fbpx
Wikipedia

Time-resolved spectroscopy

In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques. Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material. With the help of pulsed lasers, it is possible to study processes that occur on time scales as short as 10−16 seconds. All time-resolved spectra are suitable to be analyzed using the two-dimensional correlation method for a correlation map between the peaks.[1]

Transient-absorption spectroscopy edit

Transient-absorption spectroscopy (TAS), also known as flash photolysis, is an extension of absorption spectroscopy. Ultrafast transient absorption spectroscopy, an example of non-linear spectroscopy, measures changes in the absorbance/transmittance in the sample. Here, the absorbance at a particular wavelength or range of wavelengths of a sample is measured as a function of time after excitation by a flash of light. In a typical experiment, both the light for excitation ('pump') and the light for measuring the absorbance ('probe') are generated by a pulsed laser. If the process under study is slow, then the time resolution can be obtained with a continuous (i.e., not pulsed) probe beam and repeated conventional spectrophotometric techniques.

Time-resolved absorption spectroscopy relies on our ability to resolve two physical actions in real time. The shorter the detection time, the better the resolution. This leads to the idea that femtosecond laser based spectroscopy offers better resolution than nano-second laser based spectroscopy. In a typical experimental set up, a pump pulse excites the sample and later, a delayed probe pulse strikes the sample. In order to maintain the maximum spectral distribution, two pulses are derived from the same source. The impact of the probe pulse on the sample is recorded and analyzed with wavelength/ time to study the dynamics of the excited state.

Absorbance (after pump) – Absorbance (before pump) = ΔAbsorbance

ΔAbsorbance records any change in the absorption spectrum as a function of time and wavelength. As a matter of fact, it reflects ground state bleaching (-ΔA), further excitation of the excited electrons to higher excited states(+ΔA), stimulated emission(-ΔA) or product absorption(+ΔA). Bleaching of ground state refers to depletion of the ground state carriers to excited states. Stimulated emission follows the fluorescence spectrum of the molecule and is Stokes shifted relative to and often still overlaps with the bleach signal. This is a lasing effect (coherent emission) of the excited dye molecules under the strong probe light. This emission signal cannot be distinguished from the absorption signal and often gives false negative Δ absorbance peaks in the final spectra that can be decoupled via approximations.[2] Product absorption refers to any absorption changes caused due to formation of intermediate reaction products. TA measurements can also be used to predict non emissive states and dark states unlike time resolved photoluminescence.

Transient absorption can be measured as a function of wavelength or time. The TA curve along wavelength provides information regarding evolution/decay of various intermediate species involved in chemical reaction at different wavelengths. The transient absorption decay curve against time contains information regarding the number of decay processes involved at a given wavelength, how fast or slow the decay processes are. It can provide evidences with respect to inter-system crossing, intermediate unstable electronic states, trap states, surface states etc.

Conditions edit

TA measurements are highly sensitive to laser repetition rate, pulse duration, emission wavelength, polarization, intensity, sample chemistry, solvents, concentration and temperature. The excitation density (no. of photons per unit area per second) must be kept low otherwise sample annihilation, saturation and orientational saturation may come into play.

Application edit

Transient absorption spectroscopy helps study the mechanistic and kinetic details of chemical processes occurring on the time scales of few picoseconds to femto-seconds. These chemical events are initiated by an ultrafast laser pulse and are further probed by a probe pulse. With the help of TA measurements, one can look into non-radiative relaxation of higher electronic states (~femtoseconds), vibrational relaxations (~picoseconds) and radiative relaxation of excited singlet state (occurs typically on nanoseconds time scale).

Transient absorption spectroscopy can be used to trace the intermediate states in a photo-chemical reaction; energy, charge or electron transfer process; conformational changes, thermal relaxation, fluorescence or phosphorescence processes, optical gain spectroscopy of semiconductor laser materials. etc. With the availability of UV-Vis-NIR ultrafast lasers, one can selectively excite a portion of any large molecule to desired excited states to study the specific molecular dynamics.

Transient absorption spectroscopy has become an important tool for characterizing various electronic states and energy transfer processes in nanoparticles, to locate trap states and further helps in characterizing the efficient passivation strategies.[3]

Other multiple-pulse techniques edit

Transient spectroscopy as discussed above is a technique that involves two pulses. There are many more techniques that employ two or more pulses, such as:

  • Photon echoes.
  • Four-wave mixing (involves three laser pulses)
  • fifth-order experiments (involves four excitation pulses and a probe pulse)

The interpretation of experimental data from these techniques is usually much more complicated than in transient-absorption spectroscopy.

Nuclear magnetic resonance and electron spin resonance are often implemented with multiple-pulse techniques, though with radio waves and micro waves instead of visible light.

Time-resolved infrared spectroscopy edit

Time-resolved infrared (TRIR) spectroscopy also employs a two-pulse, "pump-probe" methodology. The pump pulse is typically in the UV region and is often generated by a high-powered Nd:YAG laser, whereas the probe beam is in the infrared region. This technique currently operates down to the picosecond time regime and surpasses transient absorption and emission spectroscopy by providing structural information on the excited-state kinetics of both dark and emissive states.

Time-resolved fluorescence spectroscopy edit

Time-resolved fluorescence spectroscopy is an extension of fluorescence spectroscopy. Here, the fluorescence of a sample is monitored as a function of time after excitation by a flash of light. The time resolution can be obtained in a number of ways, depending on the required sensitivity and time resolution:

  • With fast-detection electronics (nanoseconds and slower)
  • With Time Correlated Single Photon Counting, TCSPC (picoseconds and slower)
  • With a streak camera (picoseconds and slower)
  • With intensified CCD (ICCD) cameras (down to 200 picoseconds and slower)
  • With optical gating (femtoseconds-nanoseconds) - a short laser pulse acts as a gate for the detection of fluorescence light; only fluorescence light that arrives at the detector at the same time as the gate pulse is detected. This technique has the best time resolution, but the efficiency is rather low. An extension of this optical gating technique is to use a "Kerr gate", which allows the scattered Raman signal to be collected before the (slower) fluorescence signal overwhelms it. This technique can greatly improve the signal:noise ratio of Raman spectra.

This technique uses convolution integral to calculate a lifetime from a fluorescence decay.

Time-resolved photoemission spectroscopy and 2PPE edit

Time-resolved photoemission spectroscopy[4] and two-photon photoelectron spectroscopy (2PPE) are important extensions to photoemission spectroscopy. These methods employ a pump-probe setup. In most cases the pump and probe are both generated by a pulsed laser and in the UV region. The pump excites the atom or molecule of interest, and the probe ionizes it. The electrons or positive ions resulting from this event are then detected. As the time delay between the pump and the probe are changed, the change in the energy (and sometimes emission direction) of the photo-products is observed. In some cases multiple photons of a lower energy are used as the ionizing probe.

See also edit

References edit

  1. ^ Noda, I. (1993). "Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy". Applied Spectroscopy. 47 (9): 1329–1336. doi:10.1366/0003702934067694. S2CID 94722664.
  2. ^ Wang, L.; Pyle, J. R.; Cimatu, K. A.; Chen, J. (2018). "Ultrafast Transient Absorption Spectra of Photoexcited YOYO-1 molecules call for additional investigations of their fluorescence quenching mechanism". Journal of Photochemistry and Photobiology A: Chemistry. 367: 411–419. doi:10.1016/j.jphotochem.2018.09.012. PMC 6217845. PMID 30410276.
  3. ^ C. Burda and M. A. El-Sayed, Pure Appl. Chem., 2000, Vol. 72, No. 1-2, pp. 165-17.
  4. ^ A. Stolow, A. E. Bragg, and D. M. Neumark, Femtosecond time-resolved photoelectron spectroscopy, Chem Rev, 104 (2004) 1719 [1]

time, resolved, spectroscopy, physics, physical, chemistry, time, resolved, spectroscopy, study, dynamic, processes, materials, chemical, compounds, means, spectroscopic, techniques, most, often, processes, studied, after, illumination, material, occurs, princ. In physics and physical chemistry time resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques Most often processes are studied after the illumination of a material occurs but in principle the technique can be applied to any process that leads to a change in properties of a material With the help of pulsed lasers it is possible to study processes that occur on time scales as short as 10 16 seconds All time resolved spectra are suitable to be analyzed using the two dimensional correlation method for a correlation map between the peaks 1 Contents 1 Transient absorption spectroscopy 1 1 Conditions 1 2 Application 2 Other multiple pulse techniques 3 Time resolved infrared spectroscopy 4 Time resolved fluorescence spectroscopy 5 Time resolved photoemission spectroscopy and 2PPE 6 See also 7 ReferencesTransient absorption spectroscopy editMain article Flash photolysis Main article Ultrafast laser spectroscopy Transient absorption spectroscopy TAS also known as flash photolysis is an extension of absorption spectroscopy Ultrafast transient absorption spectroscopy an example of non linear spectroscopy measures changes in the absorbance transmittance in the sample Here the absorbance at a particular wavelength or range of wavelengths of a sample is measured as a function of time after excitation by a flash of light In a typical experiment both the light for excitation pump and the light for measuring the absorbance probe are generated by a pulsed laser If the process under study is slow then the time resolution can be obtained with a continuous i e not pulsed probe beam and repeated conventional spectrophotometric techniques Time resolved absorption spectroscopy relies on our ability to resolve two physical actions in real time The shorter the detection time the better the resolution This leads to the idea that femtosecond laser based spectroscopy offers better resolution than nano second laser based spectroscopy In a typical experimental set up a pump pulse excites the sample and later a delayed probe pulse strikes the sample In order to maintain the maximum spectral distribution two pulses are derived from the same source The impact of the probe pulse on the sample is recorded and analyzed with wavelength time to study the dynamics of the excited state Absorbance after pump Absorbance before pump DAbsorbanceDAbsorbance records any change in the absorption spectrum as a function of time and wavelength As a matter of fact it reflects ground state bleaching DA further excitation of the excited electrons to higher excited states DA stimulated emission DA or product absorption DA Bleaching of ground state refers to depletion of the ground state carriers to excited states Stimulated emission follows the fluorescence spectrum of the molecule and is Stokes shifted relative to and often still overlaps with the bleach signal This is a lasing effect coherent emission of the excited dye molecules under the strong probe light This emission signal cannot be distinguished from the absorption signal and often gives false negative D absorbance peaks in the final spectra that can be decoupled via approximations 2 Product absorption refers to any absorption changes caused due to formation of intermediate reaction products TA measurements can also be used to predict non emissive states and dark states unlike time resolved photoluminescence Transient absorption can be measured as a function of wavelength or time The TA curve along wavelength provides information regarding evolution decay of various intermediate species involved in chemical reaction at different wavelengths The transient absorption decay curve against time contains information regarding the number of decay processes involved at a given wavelength how fast or slow the decay processes are It can provide evidences with respect to inter system crossing intermediate unstable electronic states trap states surface states etc Conditions edit TA measurements are highly sensitive to laser repetition rate pulse duration emission wavelength polarization intensity sample chemistry solvents concentration and temperature The excitation density no of photons per unit area per second must be kept low otherwise sample annihilation saturation and orientational saturation may come into play Application edit Transient absorption spectroscopy helps study the mechanistic and kinetic details of chemical processes occurring on the time scales of few picoseconds to femto seconds These chemical events are initiated by an ultrafast laser pulse and are further probed by a probe pulse With the help of TA measurements one can look into non radiative relaxation of higher electronic states femtoseconds vibrational relaxations picoseconds and radiative relaxation of excited singlet state occurs typically on nanoseconds time scale Transient absorption spectroscopy can be used to trace the intermediate states in a photo chemical reaction energy charge or electron transfer process conformational changes thermal relaxation fluorescence or phosphorescence processes optical gain spectroscopy of semiconductor laser materials etc With the availability of UV Vis NIR ultrafast lasers one can selectively excite a portion of any large molecule to desired excited states to study the specific molecular dynamics Transient absorption spectroscopy has become an important tool for characterizing various electronic states and energy transfer processes in nanoparticles to locate trap states and further helps in characterizing the efficient passivation strategies 3 Other multiple pulse techniques editTransient spectroscopy as discussed above is a technique that involves two pulses There are many more techniques that employ two or more pulses such as Photon echoes Four wave mixing involves three laser pulses fifth order experiments involves four excitation pulses and a probe pulse The interpretation of experimental data from these techniques is usually much more complicated than in transient absorption spectroscopy Nuclear magnetic resonance and electron spin resonance are often implemented with multiple pulse techniques though with radio waves and micro waves instead of visible light Time resolved infrared spectroscopy editTime resolved infrared TRIR spectroscopy also employs a two pulse pump probe methodology The pump pulse is typically in the UV region and is often generated by a high powered Nd YAG laser whereas the probe beam is in the infrared region This technique currently operates down to the picosecond time regime and surpasses transient absorption and emission spectroscopy by providing structural information on the excited state kinetics of both dark and emissive states Time resolved fluorescence spectroscopy editTime resolved fluorescence spectroscopy is an extension of fluorescence spectroscopy Here the fluorescence of a sample is monitored as a function of time after excitation by a flash of light The time resolution can be obtained in a number of ways depending on the required sensitivity and time resolution With fast detection electronics nanoseconds and slower With Time Correlated Single Photon Counting TCSPC picoseconds and slower With a streak camera picoseconds and slower With intensified CCD ICCD cameras down to 200 picoseconds and slower With optical gating femtoseconds nanoseconds a short laser pulse acts as a gate for the detection of fluorescence light only fluorescence light that arrives at the detector at the same time as the gate pulse is detected This technique has the best time resolution but the efficiency is rather low An extension of this optical gating technique is to use a Kerr gate which allows the scattered Raman signal to be collected before the slower fluorescence signal overwhelms it This technique can greatly improve the signal noise ratio of Raman spectra This technique uses convolution integral to calculate a lifetime from a fluorescence decay Time resolved photoemission spectroscopy and 2PPE editTime resolved photoemission spectroscopy 4 and two photon photoelectron spectroscopy 2PPE are important extensions to photoemission spectroscopy These methods employ a pump probe setup In most cases the pump and probe are both generated by a pulsed laser and in the UV region The pump excites the atom or molecule of interest and the probe ionizes it The electrons or positive ions resulting from this event are then detected As the time delay between the pump and the probe are changed the change in the energy and sometimes emission direction of the photo products is observed In some cases multiple photons of a lower energy are used as the ionizing probe See also editTime resolved mass spectrometry Ultrafast laser spectroscopyReferences edit Noda I 1993 Generalized two dimensional correlation method applicable to infrared Raman and other types of spectroscopy Applied Spectroscopy 47 9 1329 1336 doi 10 1366 0003702934067694 S2CID 94722664 Wang L Pyle J R Cimatu K A Chen J 2018 Ultrafast Transient Absorption Spectra of Photoexcited YOYO 1 molecules call for additional investigations of their fluorescence quenching mechanism Journal of Photochemistry and Photobiology A Chemistry 367 411 419 doi 10 1016 j jphotochem 2018 09 012 PMC 6217845 PMID 30410276 C Burda and M A El Sayed Pure Appl Chem 2000 Vol 72 No 1 2 pp 165 17 A Stolow A E Bragg and D M Neumark Femtosecond time resolved photoelectron spectroscopy Chem Rev 104 2004 1719 1 Retrieved from https en wikipedia org w index php title Time resolved spectroscopy amp oldid 1178227141, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.