fbpx
Wikipedia

Teapot effect

The teapot effect, also known as dribbling, is a fluid dynamics phenomenon that occurs when a liquid being poured from a container runs down the spout or the body of the vessel instead of flowing out in an arc.[1]

Diagram of tea running down the spout of a teapot

Markus Reiner coined the term "teapot effect" in 1956 to describe the tendency of liquid to dribble down the side of a vessel while pouring.[2][3] Reiner received his PhD at TU Wien in 1913 and made significant contributions to the development of the study of flow behavior known as rheology.[1] Reiner believed the teapot effect could be explained by Bernoulli's principle, which states that an increase in the speed of a fluid is always accompanied by a decrease in its pressure. When tea is poured from a teapot, the liquid's speed increases as it flows through the narrowing spout. This decrease in pressure was what Reiner thought to cause the liquid to dribble down the side of the pot.[4][3] However, a 2021 study found the primary cause of the phenomenon to be an interaction of inertia and capillary forces.[3] The study found that the smaller the angle between the container wall and the liquid surface, the more the teapot effect is slowed down.[5]

Research edit

Around 1950, researchers from the Technion Institute in Haifa (Israel) and from New York University tried to explain this effect scientifically.[6] In fact, there are two phenomena that contribute to this effect: on the one hand, the Bernoulli equation is used to explain it, on the other hand, the adhesion between the liquid and the spout material is also important.

According to the Bernoulli explanation, the liquid is pressed against the inner edge of the spout when pouring out, because the pressure conditions at the end, the edge, change significantly; the surrounding air pressure pushes the liquid towards the spout. With the help of a suitable pot geometry (or a sufficiently high pouring speed) it can be avoided that the liquid reaches the spout and thus triggers the teapot effect. Laws of hydrodynamics (flow theory) describe this situation, the relevant ones are explained in the following sections.

Since adhesion also plays a role, the material of the spout or the type of liquid (water, alcohol or oil, for example) is also relevant for the occurrence of the teapot effect.

The Coandă effect is sometimes mentioned in this context,[7][8][9][10] but it is rarely cited in the scientific literature[8] and is therefore not precisely defined. Often several different phenomena seem to be mixed up in this one.

Continuity equation edit

In hydrodynamics, the behavior of flowing liquids is illustrated by flow lines. They run in the same direction as the flow itself. If the outflowing liquid hits an edge, the flow is compressed into a smaller cross-section. It only does not break off if the flow rate of liquid particles remains constant, regardless of where an imaginary cross section (perpendicular to the flow) is located. So the same amount of mass must flow in through one cross-sectional area as flows out of another. One can now conclude from this, but also observe in reality, that the flow accelerates at bottlenecks and the streamlines are bundled. This situation describes the continuity equation for non-turbulent flows.

Bernoulli equation edit

But what happens to the pressure conditions in the flow if you change the flow speed? The scientist Daniel Bernoulli dealt with this question as early as the beginning of the 18th century. Based on the considerations of continuity mentioned above, and incorporating the conservation of energy, he linked the two quantities of pressure and speed. The core statement of the Bernoulli equation is that the pressure in a liquid falls where the velocity increases (and vice versa): Flow according to Bernoulli and Venturi.

Impact edit

The pressure in the flow is reduced at the edge of the can spout. However, since the air pressure on the outside of the flow is the same everywhere, there is a pressure difference that pushes the liquid to the edge. Depending on the materials used, the outside of the spout is now wetted during the flow process. At this point, additional interfacial forces occur : the liquid runs as a narrow trickle along the spout and can until it detaches from the underside.

The unwanted teapot effect only occurs when pouring slowly and carefully.[6] In fast pouring, the liquid flows out of the spout in an arc without dripping, so it is given a relatively high velocity with which the liquid moves away from the edge (see Torricelli outflow velocity). The pressure difference resulting from the Bernoulli equation is then not sufficient to influence the flow to such an extent that the liquid is pushed around the edge of the spout.

Since the flow conditions can be described mathematically, a critical outflow velocity is also defined. If it falls below when pouring, the liquid flows down the pot; it drips. Theoretically, this speed could be precisely calculated for a specific can geometry, the current air pressure and the fill level of the can, the spout material, the viscosity of the liquid and the pouring angle. Since, apart from the fill level, most of the influencing variables cannot be changed (at least not sufficiently precisely in practice), the only way to avoid the teapot effect is usually to choose a suitable geometry for the pot.

Another phenomenon is the reduction in air pressure between the spout and the jet of liquid due to the entrainment of gas molecules (one-sided water jet pumping effect), so that the air pressure on the opposite side would push the jet of liquid to the spout side. However, under the conditions usually prevailing when pouring tea, this effect will hardly appear.

Consequence edit

 
Pot examples

A good jug should, regardless of fashion, have a spout with a tear-off edge (i.e. no rounded edge) to make it more difficult to run around the edge. And – even more important - after the edge, the spout should first lead upwards (regardless of the position in which the jug is held). As a result, the liquid would be forced to flow upwards after going around the edge of the spout when pouring, but this is prevented by gravity. The flow can thus resist wetting even when pouring slowly and the liquid does not reach the downwardly inclined part of the spout and the body of the jug.

The image on the right[clarification needed] shows three vessels with poor pouring behavior. Even in a horizontal position, that is standing on the table, the bottom edges of the spouts do not point upwards.[6] Behind are four vessels with good flow characteristics resulting from well formed tips. Here, the liquid rises at the lower edge of the spout at an angle of less than 45°.[6] In part, this only becomes apparent when one considers the normal maximum fill level: the glass carafe on the far right, for example, appears at first glance to be a poor pourer because of its slender neck. However, since such vessels are generally filled at most up to the edge of the round part of the flask, an advantageous rise at the neck is then obtained when pouring horizontally.Upward angle for the liquid when pouring. With the two lower jugs on the right, the high position of the spout (above the maximum filling level) means that the vessel has to be tilted quite a bit before pouring, so that the spout can also be pushed up directly after the edge (against gravity). indicates.

To avoid the teapot effect, the pot can be filled less, so that a larger tilting angle is necessary from the start. However, the effect or the ideal filling level again depends on the can geometry.

The teapot effect does not occur with bottles because the slender neck of the bottle always points upwards when pouring; the current would therefore have to "flow uphill" a long way.[6] Bottle-like containers are therefore often used for liquid chemicals in the laboratory. Certain materials are also used there to prevent dripping, for example glass, which can be easily shaped or even ground to create the sharpest possible edges, or Teflon, for example, which reduces the adhesion effect described above.

Drip catcher edit

See also edit

References edit

  1. ^ a b "Why Teapots Always Drip – Scientists Finally Explain the "Teapot Effect"". SciTechDaily. Vienna University of Technology. 2022-01-09. from the original on 2023-01-28. Retrieved 2022-07-02.
  2. ^ Reiner, Markus (September 1956). "The teapot effect...a problem". Physics Today. 9 (9). American Institute of Physics: 16. doi:10.1063/1.3060089. Retrieved 2023-01-28. (1 page)
  3. ^ a b c Ouellette, Jennifer (2021-11-10). "Dribble, dribble, dribble — Physicists say they've finally solved the teapot effect—for real this time - Is due to interplay of inertial viscous capillary forces—but gravity's less relevant". Ars Technica. from the original on 2023-01-28. Retrieved 2022-07-02.
  4. ^ Keller, Joseph Bishop (1957). "Teapot Effect" (PDF). Journal of Applied Physics. 28 (8): 859–864. Bibcode:1957JAP....28..859K. doi:10.1063/1.1722875. (PDF) from the original on 2022-03-13. Retrieved 2023-01-28. (6 pages)
  5. ^ Scheichl, Bernhard; Bowles, Robert I.; Pasias, Georgios (2021-11-10) [2021-09-08, 2021-07-01, 2021-05-17, 2020-11-09]. "Developed liquid film passing a smoothed and wedge-shaped trailing edge: small-scale analysis and the 'teapot effect' at large Reynolds numbers". Journal of Fluid Mechanics. 926. Cambridge University Press: A25-1–A25-40, S1–S12. arXiv:2011.12168. Bibcode:2021JFM...926A..25S. doi:10.1017/jfm.2021.612. ISSN 0022-1120. S2CID 235444365. from the original on 2023-01-28. Retrieved 2023-01-28. (40+12 pages)
  6. ^ a b c d e Dittmar-Ilgen, Hannelore (2007) [2006, 2004]. "Immer Ärger mit tröpfelnden Kannen". Wie der Kork-Krümel ans Weinglas kommt - Physik für Genießer und Entdecker (in German) (1 ed.). Stuttgart, Germany: S. Hirzel Verlag [de]. pp. 21–25. ISBN 978-3-7776-1440-3. ISBN 978-3-7776-1440-3. (172+4 pages)
  7. ^ Reba, Imants (June 1966). "Applications of the Coanda Effect". Scientific American. Vol. 214, no. 6. pp. 84–92. Bibcode:1966SciAm.214f..84R. doi:10.1038/scientificamerican0666-84. JSTOR 24930967. Retrieved 2023-01-28. (9 pages)
  8. ^ a b Reiner, Markus (May 1967). "Teapot means Coanda". Letters. Physics Today. 20 (5). American Institute of Physics: 15. Bibcode:1967PhT....20e..15R. doi:10.1063/1.3034300. Retrieved 2023-01-28. (1 page)
  9. ^ Reiner, Markus (1969). Deformation, Strain and Flow - An Elementary Introduction To Rheology (3 ed.). H. K. Lewis & Co. Ltd. ISBN 0-71860162-9. (347 pages)
  10. ^ Ziegler, Alfred; Wodzinski, Ruth (2001) [2000, 1999]. "Die Physik des Fliegens als Bestandteil eines Unterrichts zur Strömungslehre: Zielsetzungen und Begründungen". Vorträge / Physikertagung, Deutsche Physikalische Gesellschaft, Fachausschuss Didaktik der Physik (Book, CD) (in German). Arbeitsgruppe Didaktik der Physik, Universität Kassel. pp. 549–552. from the original on 2023-01-29. Retrieved 2023-01-29. Coanda-Effekt (bzw. "Kaffeekanneneffekt"-ein Tropfen folgt der Oberfläche) (NB. Calls the effect "coffeepot effect" rather than "teapot effect".)

Further reading edit

  • "Tropfenfangrinne an der Innenseite der Ausgussschnauze von Gefaessen, insbesondere Kannen fuer Kaffee, Tee usw." (in German). 1928. German patent DE457585C. from the original on 2023-01-29. Retrieved 2023-01-29.
  • "Non-drip spouts for coffee and like pots with a spout opening directed downwardly". 1938 [1936]. GB patent 477613. from the original on 2023-01-29. Retrieved 2023-01-29., Alcock, Lindley & Bloore Ltd, ,
  • Sakowski, Christian (2023). "Melitta Kaffeekannen No. 301 u. 304, D.R.P. für 1 1/2 und 4 Tassen". Mein Sammlerportal & sampor.de (in German). Berlin, Germany. from the original on 2023-01-29. Retrieved 2023-01-29. (NB. Picture shows the anti-drip groove and pinhole underneath the spout of Melitta coffee pots (protected by D.R.P. [de] patents) model No. 301 for 1½ cups and model No. 304 for 4 cups, presumably manufactured in the 1920s or 1930s.)
  • Walker, Jearl Dalton (1984-10-01). "The troublesome teapot effect, or why a poured liquid clings to the container". Scientific American. Vol. 251, no. 10. pp. 144–152. (9 pages)
  • Vanden-Broeck, Jean-Marc; Keller, Joseph Bishop (1986-05-19) [1986-09-12]. "Pouring Flows". Physics of Fluids. 29 (12): 3958–3961. Bibcode:1986PhFl...29.3958V. doi:10.1063/1.865735. (4 pages)
  • Vanden-Broeck, Jean-Marc; Keller, Joseph Bishop (1989) [1988-06-27, 1988-09-19]. "Pouring flows with separation". Physics of Fluids A: Fluid Dynamics. 1 (1): 156–158. Bibcode:1989PhFlA...1..156V. doi:10.1063/1.857542. (3 pages)
  • Kistler, Stephan F.; Scriven, Laurence Edward (1994-04-26) [1990-02-05, 1991-04-03]. "The teapot effect: sheet-forming flows with deflection, wetting and hysteresis". Journal of Fluid Mechanics. 263. Cambridge University Press: 19–62. Bibcode:1994JFM...263...19K. doi:10.1017/S0022112094004027. S2CID 123277240. (44 pages)
  • Träger, Susanne (1996). "Die nichttropfende Schnaupe". In Siemen, Wilhelm [in German] (ed.). In 80 Tassen um die Welt: Gastlichkeit und Porzellan - Ein Beitrag zur Geschichte des Porzellans für die Gastronomie vom Ende des 19. Jahrhunderts bis in Gegenwart. Schriften und Kataloge des Deutschen Porzellanmuseums (DPM) (in German). Vol. 46 (1 ed.). Hohenberg an der Eger, Germany: Deutsches Porzellanmuseum / Druckhaus Münch GmbH, Selb, Germany. p. 27. ISBN 3-927793-45-0. p. 27: Eine tropfende Schnaupe ist nicht nur bei den Kannen, die in der Gastronomie eingesetzt werden, ein Ärgernis. Was an funktionalen Mängeln im Haushaltsgebrauch noch toleriert werden kann, ist in der Gastronomie ein ernsthaftes Problem. Verschmutzte Tischtücher und vertropfte Untertassen sind kein Aushängeschild für ein gut geführtes Café. Nach dem Ausgiessen sollte keine Flüssigkeit mehr an der Außenwand der Kanne entlanglaufen und kein Tropfen an der Tülle hängen bleiben. Es gab einige absonderlich wirkende Versuche, Flüssigkeit am Ablaufen zu hindern. So sollten beispielsweise ablaufende Tropfen durch Rillen in der Kannenwandung aufgehalten werden. Bereits 1929 führte die Porzellanfabrik Weiden [de] Gebr. Bauscher [de] Kannen mit einer nichttropfenden Schnaupe ein. Infolge einer Bohrung durch den Ausguß und einer dünnen Rille auf der Innenseite der Tülle strömt die Flüssigkeit nach dem Aufrichten der Kanne durch Kapillarkraft zurück. Die Herstellung eines Tropfenfangs mit einer Bohrung ist heute produktionstechnisch zu aufwendig. Viele Versuche und Testreihen waren und sind nötig, um den idealen Neigungswinkel von Ausgüssen zu finden, damit die Flüssigkeit beim Aufrichten des Gefäßes ohne zu tropfen in die Schnaupe zurückläuft. (1+2+186+2 pages) (NB. The print run of this publication is limited to 1000 pieces.)
  • Hesselberth, John (January–February 1997). "How to Make Drip-Free Spouts". Clay Times. from the original on 2023-01-28. Retrieved 2023-01-29.
  • "A groovy kind of pot". Sci/Tech. BBC News. 1998-12-08. from the original on 2023-01-29. Retrieved 2023-01-29.
  • Seißer, Peter [in German]; Zehentmeier, Sabine; Meyer, Rudolf; Siemen, Wilhelm [in German]; Symossek, Ronja (1999). "Sortimentumstellung". In Siemen, Wilhelm [in German] (ed.). "Mit der Zeit gehen" - 100 Jahre Porzellanfabrik Walküre (1899–1999) - Ein mittelständiges Industrieunternehmen im Wandel ["Going with the times" - 100th anniversary of porcelain manufacturer Walküre (1899–1999) - A medium-sized industrial company in transition]. Schriften und Kataloge des Deutschen Porzellanmuseums (DPM) (in German). Vol. 58 (1 ed.). Hohenberg an der Eger, Germany: Deutsches Porzellanmuseum. pp. 101–105 [105]. ISBN 3-927793-57-4. p. 105: […] Das Interesse der "Porzellanfabrik Walküre" richtete sich dabei weniger auf das schmucklose Erscheinungsbild eines Porzellangegenstandes, sondern vielmehr auf den wortwörtlich verstandenen funktionalen Nutzen. Ausdruck dieses Bestrebens ist neben der bereits zum Standard gewordenen Deckelhalterung nun auch die nichttropfende Schnaupe. Das Problem des Tropfens ist für den Gastronomiesektor aufgrund verschmutzter Tischdecken natürlich ein besonderes Ärgernis. Unzählige Testreihen bringen verschiedene Lösungen[A] hervor, von denen die Rille in der Kannenwandung, wie sie das Geschirr der Porzellanfabrik Walküre aufweist, sich als zuverlässig erweist und dementsprechend patentiert wird. Der Stolz dieser Erfindung wird auch nach außen hin sichtbar, indem man den speziell damit versehenen Servicen ein P, wie Patent, hinzufügte. […] Werbeblatt, Gastronomiegeschirr, Kannenmodell 604P. "P" kennzeichnet die Patentierung für die nichttropfende Schnaupe. […] (1+195+1 pages) (NB. The print run of this publication is limited to 1000 pieces. The corresponding patent is D.R.P. [de] 476417.)
  • "Ig Nobel Prize Winners". Improbable Research. 2023 [2012, 1999]. from the original on 2023-01-28. SPECIAL ANNOUNCEMENT: We are now, in 2012, correcting an error we made in the year 1999, when we failed to include one winner's name. We now correct that, awarding a share of the 1999 physics prize to Joseph Keller. Professor Keller is also a co-winner of the 2012 Ig Nobel physics prize, making him a two-time Ig Nobel winner. […] The corrected citation is:1999 PHYSICS PRIZE: Len Fisher [UK and Australia] for calculating the optimal way to dunk a biscuit, and Jean-Marc Vanden-Broeck [UK and Belgium] and Joseph Keller [USA], for calculating how to make a teapot spout that does not drip.
  • Bolton, David (Fall 2007). "Functional Teapot Options & Rules of Thumb" (PDF). CLC Ceramics. (PDF) from the original on 2023-01-28. Retrieved 2023-01-29. (2 pages)
  • Dillon, Frank (2009-05-11). "The pot of gold - Design & Invention: It is a problem that has confounded scientists for generations". Department. Irish Times. from the original on 2023-01-29. Retrieved 2023-01-29.
  • "How to stop a teapot dribbling". Physics Today. American Institute of Physics. 2009-10-28. doi:10.1063/PT.5.023796. from the original on 2023-01-29. Retrieved 2023-01-28 – via The Daily Telegraph.
  • Duez, Cyril; Ybert, Christophe [at Wikidata]; Clanet, Christophe; Bocquet, Lydéric [in French] (2010-02-26) [2009-10-17]. "Wetting controls separation of inertial flows from solid surfaces". Physical Review Letters. 104 (8). American Physical Society: 084503. arXiv:0910.3306v1. Bibcode:2010PhRvL.104h4503D. doi:10.1103/PhysRevLett.104.084503. PMID 20366936. S2CID 118601911. 084503. Retrieved 2023-01-29.
  • Mugele, Frieder G. (2010). "Was tun wenn die Teekanne tropft? Benetzungseigenschaften auf mikroskopischer Skala bestimmen das makroskopische Strömungsverhalten". Brennpunkt. Physik Journal (in German). 9 (6). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA: 18–19. from the original on 2023-01-28. Retrieved 2023-01-28. (2 pages)
  • Lossau, Norbert (2010-06-22). "Wie man tropfende Teekannen in den Griff bekommt". Wissenschaft. Die Welt (in German). from the original on 2023-01-28. Retrieved 2023-01-28.
  • "Ever Wonder About the Teapot Effect?". Science World. ASTC Science World Society. 2015-10-18. from the original on 2023-01-28. Retrieved 2023-01-28.
  • Robert (2017-02-03). "Why Do Teapots Dribble?". Trivia. guernseyDonkey.com. from the original on 2022-09-25. Retrieved 2023-01-28.
  • Ouellette, Jennifer (2019-05-17). "I'm a little teapot — Dribble no more: Physics can help combat that pesky "teapot effect" - Dutch scientists devised a model to predict flow rate when dribbling will occur". Ars Technica. from the original on 2023-01-29. Retrieved 2022-07-02.
  • Gagné, Jonathan [at Wikidata] (2020). "6. Kettles and Agitation - 6.1. The Teapot Effect". In Zimmer, Jean (ed.). The Physics of Filter Coffee (1 ed.). Scott Rao. pp. 127–144 [127–128]. ISBN 978-0-578-24608-6. (xvi+249+3 pages)
  • "Flüssigkeitenmechanik - Wiener Forscher erklärt, warum Tee aus der Kanne danebengeht - Wenn ein Flüssigkeitsstrahl nicht trifft, sondern am Behälter entlangfließt, heißt das Teekanneneffekt. Nun gibt es eine detaillierte Erklärung dafür". Der Standard (in Austrian German). Vienna, Austria: STANDARD Verlagsgesellschaft m.b.H. 2021-11-08. Retrieved 2023-01-28 – via Austria Presse Agentur.
  • Mihai, Andrei (2021-12-01). "The maths behind the annoying teapot effect — and how to prevent it". SciLogs - Heidelberg Laureate Forum. Heidelberg, Germany: Spektrum der Wissenschaft Verlagsgesellschaft mbH. from the original on 2023-01-28. Retrieved 2023-01-28.
  • Jones, David (2022). "Pours for thought? [The teapot effect: theory and practice]". Jones the Pots. from the original on 2023-01-28. Retrieved 2023-01-28.
  • Hinze, Betsy (2023). "Teapot Cheat Sheet". from the original on 2024-01-29. Retrieved 2024-01-29.
  • https://feldlilie.wordpress.com/2012/01/19/physikfrage-12485521/
  • https://www.stevenabbott.co.uk/practical-coatings/Teapot.php
  • https://thiru.de/pages/teekanne-tropft
  • https://www.kalkspatzforum.de/viewtopic.php?t=2417
  • https://teehaus-bachfischer.de/tropfenfaenger-fuer-teekannen, https://sterntee.de/navi.php?a=15902 drop catcher

teapot, effect, help, expand, this, article, with, text, translated, from, corresponding, article, german, january, 2023, click, show, important, translation, instructions, machine, translation, like, deepl, google, translate, useful, starting, point, translat. You can help expand this article with text translated from the corresponding article in German January 2023 Click show for important translation instructions Machine translation like DeepL or Google Translate is a useful starting point for translations but translators must revise errors as necessary and confirm that the translation is accurate rather than simply copy pasting machine translated text into the English Wikipedia Consider adding a topic to this template there are already 9 093 articles in the main category and specifying topic will aid in categorization Do not translate text that appears unreliable or low quality If possible verify the text with references provided in the foreign language article You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation A model attribution edit summary is Content in this edit is translated from the existing German Wikipedia article at de Teekanneneffekt see its history for attribution You should also add the template Translated de Teekanneneffekt to the talk page For more guidance see Wikipedia Translation This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Teapot effect news newspapers books scholar JSTOR January 2023 Learn how and when to remove this template message The teapot effect also known as dribbling is a fluid dynamics phenomenon that occurs when a liquid being poured from a container runs down the spout or the body of the vessel instead of flowing out in an arc 1 Diagram of tea running down the spout of a teapotMarkus Reiner coined the term teapot effect in 1956 to describe the tendency of liquid to dribble down the side of a vessel while pouring 2 3 Reiner received his PhD at TU Wien in 1913 and made significant contributions to the development of the study of flow behavior known as rheology 1 Reiner believed the teapot effect could be explained by Bernoulli s principle which states that an increase in the speed of a fluid is always accompanied by a decrease in its pressure When tea is poured from a teapot the liquid s speed increases as it flows through the narrowing spout This decrease in pressure was what Reiner thought to cause the liquid to dribble down the side of the pot 4 3 However a 2021 study found the primary cause of the phenomenon to be an interaction of inertia and capillary forces 3 The study found that the smaller the angle between the container wall and the liquid surface the more the teapot effect is slowed down 5 Contents 1 Research 2 Continuity equation 3 Bernoulli equation 4 Impact 5 Consequence 6 Drip catcher 7 See also 8 References 9 Further readingResearch editAround 1950 researchers from the Technion Institute in Haifa Israel and from New York University tried to explain this effect scientifically 6 In fact there are two phenomena that contribute to this effect on the one hand the Bernoulli equation is used to explain it on the other hand the adhesion between the liquid and the spout material is also important According to the Bernoulli explanation the liquid is pressed against the inner edge of the spout when pouring out because the pressure conditions at the end the edge change significantly the surrounding air pressure pushes the liquid towards the spout With the help of a suitable pot geometry or a sufficiently high pouring speed it can be avoided that the liquid reaches the spout and thus triggers the teapot effect Laws of hydrodynamics flow theory describe this situation the relevant ones are explained in the following sections Since adhesion also plays a role the material of the spout or the type of liquid water alcohol or oil for example is also relevant for the occurrence of the teapot effect The Coandă effect is sometimes mentioned in this context 7 8 9 10 but it is rarely cited in the scientific literature 8 and is therefore not precisely defined Often several different phenomena seem to be mixed up in this one Continuity equation editIn hydrodynamics the behavior of flowing liquids is illustrated by flow lines They run in the same direction as the flow itself If the outflowing liquid hits an edge the flow is compressed into a smaller cross section It only does not break off if the flow rate of liquid particles remains constant regardless of where an imaginary cross section perpendicular to the flow is located So the same amount of mass must flow in through one cross sectional area as flows out of another One can now conclude from this but also observe in reality that the flow accelerates at bottlenecks and the streamlines are bundled This situation describes the continuity equation for non turbulent flows Bernoulli equation editBut what happens to the pressure conditions in the flow if you change the flow speed The scientist Daniel Bernoulli dealt with this question as early as the beginning of the 18th century Based on the considerations of continuity mentioned above and incorporating the conservation of energy he linked the two quantities of pressure and speed The core statement of the Bernoulli equation is that the pressure in a liquid falls where the velocity increases and vice versa Flow according to Bernoulli and Venturi Impact editThe pressure in the flow is reduced at the edge of the can spout However since the air pressure on the outside of the flow is the same everywhere there is a pressure difference that pushes the liquid to the edge Depending on the materials used the outside of the spout is now wetted during the flow process At this point additional interfacial forces occur the liquid runs as a narrow trickle along the spout and can until it detaches from the underside The unwanted teapot effect only occurs when pouring slowly and carefully 6 In fast pouring the liquid flows out of the spout in an arc without dripping so it is given a relatively high velocity with which the liquid moves away from the edge see Torricelli outflow velocity The pressure difference resulting from the Bernoulli equation is then not sufficient to influence the flow to such an extent that the liquid is pushed around the edge of the spout Since the flow conditions can be described mathematically a critical outflow velocity is also defined If it falls below when pouring the liquid flows down the pot it drips Theoretically this speed could be precisely calculated for a specific can geometry the current air pressure and the fill level of the can the spout material the viscosity of the liquid and the pouring angle Since apart from the fill level most of the influencing variables cannot be changed at least not sufficiently precisely in practice the only way to avoid the teapot effect is usually to choose a suitable geometry for the pot Another phenomenon is the reduction in air pressure between the spout and the jet of liquid due to the entrainment of gas molecules one sided water jet pumping effect so that the air pressure on the opposite side would push the jet of liquid to the spout side However under the conditions usually prevailing when pouring tea this effect will hardly appear Consequence edit nbsp Pot examplesA good jug should regardless of fashion have a spout with a tear off edge i e no rounded edge to make it more difficult to run around the edge And even more important after the edge the spout should first lead upwards regardless of the position in which the jug is held As a result the liquid would be forced to flow upwards after going around the edge of the spout when pouring but this is prevented by gravity The flow can thus resist wetting even when pouring slowly and the liquid does not reach the downwardly inclined part of the spout and the body of the jug The image on the right clarification needed shows three vessels with poor pouring behavior Even in a horizontal position that is standing on the table the bottom edges of the spouts do not point upwards 6 Behind are four vessels with good flow characteristics resulting from well formed tips Here the liquid rises at the lower edge of the spout at an angle of less than 45 6 In part this only becomes apparent when one considers the normal maximum fill level the glass carafe on the far right for example appears at first glance to be a poor pourer because of its slender neck However since such vessels are generally filled at most up to the edge of the round part of the flask an advantageous rise at the neck is then obtained when pouring horizontally Upward angle for the liquid when pouring With the two lower jugs on the right the high position of the spout above the maximum filling level means that the vessel has to be tilted quite a bit before pouring so that the spout can also be pushed up directly after the edge against gravity indicates To avoid the teapot effect the pot can be filled less so that a larger tilting angle is necessary from the start However the effect or the ideal filling level again depends on the can geometry The teapot effect does not occur with bottles because the slender neck of the bottle always points upwards when pouring the current would therefore have to flow uphill a long way 6 Bottle like containers are therefore often used for liquid chemicals in the laboratory Certain materials are also used there to prevent dripping for example glass which can be easily shaped or even ground to create the sharpest possible edges or Teflon for example which reduces the adhesion effect described above Drip catcher editThis section is empty You can help by adding to it January 2023 See also editAdhesion Coandă effect Stall fluid dynamics Spout teapot de References edit a b Why Teapots Always Drip Scientists Finally Explain the Teapot Effect SciTechDaily Vienna University of Technology 2022 01 09 Archived from the original on 2023 01 28 Retrieved 2022 07 02 Reiner Markus September 1956 The teapot effect a problem Physics Today 9 9 American Institute of Physics 16 doi 10 1063 1 3060089 Retrieved 2023 01 28 1 page a b c Ouellette Jennifer 2021 11 10 Dribble dribble dribble Physicists say they ve finally solved the teapot effect for real this time Is due to interplay of inertial viscous capillary forces but gravity s less relevant Ars Technica Archived from the original on 2023 01 28 Retrieved 2022 07 02 Keller Joseph Bishop 1957 Teapot Effect PDF Journal of Applied Physics 28 8 859 864 Bibcode 1957JAP 28 859K doi 10 1063 1 1722875 Archived PDF from the original on 2022 03 13 Retrieved 2023 01 28 1 6 pages Scheichl Bernhard Bowles Robert I Pasias Georgios 2021 11 10 2021 09 08 2021 07 01 2021 05 17 2020 11 09 Developed liquid film passing a smoothed and wedge shaped trailing edge small scale analysis and the teapot effect at large Reynolds numbers Journal of Fluid Mechanics 926 Cambridge University Press A25 1 A25 40 S1 S12 arXiv 2011 12168 Bibcode 2021JFM 926A 25S doi 10 1017 jfm 2021 612 ISSN 0022 1120 S2CID 235444365 Archived from the original on 2023 01 28 Retrieved 2023 01 28 2 40 12 pages a b c d e Dittmar Ilgen Hannelore 2007 2006 2004 Immer Arger mit tropfelnden Kannen Wie der Kork Krumel ans Weinglas kommt Physik fur Geniesser und Entdecker in German 1 ed Stuttgart Germany S Hirzel Verlag de pp 21 25 ISBN 978 3 7776 1440 3 ISBN 978 3 7776 1440 3 172 4 pages Reba Imants June 1966 Applications of the Coanda Effect Scientific American Vol 214 no 6 pp 84 92 Bibcode 1966SciAm 214f 84R doi 10 1038 scientificamerican0666 84 JSTOR 24930967 Retrieved 2023 01 28 9 pages a b Reiner Markus May 1967 Teapot means Coanda Letters Physics Today 20 5 American Institute of Physics 15 Bibcode 1967PhT 20e 15R doi 10 1063 1 3034300 Retrieved 2023 01 28 1 page Reiner Markus 1969 Deformation Strain and Flow An Elementary Introduction To Rheology 3 ed H K Lewis amp Co Ltd ISBN 0 71860162 9 347 pages Ziegler Alfred Wodzinski Ruth 2001 2000 1999 Die Physik des Fliegens als Bestandteil eines Unterrichts zur Stromungslehre Zielsetzungen und Begrundungen Vortrage Physikertagung Deutsche Physikalische Gesellschaft Fachausschuss Didaktik der Physik Book CD in German Arbeitsgruppe Didaktik der Physik Universitat Kassel pp 549 552 Archived from the original on 2023 01 29 Retrieved 2023 01 29 Coanda Effekt bzw Kaffeekanneneffekt ein Tropfen folgt der Oberflache NB Calls the effect coffeepot effect rather than teapot effect Further reading edit Tropfenfangrinne an der Innenseite der Ausgussschnauze von Gefaessen insbesondere Kannen fuer Kaffee Tee usw in German 1928 German patent DE457585C Archived from the original on 2023 01 29 Retrieved 2023 01 29 Non drip spouts for coffee and like pots with a spout opening directed downwardly 1938 1936 GB patent 477613 Archived from the original on 2023 01 29 Retrieved 2023 01 29 Alcock Lindley amp Bloore Ltd https web archive org web 20230128230232 https www teaforum org viewtopic php t 1980 https web archive org web 20230128230443 https cauldonceramics com products re engineered ian mcintyre brown betty 4 cup teapot with infuser in rockingham brown by cauldon ceramics Sakowski Christian 2023 Melitta Kaffeekannen No 301 u 304 D R P fur 1 1 2 und 4 Tassen Mein Sammlerportal amp sampor de in German Berlin Germany Archived from the original on 2023 01 29 Retrieved 2023 01 29 3 NB Picture shows the anti drip groove and pinhole underneath the spout of Melitta coffee pots protected by D R P de patents model No 301 for 1 cups and model No 304 for 4 cups presumably manufactured in the 1920s or 1930s Walker Jearl Dalton 1984 10 01 The troublesome teapot effect or why a poured liquid clings to the container Scientific American Vol 251 no 10 pp 144 152 9 pages Vanden Broeck Jean Marc Keller Joseph Bishop 1986 05 19 1986 09 12 Pouring Flows Physics of Fluids 29 12 3958 3961 Bibcode 1986PhFl 29 3958V doi 10 1063 1 865735 4 pages Vanden Broeck Jean Marc Keller Joseph Bishop 1989 1988 06 27 1988 09 19 Pouring flows with separation Physics of Fluids A Fluid Dynamics 1 1 156 158 Bibcode 1989PhFlA 1 156V doi 10 1063 1 857542 3 pages Kistler Stephan F Scriven Laurence Edward 1994 04 26 1990 02 05 1991 04 03 The teapot effect sheet forming flows with deflection wetting and hysteresis Journal of Fluid Mechanics 263 Cambridge University Press 19 62 Bibcode 1994JFM 263 19K doi 10 1017 S0022112094004027 S2CID 123277240 4 44 pages Trager Susanne 1996 Die nichttropfende Schnaupe In Siemen Wilhelm in German ed In 80 Tassen um die Welt Gastlichkeit und Porzellan Ein Beitrag zur Geschichte des Porzellans fur die Gastronomie vom Ende des 19 Jahrhunderts bis in Gegenwart Schriften und Kataloge des Deutschen Porzellanmuseums DPM in German Vol 46 1 ed Hohenberg an der Eger Germany Deutsches Porzellanmuseum Druckhaus Munch GmbH Selb Germany p 27 ISBN 3 927793 45 0 p 27 Eine tropfende Schnaupe ist nicht nur bei den Kannen die in der Gastronomie eingesetzt werden ein Argernis Was an funktionalen Mangeln im Haushaltsgebrauch noch toleriert werden kann ist in der Gastronomie ein ernsthaftes Problem Verschmutzte Tischtucher und vertropfte Untertassen sind kein Aushangeschild fur ein gut gefuhrtes Cafe Nach dem Ausgiessen sollte keine Flussigkeit mehr an der Aussenwand der Kanne entlanglaufen und kein Tropfen an der Tulle hangen bleiben Es gab einige absonderlich wirkende Versuche Flussigkeit am Ablaufen zu hindern So sollten beispielsweise ablaufende Tropfen durch Rillen in der Kannenwandung aufgehalten werden Bereits 1929 fuhrte die Porzellanfabrik Weiden de Gebr Bauscher de Kannen mit einer nichttropfenden Schnaupe ein Infolge einer Bohrung durch den Ausguss und einer dunnen Rille auf der Innenseite der Tulle stromt die Flussigkeit nach dem Aufrichten der Kanne durch Kapillarkraft zuruck Die Herstellung eines Tropfenfangs mit einer Bohrung ist heute produktionstechnisch zu aufwendig Viele Versuche und Testreihen waren und sind notig um den idealen Neigungswinkel von Ausgussen zu finden damit die Flussigkeit beim Aufrichten des Gefasses ohne zu tropfen in die Schnaupe zurucklauft 1 2 186 2 pages NB The print run of this publication is limited to 1000 pieces Hesselberth John January February 1997 How to Make Drip Free Spouts Clay Times Archived from the original on 2023 01 28 Retrieved 2023 01 29 A groovy kind of pot Sci Tech BBC News 1998 12 08 Archived from the original on 2023 01 29 Retrieved 2023 01 29 Seisser Peter in German Zehentmeier Sabine Meyer Rudolf Siemen Wilhelm in German Symossek Ronja 1999 Sortimentumstellung In Siemen Wilhelm in German ed Mit der Zeit gehen 100 Jahre Porzellanfabrik Walkure 1899 1999 Ein mittelstandiges Industrieunternehmen im Wandel Going with the times 100th anniversary of porcelain manufacturer Walkure 1899 1999 A medium sized industrial company in transition Schriften und Kataloge des Deutschen Porzellanmuseums DPM in German Vol 58 1 ed Hohenberg an der Eger Germany Deutsches Porzellanmuseum pp 101 105 105 ISBN 3 927793 57 4 p 105 Das Interesse der Porzellanfabrik Walkure richtete sich dabei weniger auf das schmucklose Erscheinungsbild eines Porzellangegenstandes sondern vielmehr auf den wortwortlich verstandenen funktionalen Nutzen Ausdruck dieses Bestrebens ist neben der bereits zum Standard gewordenen Deckelhalterung nun auch die nichttropfende Schnaupe Das Problem des Tropfens ist fur den Gastronomiesektor aufgrund verschmutzter Tischdecken naturlich ein besonderes Argernis Unzahlige Testreihen bringen verschiedene Losungen A hervor von denen die Rille in der Kannenwandung wie sie das Geschirr der Porzellanfabrik Walkure aufweist sich als zuverlassig erweist und dementsprechend patentiert wird Der Stolz dieser Erfindung wird auch nach aussen hin sichtbar indem man den speziell damit versehenen Servicen ein P wie Patent hinzufugte Werbeblatt Gastronomiegeschirr Kannenmodell 604P P kennzeichnet die Patentierung fur die nichttropfende Schnaupe 1 195 1 pages NB The print run of this publication is limited to 1000 pieces The corresponding patent is D R P de 476417 Ig Nobel Prize Winners Improbable Research 2023 2012 1999 Archived from the original on 2023 01 28 SPECIAL ANNOUNCEMENT We are now in 2012 correcting an error we made in the year 1999 when we failed to include one winner s name We now correct that awarding a share of the 1999 physics prize to Joseph Keller Professor Keller is also a co winner of the 2012 Ig Nobel physics prize making him a two time Ig Nobel winner The corrected citation is 1999 PHYSICS PRIZE Len Fisher UK and Australia for calculating the optimal way to dunk a biscuit and Jean Marc Vanden Broeck UK and Belgium and Joseph Keller USA for calculating how to make a teapot spout that does not drip Bolton David Fall 2007 Functional Teapot Options amp Rules of Thumb PDF CLC Ceramics Archived PDF from the original on 2023 01 28 Retrieved 2023 01 29 2 pages Dillon Frank 2009 05 11 The pot of gold Design amp Invention It is a problem that has confounded scientists for generations Department Irish Times Archived from the original on 2023 01 29 Retrieved 2023 01 29 How to stop a teapot dribbling Physics Today American Institute of Physics 2009 10 28 doi 10 1063 PT 5 023796 Archived from the original on 2023 01 29 Retrieved 2023 01 28 via The Daily Telegraph Duez Cyril Ybert Christophe at Wikidata Clanet Christophe Bocquet Lyderic in French 2010 02 26 2009 10 17 Wetting controls separation of inertial flows from solid surfaces Physical Review Letters 104 8 American Physical Society 084503 arXiv 0910 3306v1 Bibcode 2010PhRvL 104h4503D doi 10 1103 PhysRevLett 104 084503 PMID 20366936 S2CID 118601911 084503 Retrieved 2023 01 29 5 6 Mugele Frieder G 2010 Was tun wenn die Teekanne tropft Benetzungseigenschaften auf mikroskopischer Skala bestimmen das makroskopische Stromungsverhalten Brennpunkt Physik Journal in German 9 6 Weinheim Germany Wiley VCH Verlag GmbH amp Co KGaA 18 19 Archived from the original on 2023 01 28 Retrieved 2023 01 28 2 pages Lossau Norbert 2010 06 22 Wie man tropfende Teekannen in den Griff bekommt Wissenschaft Die Welt in German Archived from the original on 2023 01 28 Retrieved 2023 01 28 Ever Wonder About the Teapot Effect Science World ASTC Science World Society 2015 10 18 Archived from the original on 2023 01 28 Retrieved 2023 01 28 Robert 2017 02 03 Why Do Teapots Dribble Trivia guernseyDonkey com Archived from the original on 2022 09 25 Retrieved 2023 01 28 Ouellette Jennifer 2019 05 17 I m a little teapot Dribble no more Physics can help combat that pesky teapot effect Dutch scientists devised a model to predict flow rate when dribbling will occur Ars Technica Archived from the original on 2023 01 29 Retrieved 2022 07 02 Gagne Jonathan at Wikidata 2020 6 Kettles and Agitation 6 1 The Teapot Effect In Zimmer Jean ed The Physics of Filter Coffee 1 ed Scott Rao pp 127 144 127 128 ISBN 978 0 578 24608 6 7 xvi 249 3 pages Flussigkeitenmechanik Wiener Forscher erklart warum Tee aus der Kanne danebengeht Wenn ein Flussigkeitsstrahl nicht trifft sondern am Behalter entlangfliesst heisst das Teekanneneffekt Nun gibt es eine detaillierte Erklarung dafur Der Standard in Austrian German Vienna Austria STANDARD Verlagsgesellschaft m b H 2021 11 08 Retrieved 2023 01 28 via Austria Presse Agentur Mihai Andrei 2021 12 01 The maths behind the annoying teapot effect and how to prevent it SciLogs Heidelberg Laureate Forum Heidelberg Germany Spektrum der Wissenschaft Verlagsgesellschaft mbH Archived from the original on 2023 01 28 Retrieved 2023 01 28 Jones David 2022 Pours for thought The teapot effect theory and practice Jones the Pots Archived from the original on 2023 01 28 Retrieved 2023 01 28 Hinze Betsy 2023 Teapot Cheat Sheet Archived from the original on 2024 01 29 Retrieved 2024 01 29 https feldlilie wordpress com 2012 01 19 physikfrage 12485521 https www stevenabbott co uk practical coatings Teapot php https thiru de pages teekanne tropft https www kalkspatzforum de viewtopic php t 2417 https teehaus bachfischer de tropfenfaenger fuer teekannen https sterntee de navi php a 15902 drop catcher Retrieved from https en wikipedia org w index php title Teapot effect amp oldid 1216787674, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.