fbpx
Wikipedia

Table of thermodynamic equations

Common thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows:

Definitions edit

Many of the definitions below are also used in the thermodynamics of chemical reactions.

General basic quantities edit

Quantity (Common Name/s) (Common) Symbol/s SI Units Dimension
Number of molecules N dimensionless dimensionless
Number of moles n mol [N]
Temperature T K [Θ]
Heat Energy Q, q J [M][L]2[T]−2
Latent heat QL J [M][L]2[T]−2

General derived quantities edit

Quantity (Common Name/s) (Common) Symbol/s Defining Equation SI Units Dimension
Thermodynamic beta, Inverse temperature β   J−1 [T]2[M]−1[L]−2
Thermodynamic temperature τ  

   

J [M] [L]2 [T]−2
Entropy S  

  ,  

J K−1 [M][L]2[T]−2 [Θ]−1
Pressure P  

 

Pa M L−1T−2
Internal Energy U   J [M][L]2[T]−2
Enthalpy H   J [M][L]2[T]−2
Partition Function Z dimensionless dimensionless
Gibbs free energy G   J [M][L]2[T]−2
Chemical potential (of

component i in a mixture)

μi  

 , where F is not proportional to N because μi depends on pressure.  , where G is proportional to N (as long as the molar ratio composition of the system remains the same) because μi depends only on temperature and pressure and composition.  

J [M][L]2[T]−2
Helmholtz free energy A, F   J [M][L]2[T]−2
Landau potential, Landau Free Energy, Grand potential Ω, ΦG   J [M][L]2[T]−2
Massieu Potential, Helmholtz free entropy Φ   J K−1 [M][L]2[T]−2 [Θ]−1
Planck potential, Gibbs free entropy Ξ   J K−1 [M][L]2[T]−2 [Θ]−1

Thermal properties of matter edit

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
General heat/thermal capacity C   J K −1 [M][L]2[T]−2 [Θ]−1
Heat capacity (isobaric) Cp   J K −1 [M][L]2[T]−2 [Θ]−1
Specific heat capacity (isobaric) Cmp   J kg−1 K−1 [L]2[T]−2 [Θ]−1
Molar specific heat capacity (isobaric) Cnp   J K −1 mol−1 [M][L]2[T]−2 [Θ]−1 [N]−1
Heat capacity (isochoric/volumetric) CV   J K −1 [M][L]2[T]−2 [Θ]−1
Specific heat capacity (isochoric) CmV   J kg−1 K−1 [L]2[T]−2 [Θ]−1
Molar specific heat capacity (isochoric) CnV   J K −1 mol−1 [M][L]2[T]−2 [Θ]−1 [N]−1
Specific latent heat L   J kg−1 [L]2[T]−2
Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient γ   dimensionless dimensionless

Thermal transfer edit

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Temperature gradient No standard symbol   K m−1 [Θ][L]−1
Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P   W = J s−1 [M] [L]2 [T]−3
Thermal intensity I   W m−2 [M] [T]−3
Thermal/heat flux density (vector analogue of thermal intensity above) q   W m−2 [M] [T]−3

Equations edit

The equations in this article are classified by subject.

Thermodynamic processes edit

Physical situation Equations
Isentropic process (adiabatic and reversible)  

For an ideal gas
 
 
 

Isothermal process  

For an ideal gas
   

Isobaric process p1 = p2, p = constant

 

Isochoric process V1 = V2, V = constant

 

Free expansion  
Work done by an expanding gas Process

 

Net Work Done in Cyclic Processes
 

Kinetic theory edit

Ideal gas equations
Physical situation Nomenclature Equations
Ideal gas law
 

 

Pressure of an ideal gas
  • m = mass of one molecule
  • Mm = molar mass
 

Ideal gas edit

Quantity General Equation Isobaric
Δp = 0
Isochoric
ΔV = 0
Isothermal
ΔT = 0
Adiabatic
 
Work
W
       

 

 
Heat Capacity
C
(as for real gas)  
(for monatomic ideal gas)

 
(for diatomic ideal gas)

 
(for monatomic ideal gas)

 
(for diatomic ideal gas)

Internal Energy
ΔU
   

 
 

 
 

 
 

 
Enthalpy
ΔH
         
Entropy
Δs
 
 [1]
     
 
 
Constant          

Entropy edit

  •  , where kB is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
  •  , for reversible processes only

Statistical physics edit

Below are useful results from the Maxwell–Boltzmann distribution for an ideal gas, and the implications of the Entropy quantity. The distribution is valid for atoms or molecules constituting ideal gases.

Physical situation Nomenclature Equations
Maxwell–Boltzmann distribution
  • v = velocity of atom/molecule,
  • m = mass of each molecule (all molecules are identical in kinetic theory),
  • γ(p) = Lorentz factor as function of momentum (see below)
  • Ratio of thermal to rest mass-energy of each molecule: 

K2 is the Modified Bessel function of the second kind.

Non-relativistic speeds

 

Relativistic speeds (Maxwell-Jüttner distribution)
 

Entropy Logarithm of the density of states
  • Pi = probability of system in microstate i
  • Ω = total number of microstates
 

where:
 

Entropy change  

 

Entropic force  
Equipartition theorem df = degree of freedom Average kinetic energy per degree of freedom

 

Internal energy  

Corollaries of the non-relativistic Maxwell–Boltzmann distribution are below.

Physical situation Nomenclature Equations
Mean speed  
Root mean square speed  
Modal speed  
Mean free path
  • σ = Effective cross-section
  • n = Volume density of number of target particles
  • = Mean free path
 

Quasi-static and reversible processes edit

For quasi-static and reversible processes, the first law of thermodynamics is:

 

where δQ is the heat supplied to the system and δW is the work done by the system.

Thermodynamic potentials edit

The following energies are called the thermodynamic potentials,

Name Symbol Formula Natural variables
Internal energy      
Helmholtz free energy      
Enthalpy      
Gibbs free energy      
Landau potential, or
grand potential
 ,        

and the corresponding fundamental thermodynamic relations or "master equations"[2] are:

Potential Differential
Internal energy  
Enthalpy  
Helmholtz free energy  
Gibbs free energy  

Maxwell's relations edit

The four most common Maxwell's relations are:

Physical situation Nomenclature Equations
Thermodynamic potentials as functions of their natural variables
 

 

 

 

More relations include the following.

     
   
 

Other differential equations are:

Name H U G
Gibbs–Helmholtz equation      
   

Quantum properties edit

  •  
  •   Indistinguishable Particles

where N is number of particles, h is Planck's constant, I is moment of inertia, and Z is the partition function, in various forms:

Degree of freedom Partition function
Translation  
Vibration  
Rotation  

Thermal properties of matter edit

Coefficients Equation
Joule-Thomson coefficient  
Compressibility (constant temperature)  
Coefficient of thermal expansion (constant pressure)  
Heat capacity (constant pressure)  
Heat capacity (constant volume)  

Thermal transfer edit

Physical situation Nomenclature Equations
Net intensity emission/absorption
  • Texternal = external temperature (outside of system)
  • Tsystem = internal temperature (inside system)
  • ε = emmisivity
 
Internal energy of a substance
  • CV = isovolumetric heat capacity of substance
  • ΔT = temperature change of substance
 
Meyer's equation
  • Cp = isobaric heat capacity
  • CV = isovolumetric heat capacity
  • n = number of moles
 
Effective thermal conductivities
  • λi = thermal conductivity of substance i
  • λnet = equivalent thermal conductivity
Series

 

Parallel  

Thermal efficiencies edit

Physical situation Nomenclature Equations
Thermodynamic engines
  • η = efficiency
  • W = work done by engine
  • QH = heat energy in higher temperature reservoir
  • QL = heat energy in lower temperature reservoir
  • TH = temperature of higher temp. reservoir
  • TL = temperature of lower temp. reservoir
Thermodynamic engine:

 

Carnot engine efficiency:
 

Refrigeration K = coefficient of refrigeration performance Refrigeration performance

 

Carnot refrigeration performance  

See also edit

References edit

  1. ^ Keenan, Thermodynamics, Wiley, New York, 1947
  2. ^ Physical chemistry, P.W. Atkins, Oxford University Press, 1978, ISBN 0 19 855148 7
  • Atkins, Peter and de Paula, Julio Physical Chemistry, 7th edition, W.H. Freeman and Company, 2002 ISBN 0-7167-3539-3.
    • Chapters 1–10, Part 1: "Equilibrium".
  • Bridgman, P. W. (1 March 1914). "A Complete Collection of Thermodynamic Formulas". Physical Review. American Physical Society (APS). 3 (4): 273–281. doi:10.1103/physrev.3.273. ISSN 0031-899X.
  • Landsberg, Peter T. Thermodynamics and Statistical Mechanics. New York: Dover Publications, Inc., 1990. (reprinted from Oxford University Press, 1978).
  • Lewis, G.N., and Randall, M., "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961.
  • Reichl, L.E., A Modern Course in Statistical Physics, 2nd edition, New York: John Wiley & Sons, 1998.
  • Schroeder, Daniel V. Thermal Physics. San Francisco: Addison Wesley Longman, 2000 ISBN 0-201-38027-7.
  • Silbey, Robert J., et al. Physical Chemistry, 4th ed. New Jersey: Wiley, 2004.
  • Callen, Herbert B. (1985). Thermodynamics and an Introduction to Themostatistics, 2nd edition, New York: John Wiley & Sons.

External links edit

  • Thermodynamic equation calculator

table, thermodynamic, equations, common, thermodynamic, equations, quantities, thermodynamics, using, mathematical, notation, follows, contents, definitions, general, basic, quantities, general, derived, quantities, thermal, properties, matter, thermal, transf. Common thermodynamic equations and quantities in thermodynamics using mathematical notation are as follows Contents 1 Definitions 1 1 General basic quantities 1 2 General derived quantities 1 3 Thermal properties of matter 1 4 Thermal transfer 2 Equations 2 1 Thermodynamic processes 2 2 Kinetic theory 2 2 1 Ideal gas 2 3 Entropy 2 4 Statistical physics 2 5 Quasi static and reversible processes 2 6 Thermodynamic potentials 2 7 Maxwell s relations 2 8 Quantum properties 3 Thermal properties of matter 3 1 Thermal transfer 3 2 Thermal efficiencies 4 See also 5 References 6 External linksDefinitions editMain articles List of thermodynamic properties Thermodynamic potential Free entropy and Defining equation physical chemistry Many of the definitions below are also used in the thermodynamics of chemical reactions General basic quantities edit Quantity Common Name s Common Symbol s SI Units DimensionNumber of molecules N dimensionless dimensionlessNumber of moles n mol N Temperature T K 8 Heat Energy Q q J M L 2 T 2Latent heat QL J M L 2 T 2General derived quantities edit Quantity Common Name s Common Symbol s Defining Equation SI Units DimensionThermodynamic beta Inverse temperature b b 1 k B T displaystyle beta 1 k B T nbsp J 1 T 2 M 1 L 2Thermodynamic temperature t t k B T displaystyle tau k B T nbsp t k B U S N displaystyle tau k B left partial U partial S right N nbsp 1 t 1 k B S U N displaystyle 1 tau 1 k B left partial S partial U right N nbsp J M L 2 T 2Entropy S S k B i p i ln p i displaystyle S k B sum i p i ln p i nbsp S F T V displaystyle S left partial F partial T right V nbsp S G T N P displaystyle S left partial G partial T right N P nbsp J K 1 M L 2 T 2 8 1Pressure P P F V T N displaystyle P left partial F partial V right T N nbsp P U V S N displaystyle P left partial U partial V right S N nbsp Pa M L 1T 2Internal Energy U U i E i displaystyle U sum i E i nbsp J M L 2 T 2Enthalpy H H U p V displaystyle H U pV nbsp J M L 2 T 2Partition Function Z dimensionless dimensionlessGibbs free energy G G H T S displaystyle G H TS nbsp J M L 2 T 2Chemical potential of component i in a mixture mi m i U N i N j i S V displaystyle mu i left partial U partial N i right N j neq i S V nbsp m i F N i T V displaystyle mu i left partial F partial N i right T V nbsp where F is not proportional to N because mi depends on pressure m i G N i T P displaystyle mu i left partial G partial N i right T P nbsp where G is proportional to N as long as the molar ratio composition of the system remains the same because mi depends only on temperature and pressure and composition m i t 1 k B S N i U V displaystyle mu i tau 1 k B left partial S partial N i right U V nbsp J M L 2 T 2Helmholtz free energy A F F U T S displaystyle F U TS nbsp J M L 2 T 2Landau potential Landau Free Energy Grand potential W FG W U T S m N displaystyle Omega U TS mu N nbsp J M L 2 T 2Massieu Potential Helmholtz free entropy F F S U T displaystyle Phi S U T nbsp J K 1 M L 2 T 2 8 1Planck potential Gibbs free entropy 3 3 F p V T displaystyle Xi Phi pV T nbsp J K 1 M L 2 T 2 8 1Thermal properties of matter edit Main articles Heat capacity and Thermal expansion Quantity common name s Common symbol s Defining equation SI units DimensionGeneral heat thermal capacity C C Q T displaystyle C partial Q partial T nbsp J K 1 M L 2 T 2 8 1Heat capacity isobaric Cp C p H T displaystyle C p partial H partial T nbsp J K 1 M L 2 T 2 8 1Specific heat capacity isobaric Cmp C m p 2 Q m T displaystyle C mp partial 2 Q partial m partial T nbsp J kg 1 K 1 L 2 T 2 8 1Molar specific heat capacity isobaric Cnp C n p 2 Q n T displaystyle C np partial 2 Q partial n partial T nbsp J K 1 mol 1 M L 2 T 2 8 1 N 1Heat capacity isochoric volumetric CV C V U T displaystyle C V partial U partial T nbsp J K 1 M L 2 T 2 8 1Specific heat capacity isochoric CmV C m V 2 Q m T displaystyle C mV partial 2 Q partial m partial T nbsp J kg 1 K 1 L 2 T 2 8 1Molar specific heat capacity isochoric CnV C n V 2 Q n T displaystyle C nV partial 2 Q partial n partial T nbsp J K 1 mol 1 M L 2 T 2 8 1 N 1Specific latent heat L L Q m displaystyle L partial Q partial m nbsp J kg 1 L 2 T 2Ratio of isobaric to isochoric heat capacity heat capacity ratio adiabatic index Laplace coefficient g g C p C V c p c V C m p C m V displaystyle gamma C p C V c p c V C mp C mV nbsp dimensionless dimensionlessThermal transfer edit Main article Thermal conductivity Quantity common name s Common symbol s Defining equation SI units DimensionTemperature gradient No standard symbol T displaystyle nabla T nbsp K m 1 8 L 1Thermal conduction rate thermal current thermal heat flux thermal power transfer P P d Q d t displaystyle P mathrm d Q mathrm d t nbsp W J s 1 M L 2 T 3Thermal intensity I I d P d A displaystyle I mathrm d P mathrm d A nbsp W m 2 M T 3Thermal heat flux density vector analogue of thermal intensity above q Q q d S d t displaystyle Q iint mathbf q cdot mathrm d mathbf S mathrm d t nbsp W m 2 M T 3Equations editThe equations in this article are classified by subject Thermodynamic processes edit Physical situation EquationsIsentropic process adiabatic and reversible Q 0 D U W displaystyle Q 0 quad Delta U W nbsp For an ideal gasp 1 V 1 g p 2 V 2 g displaystyle p 1 V 1 gamma p 2 V 2 gamma nbsp T 1 V 1 g 1 T 2 V 2 g 1 displaystyle T 1 V 1 gamma 1 T 2 V 2 gamma 1 nbsp p 1 1 g T 1 g p 2 1 g T 2 g displaystyle p 1 1 gamma T 1 gamma p 2 1 gamma T 2 gamma nbsp Isothermal process D U 0 W Q displaystyle Delta U 0 quad W Q nbsp For an ideal gasW k T N ln V 2 V 1 displaystyle W kTN ln V 2 V 1 nbsp W n R T ln V 2 V 1 displaystyle W nRT ln V 2 V 1 nbsp Isobaric process p1 p2 p constant W p D V Q D U p d V displaystyle W p Delta V quad Q Delta U p delta V nbsp Isochoric process V1 V2 V constant W 0 Q D U displaystyle W 0 quad Q Delta U nbsp Free expansion D U 0 displaystyle Delta U 0 nbsp Work done by an expanding gas ProcessW V 1 V 2 p d V displaystyle W int V 1 V 2 p mathrm d V nbsp Net Work Done in Cyclic ProcessesW c y c l e p d V c y c l e D Q displaystyle W oint mathrm cycle p mathrm d V oint mathrm cycle Delta Q nbsp Kinetic theory edit Ideal gas equations Physical situation Nomenclature EquationsIdeal gas law p pressure V volume of container T temperature n number of moles R Gas constant N number of molecules k Boltzmann s constant p V n R T k T N displaystyle pV nRT kTN nbsp p 1 V 1 p 2 V 2 n 1 T 1 n 2 T 2 N 1 T 1 N 2 T 2 displaystyle frac p 1 V 1 p 2 V 2 frac n 1 T 1 n 2 T 2 frac N 1 T 1 N 2 T 2 nbsp Pressure of an ideal gas m mass of one molecule Mm molar mass p N m v 2 3 V n M m v 2 3 V 1 3 r v 2 displaystyle p frac Nm langle v 2 rangle 3V frac nM m langle v 2 rangle 3V frac 1 3 rho langle v 2 rangle nbsp Ideal gas edit Quantity General Equation IsobaricDp 0 IsochoricDV 0 IsothermalDT 0 AdiabaticQ 0 displaystyle Q 0 nbsp Work W d W p d V displaystyle delta W pdV nbsp p D V displaystyle p Delta V nbsp 0 displaystyle 0 nbsp n R T ln V 2 V 1 displaystyle nRT ln frac V 2 V 1 nbsp n R T ln P 1 P 2 displaystyle nRT ln frac P 1 P 2 nbsp P V g V f 1 g V i 1 g 1 g C V T 2 T 1 displaystyle frac PV gamma V f 1 gamma V i 1 gamma 1 gamma C V left T 2 T 1 right nbsp Heat Capacity C as for real gas C p 5 2 n R displaystyle C p frac 5 2 nR nbsp for monatomic ideal gas C p 7 2 n R displaystyle C p frac 7 2 nR nbsp for diatomic ideal gas C V 3 2 n R displaystyle C V frac 3 2 nR nbsp for monatomic ideal gas C V 5 2 n R displaystyle C V frac 5 2 nR nbsp for diatomic ideal gas Internal Energy DU D U C V D T displaystyle Delta U C V Delta T nbsp Q W displaystyle Q W nbsp Q p p D V displaystyle Q p p Delta V nbsp Q displaystyle Q nbsp C V T 2 T 1 displaystyle C V left T 2 T 1 right nbsp 0 displaystyle 0 nbsp Q W displaystyle Q W nbsp W displaystyle W nbsp C V T 2 T 1 displaystyle C V left T 2 T 1 right nbsp Enthalpy DH H U p V displaystyle H U pV nbsp C p T 2 T 1 displaystyle C p left T 2 T 1 right nbsp Q V V D p displaystyle Q V V Delta p nbsp 0 displaystyle 0 nbsp C p T 2 T 1 displaystyle C p left T 2 T 1 right nbsp Entropy Ds D S C V ln T 2 T 1 n R ln V 2 V 1 displaystyle Delta S C V ln T 2 over T 1 nR ln V 2 over V 1 nbsp D S C p ln T 2 T 1 n R ln p 2 p 1 displaystyle Delta S C p ln T 2 over T 1 nR ln p 2 over p 1 nbsp 1 C p ln T 2 T 1 displaystyle C p ln frac T 2 T 1 nbsp C V ln T 2 T 1 displaystyle C V ln frac T 2 T 1 nbsp n R ln V 2 V 1 displaystyle nR ln frac V 2 V 1 nbsp Q T displaystyle frac Q T nbsp C p ln V 2 V 1 C V ln p 2 p 1 0 displaystyle C p ln frac V 2 V 1 C V ln frac p 2 p 1 0 nbsp Constant displaystyle nbsp V T displaystyle frac V T nbsp p T displaystyle frac p T nbsp p V displaystyle pV nbsp p V g displaystyle pV gamma nbsp Entropy edit S k B ln W displaystyle S k mathrm B ln Omega nbsp where kB is the Boltzmann constant and W denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability d S d Q T displaystyle dS frac delta Q T nbsp for reversible processes onlyStatistical physics edit Below are useful results from the Maxwell Boltzmann distribution for an ideal gas and the implications of the Entropy quantity The distribution is valid for atoms or molecules constituting ideal gases Physical situation Nomenclature EquationsMaxwell Boltzmann distribution v velocity of atom molecule m mass of each molecule all molecules are identical in kinetic theory g p Lorentz factor as function of momentum see below Ratio of thermal to rest mass energy of each molecule 8 k B T m c 2 displaystyle theta k B T mc 2 nbsp K2 is the Modified Bessel function of the second kind Non relativistic speedsP v 4 p m 2 p k B T 3 2 v 2 e m v 2 2 k B T displaystyle P left v right 4 pi left frac m 2 pi k B T right 3 2 v 2 e mv 2 2k B T nbsp Relativistic speeds Maxwell Juttner distribution f p 1 4 p m 3 c 3 8 K 2 1 8 e g p 8 displaystyle f p frac 1 4 pi m 3 c 3 theta K 2 1 theta e gamma p theta nbsp Entropy Logarithm of the density of states Pi probability of system in microstate i W total number of microstates S k B i P i ln P i k B ln W displaystyle S k B sum i P i ln P i k mathrm B ln Omega nbsp where P i 1 W displaystyle P i 1 Omega nbsp Entropy change D S Q 1 Q 2 d Q T displaystyle Delta S int Q 1 Q 2 frac mathrm d Q T nbsp D S k B N ln V 2 V 1 N C V ln T 2 T 1 displaystyle Delta S k B N ln frac V 2 V 1 NC V ln frac T 2 T 1 nbsp Entropic force F S T S displaystyle mathbf F mathrm S T nabla S nbsp Equipartition theorem df degree of freedom Average kinetic energy per degree of freedom E k 1 2 k T displaystyle langle E mathrm k rangle frac 1 2 kT nbsp Internal energy U d f E k d f 2 k T displaystyle U d f langle E mathrm k rangle frac d f 2 kT nbsp Corollaries of the non relativistic Maxwell Boltzmann distribution are below Physical situation Nomenclature EquationsMean speed v 8 k B T p m displaystyle langle v rangle sqrt frac 8k B T pi m nbsp Root mean square speed v r m s v 2 3 k B T m displaystyle v mathrm rms sqrt langle v 2 rangle sqrt frac 3k B T m nbsp Modal speed v m o d e 2 k B T m displaystyle v mathrm mode sqrt frac 2k B T m nbsp Mean free path s Effective cross section n Volume density of number of target particles ℓ Mean free path ℓ 1 2 n s displaystyle ell 1 sqrt 2 n sigma nbsp Quasi static and reversible processes edit For quasi static and reversible processes the first law of thermodynamics is d U d Q d W displaystyle dU delta Q delta W nbsp where dQ is the heat supplied to the system and dW is the work done by the system Thermodynamic potentials edit Main article Thermodynamic potentials See also Maxwell relations The following energies are called the thermodynamic potentials Name Symbol Formula Natural variablesInternal energy U displaystyle U nbsp T d S p d V i m i d N i displaystyle int left T mathrm d S p mathrm d V sum i mu i mathrm d N i right nbsp S V N i displaystyle S V N i nbsp Helmholtz free energy F displaystyle F nbsp U T S displaystyle U TS nbsp T V N i displaystyle T V N i nbsp Enthalpy H displaystyle H nbsp U p V displaystyle U pV nbsp S p N i displaystyle S p N i nbsp Gibbs free energy G displaystyle G nbsp U p V T S displaystyle U pV TS nbsp T p N i displaystyle T p N i nbsp Landau potential or grand potential W displaystyle Omega nbsp F G displaystyle Phi text G nbsp U T S displaystyle U TS nbsp i displaystyle sum i nbsp m i N i displaystyle mu i N i nbsp T V m i displaystyle T V mu i nbsp and the corresponding fundamental thermodynamic relations or master equations 2 are Potential DifferentialInternal energy d U S V N i T d S p d V i m i d N i displaystyle dU left S V N i right TdS pdV sum i mu i dN i nbsp Enthalpy d H S p N i T d S V d p i m i d N i displaystyle dH left S p N i right TdS Vdp sum i mu i dN i nbsp Helmholtz free energy d F T V N i S d T p d V i m i d N i displaystyle dF left T V N i right SdT pdV sum i mu i dN i nbsp Gibbs free energy d G T p N i S d T V d p i m i d N i displaystyle dG left T p N i right SdT Vdp sum i mu i dN i nbsp Maxwell s relations edit The four most common Maxwell s relations are Physical situation Nomenclature EquationsThermodynamic potentials as functions of their natural variables U S V displaystyle U S V nbsp Internal energy H S P displaystyle H S P nbsp Enthalpy F T V displaystyle F T V nbsp Helmholtz free energy G T P displaystyle G T P nbsp Gibbs free energy T V S P S V 2 U S V displaystyle left frac partial T partial V right S left frac partial P partial S right V frac partial 2 U partial S partial V nbsp T P S V S P 2 H S P displaystyle left frac partial T partial P right S left frac partial V partial S right P frac partial 2 H partial S partial P nbsp S V T P T V 2 F T V displaystyle left frac partial S partial V right T left frac partial P partial T right V frac partial 2 F partial T partial V nbsp S P T V T P 2 G T P displaystyle left frac partial S partial P right T left frac partial V partial T right P frac partial 2 G partial T partial P nbsp More relations include the following S U V N 1 T displaystyle left partial S over partial U right V N 1 over T nbsp S V N U p T displaystyle left partial S over partial V right N U p over T nbsp S N V U m T displaystyle left partial S over partial N right V U mu over T nbsp T S V T C V displaystyle left partial T over partial S right V T over C V nbsp T S P T C P displaystyle left partial T over partial S right P T over C P nbsp p V T 1 V K T displaystyle left partial p over partial V right T 1 over VK T nbsp Other differential equations are Name H U GGibbs Helmholtz equation H T 2 G T T p displaystyle H T 2 left frac partial left G T right partial T right p nbsp U T 2 F T T V displaystyle U T 2 left frac partial left F T right partial T right V nbsp G V 2 F V V T displaystyle G V 2 left frac partial left F V right partial V right T nbsp H p T V T V T P displaystyle left frac partial H partial p right T V T left frac partial V partial T right P nbsp U V T T P T V P displaystyle left frac partial U partial V right T T left frac partial P partial T right V P nbsp Quantum properties edit U N k B T 2 ln Z T V displaystyle U Nk B T 2 left frac partial ln Z partial T right V nbsp S U T N k B ln Z N k ln N N k displaystyle S frac U T Nk B ln Z Nk ln N Nk nbsp Indistinguishable Particleswhere N is number of particles h is Planck s constant I is moment of inertia and Z is the partition function in various forms Degree of freedom Partition functionTranslation Z t 2 p m k B T 3 2 V h 3 displaystyle Z t frac 2 pi mk B T frac 3 2 V h 3 nbsp Vibration Z v 1 1 e h w 2 p k B T displaystyle Z v frac 1 1 e frac h omega 2 pi k B T nbsp Rotation Z r 2 I k B T s h 2 p 2 displaystyle Z r frac 2Ik B T sigma frac h 2 pi 2 nbsp where s 1 heteronuclear molecules s 2 homonuclear Thermal properties of matter editCoefficients EquationJoule Thomson coefficient m J T T p H displaystyle mu JT left frac partial T partial p right H nbsp Compressibility constant temperature K T 1 V V p T N displaystyle K T 1 over V left partial V over partial p right T N nbsp Coefficient of thermal expansion constant pressure a p 1 V V T p displaystyle alpha p frac 1 V left frac partial V partial T right p nbsp Heat capacity constant pressure C p Q r e v T p U T p p V T p H T p T S T p displaystyle C p left partial Q rev over partial T right p left partial U over partial T right p p left partial V over partial T right p left partial H over partial T right p T left partial S over partial T right p nbsp Heat capacity constant volume C V Q r e v T V U T V T S T V displaystyle C V left partial Q rev over partial T right V left partial U over partial T right V T left partial S over partial T right V nbsp Derivation of heat capacity constant pressure Since T p H p H T H T p 1 displaystyle left frac partial T partial p right H left frac partial p partial H right T left frac partial H partial T right p 1 nbsp T p H H p T T H p 1 H T p H p T displaystyle begin aligned left frac partial T partial p right H amp left frac partial H partial p right T left frac partial T partial H right p amp frac 1 left frac partial H partial T right p left frac partial H partial p right T end aligned nbsp C p H T p displaystyle C p left frac partial H partial T right p nbsp T p H 1 C p H p T displaystyle Rightarrow left frac partial T partial p right H frac 1 C p left frac partial H partial p right T nbsp Derivation of heat capacity constant volume Since d U d Q r e v d W r e v displaystyle dU delta Q rev delta W rev nbsp where dWrev is the work done by the system d S d Q r e v T d W r e v p d V displaystyle delta S frac delta Q rev T delta W rev p delta V nbsp d U T d S p d V displaystyle dU T delta S p delta V nbsp U T V T S T V p V T V C V U T V displaystyle left frac partial U partial T right V T left frac partial S partial T right V p left frac partial V partial T right V C V left frac partial U partial T right V nbsp C V T S T V displaystyle Rightarrow C V T left frac partial S partial T right V nbsp Thermal transfer edit Physical situation Nomenclature EquationsNet intensity emission absorption Texternal external temperature outside of system Tsystem internal temperature inside system e emmisivity I s ϵ T e x t e r n a l 4 T s y s t e m 4 displaystyle I sigma epsilon left T mathrm external 4 T mathrm system 4 right nbsp Internal energy of a substance CV isovolumetric heat capacity of substance DT temperature change of substance D U N C V D T displaystyle Delta U NC V Delta T nbsp Meyer s equation Cp isobaric heat capacity CV isovolumetric heat capacity n number of moles C p C V n R displaystyle C p C V nR nbsp Effective thermal conductivities li thermal conductivity of substance i lnet equivalent thermal conductivity Series l n e t j l j displaystyle lambda mathrm net sum j lambda j nbsp Parallel 1 l n e t j 1 l j displaystyle frac 1 lambda mathrm net sum j left frac 1 lambda j right nbsp Thermal efficiencies edit Physical situation Nomenclature EquationsThermodynamic engines h efficiency W work done by engine QH heat energy in higher temperature reservoir QL heat energy in lower temperature reservoir TH temperature of higher temp reservoir TL temperature of lower temp reservoir Thermodynamic engine h W Q H displaystyle eta left frac W Q H right nbsp Carnot engine efficiency h c 1 Q L Q H 1 T L T H displaystyle eta c 1 left frac Q L Q H right 1 frac T L T H nbsp Refrigeration K coefficient of refrigeration performance Refrigeration performance K Q L W displaystyle K left frac Q L W right nbsp Carnot refrigeration performance K C Q L Q H Q L T L T H T L displaystyle K C frac Q L Q H Q L frac T L T H T L nbsp See also editList of thermodynamic properties Antoine equation Bejan number Bowen ratio Bridgman s equations Clausius Clapeyron relation Departure functions Duhem Margules equation Ehrenfest equations Gibbs Helmholtz equation Phase rule Kopp s law Noro Frenkel law of corresponding states Onsager reciprocal relations Stefan number Triple product rule Exact differentialReferences edit Keenan Thermodynamics Wiley New York 1947 Physical chemistry P W Atkins Oxford University Press 1978 ISBN 0 19 855148 7 Atkins Peter and de Paula Julio Physical Chemistry 7th edition W H Freeman and Company 2002 ISBN 0 7167 3539 3 Chapters 1 10 Part 1 Equilibrium Bridgman P W 1 March 1914 A Complete Collection of Thermodynamic Formulas Physical Review American Physical Society APS 3 4 273 281 doi 10 1103 physrev 3 273 ISSN 0031 899X Landsberg Peter T Thermodynamics and Statistical Mechanics New York Dover Publications Inc 1990 reprinted from Oxford University Press 1978 Lewis G N and Randall M Thermodynamics 2nd Edition McGraw Hill Book Company New York 1961 Reichl L E A Modern Course in Statistical Physics 2nd edition New York John Wiley amp Sons 1998 Schroeder Daniel V Thermal Physics San Francisco Addison Wesley Longman 2000 ISBN 0 201 38027 7 Silbey Robert J et al Physical Chemistry 4th ed New Jersey Wiley 2004 Callen Herbert B 1985 Thermodynamics and an Introduction to Themostatistics 2nd edition New York John Wiley amp Sons External links editThermodynamic equation calculator Retrieved from https en wikipedia org w index php title Table of thermodynamic equations amp oldid 1175164902, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.