nbsp and D C B displaystyle DCB nbsp both share the hypotenuse B D displaystyle overline BD nbsp of length 1 Thus the side A B sin a displaystyle overline AB sin alpha nbsp A D cos a displaystyle overline AD cos alpha nbsp B C sin b displaystyle overline BC sin beta nbsp and C D cos b displaystyle overline CD cos beta nbsp By the inscribed angle theorem the central angle subtended by the chord A C displaystyle overline AC nbsp at the circle s center is twice the angle A D C displaystyle angle ADC nbsp i e 2 a b displaystyle 2 alpha beta nbsp Therefore the symmetrical pair of red triangles each has the angle a b displaystyle alpha beta nbsp at the center Each of these triangles has a hypotenuse of length 1 2 textstyle frac 1 2 nbsp so the length of A C displaystyle overline AC nbsp is 2 1 2 sin a b textstyle 2 times frac 1 2 sin alpha beta nbsp i e simply sin a b displaystyle sin alpha beta nbsp The quadrilateral s other diagonal is the diameter of length 1 so the product of the diagonals lengths is also sin a b displaystyle sin alpha beta nbsp When these values are substituted into the statement of Ptolemy s theorem that A C B D A B C D A D B C displaystyle overline AC cdot overline BD overline AB cdot overline CD overline AD cdot overline BC nbsp this yields the angle sum trigonometric identity for sine sin a b sin a cos b cos a sin b displaystyle sin alpha beta sin alpha cos beta cos alpha sin beta nbsp The angle difference formula for sin a b displaystyle sin alpha beta nbsp can be similarly derived by letting the side C D displaystyle overline CD nbsp serve as a diameter instead of B D displaystyle overline BD nbsp 17 Multiple angle formulae EditTn is the n th Chebyshev polynomial cos n 8 T n cos 8 displaystyle cos n theta T n cos theta nbsp 18 de Moivre s formula i is the imaginary unit cos n 8 i sin n 8 cos 8 i sin 8 n displaystyle cos n theta i sin n theta cos theta i sin theta n nbsp 19 Multiple angle formulae Edit Double angle formulae Edit nbsp Visual demonstration of the double angle formula for sine The area 1 2 base height of an isosceles triangle is calculated first when upright and then on its side When upright the area sin 8 cos 8 displaystyle sin theta cos theta nbsp When on its side the area 1 2 sin 2 8 textstyle frac 1 2 sin 2 theta nbsp Rotating the triangle does not change its area so these two expressions are equal Therefore sin 2 8 2 sin 8 cos 8 displaystyle sin 2 theta 2 sin theta cos theta nbsp Formulae for twice an angle 20 sin 2 8 2 sin 8 cos 8 sin 8 cos 8 2 1 2 tan 8 1 tan 2 8 displaystyle sin 2 theta 2 sin theta cos theta sin theta cos theta 2 1 frac 2 tan theta 1 tan 2 theta nbsp cos 2 8 cos 2 8 sin 2 8 2 cos 2 8 1 1 2 sin 2 8 1 tan 2 8 1 tan 2 8 displaystyle cos 2 theta cos 2 theta sin 2 theta 2 cos 2 theta 1 1 2 sin 2 theta frac 1 tan 2 theta 1 tan 2 theta nbsp tan 2 8 2 tan 8 1 tan 2 8 displaystyle tan 2 theta frac 2 tan theta 1 tan 2 theta nbsp cot 2 8 cot 2 8 1 2 cot 8 1 tan 2 8 2 tan 8 displaystyle cot 2 theta frac cot 2 theta 1 2 cot theta frac 1 tan 2 theta 2 tan theta nbsp sec 2 8 sec 2 8 2 sec 2 8 1 tan 2 8 1 tan 2 8 displaystyle sec 2 theta frac sec 2 theta 2 sec 2 theta frac 1 tan 2 theta 1 tan 2 theta nbsp csc 2 8 sec 8 csc 8 2 1 tan 2 8 2 tan 8 displaystyle csc 2 theta frac sec theta csc theta 2 frac 1 tan 2 theta 2 tan theta nbsp Triple angle formulae Edit Formulae for triple angles 20 sin 3 8 3 sin 8 4 sin 3 8 4 sin 8 sin p 3 8 sin p 3 8 displaystyle sin 3 theta 3 sin theta 4 sin 3 theta 4 sin theta sin left frac pi 3 theta right sin left frac pi 3 theta right nbsp cos 3 8 4 cos 3 8 3 cos 8 4 cos 8 cos p 3 8 cos p 3 8 displaystyle cos 3 theta 4 cos 3 theta 3 cos theta 4 cos theta cos left frac pi 3 theta right cos left frac pi 3 theta right nbsp tan 3 8 3 tan 8 tan 3 8 1 3 tan 2 8 tan 8 tan p 3 8 tan p 3 8 displaystyle tan 3 theta frac 3 tan theta tan 3 theta 1 3 tan 2 theta tan theta tan left frac pi 3 theta right tan left frac pi 3 theta right nbsp cot 3 8 3 cot 8 cot 3 8 1 3 cot 2 8 displaystyle cot 3 theta frac 3 cot theta cot 3 theta 1 3 cot 2 theta nbsp sec 3 8 sec 3 8 4 3 sec 2 8 displaystyle sec 3 theta frac sec 3 theta 4 3 sec 2 theta nbsp csc 3 8 csc 3 8 3 csc 2 8 4 displaystyle csc 3 theta frac csc 3 theta 3 csc 2 theta 4 nbsp Multiple angle and half angle formulae Edit Formula for multiple angles 21 sin n 8 k odd 1 k 1 2 n k cos n k 8 sin k 8 sin 8 i 0 n 1 2 j 0 i 1 i j n 2 i 1 i j cos n 2 i j 1 8 2 n 1 k 0 n 1 sin k p n 8 displaystyle begin aligned sin n theta amp sum k text odd 1 frac k 1 2 n choose k cos n k theta sin k theta sin theta sum i 0 n 1 2 sum j 0 i 1 i j n choose 2i 1 i choose j cos n 2 i j 1 theta amp 2 n 1 prod k 0 n 1 sin k pi n theta end aligned nbsp cos n 8 k even 1 k 2 n k cos n k 8 sin k 8 i 0 n 2 j 0 i 1 i j n 2 i i j cos n 2 i j 8 displaystyle cos n theta sum k text even 1 frac k 2 n choose k cos n k theta sin k theta sum i 0 n 2 sum j 0 i 1 i j n choose 2i i choose j cos n 2 i j theta nbsp cos 2 n 1 8 1 n 2 2 n k 0 2 n cos k p 2 n 1 8 displaystyle cos 2n 1 theta 1 n 2 2n prod k 0 2n cos k pi 2n 1 theta nbsp cos 2 n 8 1 n 2 2 n 1 k 0 2 n 1 cos 1 2 k p 4 n 8 displaystyle cos 2n theta 1 n 2 2n 1 prod k 0 2n 1 cos 1 2k pi 4n theta nbsp tan n 8 k odd 1 k 1 2 n k tan k 8 k even 1 k 2 n k tan k 8 displaystyle tan n theta frac sum k text odd 1 frac k 1 2 n choose k tan k theta sum k text even 1 frac k 2 n choose k tan k theta nbsp Chebyshev method Edit The Chebyshev method is a recursive algorithm for finding the n th multiple angle formula knowing the n 1 displaystyle n 1 nbsp th and n 2 displaystyle n 2 nbsp th values 22 cos n x displaystyle cos nx nbsp can be computed from cos n 1 x displaystyle cos n 1 x nbsp cos n 2 x displaystyle cos n 2 x nbsp and cos x displaystyle cos x nbsp withcos n x 2 cos x cos n 1 x cos n 2 x displaystyle cos nx 2 cos x cos n 1 x cos n 2 x nbsp This can be proved by adding together the formulaecos n 1 x x cos n 1 x cos x sin n 1 x sin x cos n 1 x x cos n 1 x cos x sin n 1 x sin x displaystyle begin aligned cos n 1 x x amp cos n 1 x cos x sin n 1 x sin x cos n 1 x x amp cos n 1 x cos x sin n 1 x sin x end aligned nbsp It follows by induction that cos n x displaystyle cos nx nbsp is a polynomial of cos x displaystyle cos x nbsp the so called Chebyshev polynomial of the first kind see Chebyshev polynomials Trigonometric definition Similarly math, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.