fbpx
Wikipedia

Supercooling

Supercooling,[1] also known as undercooling,[2][3] is the process of lowering the temperature of a liquid below its freezing point without it becoming a solid. It is achieved in the absence of a seed crystal or nucleus around which a crystal structure can form. The supercooling of water can be achieved without any special techniques other than chemical demineralization, down to −48.3 °C (−54.9 °F). Supercooled water can occur naturally, for example in the atmosphere, animals or plants.

Supercooled water, still in liquid state
Start of solidification as a result of leaving the state of rest

Explanation edit

A liquid crossing its standard freezing point will crystalize in the presence of a seed crystal or nucleus around which a crystal structure can form creating a solid. Lacking any such nuclei, the liquid phase can be maintained all the way down to the temperature at which crystal homogeneous nucleation occurs.[4]

Homogeneous nucleation can occur above the glass transition temperature, but if homogeneous nucleation has not occurred above that temperature, an amorphous (non-crystalline) solid will form.

Water normally freezes at 273.15 K (0.0 °C; 32 °F), but it can be "supercooled" at standard pressure down to its crystal homogeneous nucleation at almost 224.8 K (−48.3 °C; −55.0 °F).[5][6] The process of supercooling requires water to be pure and free of nucleation sites, which can be achieved by processes like reverse osmosis or chemical demineralization, but the cooling itself does not require any specialised technique. If water is cooled at a rate on the order of 106 K/s, the crystal nucleation can be avoided and water becomes a glass—that is, an amorphous (non-crystalline) solid. Its glass transition temperature is much colder and harder to determine, but studies estimate it at about 136 K (−137 °C; −215 °F).[7]Glassy water can be heated up to approximately 150 K (−123 °C; −190 °F) without nucleation occurring.[6] In the range of temperatures between 150 and 231 K (−123 and −42.2 °C; −190 and −43.9 °F), experiments find only crystal ice.

Droplets of supercooled water often exist in stratus and cumulus clouds. An aircraft flying through such a cloud sees an abrupt crystallization of these droplets, which can result in the formation of ice on the aircraft's wings or blockage of its instruments and probes, unless the aircraft is equipped with an appropriate ice protection system. Freezing rain is also caused by supercooled droplets.

The process opposite to supercooling, the melting of a solid above the freezing point, is much more difficult, and a solid will almost always melt at the same temperature for a given pressure. For this reason, it is the melting point which is usually identified, using melting point apparatus; even when the subject of a paper is "freezing-point determination", the actual methodology is "the principle of observing the disappearance rather than the formation of ice".[8] It is possible, at a given pressure, to superheat a liquid above its boiling point without it becoming gaseous.

Supercooling should not be confused with freezing-point depression. Supercooling is the cooling of a liquid below its freezing point without it becoming solid. Freezing point depression is when a solution can be cooled below the freezing point of the corresponding pure liquid due to the presence of the solute; an example of this is the freezing point depression that occurs when salt is added to pure water.

Constitutional supercooling edit

 
Constitutional supercooling – phase diagram, concentration, and temperature

Constitutional supercooling, which occurs during solidification, is due to compositional solid changes, and results in cooling a liquid below the freezing point ahead of the solid–liquid interface. When solidifying a liquid, the interface is often unstable, and the velocity of the solid–liquid interface must be small in order to avoid constitutional supercooling.

Constitutional supercooling is observed when the liquidus temperature gradient at the interface (the position x=0) is larger than the imposed temperature gradient:

 

The liquidus slope from the binary phase diagram is given by  , so the constitutional supercooling criterion for a binary alloy can be written in terms of the concentration gradient at the interface:

 

The concentration gradient ahead of a planar interface is given by

 

where   is the interface velocity,   the diffusion coefficient, and   and   are the compositions of the liquid and solid at the interface, respectively (i.e.,  ).

For the steady-state growth of a planar interface, the composition of the solid is equal to the nominal alloy composition,  , and the partition coefficient,  , can be assumed constant. Therefore, the minimum thermal gradient necessary to create a stable solid front is given by

 

For more information, see Chapter 3 of[9]

In animals edit

In order to survive extreme low temperatures in certain environments, some animals use the phenomenon of supercooling that allow them to remain unfrozen and avoid cell damage and death. There are many techniques that aid in maintaining a liquid state, such as the production of antifreeze proteins, or AFPs, which bind to ice crystals to prevent water molecules from binding and spreading the growth of ice.[10] The winter flounder is one such fish that utilizes these proteins to survive in its frigid environment. The liver secretes noncolligative proteins into the bloodstream.[11] Other animals use colligative antifreezes, which increases the concentration of solutes in their bodily fluids, thus lowering their freezing point. Fish that rely on supercooling for survival must also live well below the water surface, because if they came into contact with ice nuclei they would freeze immediately. Animals that undergo supercooling to survive must also remove ice-nucleating agents from their bodies because they act as a starting point for freezing. Supercooling is also a common feature in some insect, reptile, and other ectotherm species. The potato cyst nematode larva (Globodera rostochiensis) could survive inside their cysts in a supercooled state to temperatures as low as −38 °C (−36 °F), even with the cyst encased in ice.

As an animal gets farther and farther below its melting point the chance of spontaneous freezing increases dramatically for its internal fluids, as this is a thermodynamically unstable state. The fluids eventually reach the supercooling point, which is the temperature at which the supercooled solution freezes spontaneously due to being so far below its normal freezing point.[12] Animals unintentionally undergo supercooling and are only able to decrease the odds of freezing once supercooled. Even though supercooling is essential for survival, there are many risks associated with it.

In plants edit

Plants can also survive extreme cold conditions brought forth during the winter months. Many plant species located in northern climates can acclimate under these cold conditions by supercooling, thus these plants survive temperatures as low as −40 °C (−40 °F).[13] Although this supercooling phenomenon is poorly understood, it has been recognized through infrared thermography. Ice nucleation occurs in certain plant organs and tissues, debatably beginning in the xylem tissue and spreading throughout the rest of the plant.[14][15] Infrared thermography allows for droplets of water to be visualized as they crystalize in extracellular spaces.[16]

Supercooling inhibits the formation of ice within the tissue by ice nucleation and allows the cells to maintain water in a liquid state and further allows the water within the cell to stay separate from extracellular ice.[16] Cellular barriers such as lignin, suberin and the cuticle inhibit ice nucleators and force water into the supercooled tissue.[17] The xylem and primary tissue of plants are very susceptible to cold temperatures because of the large proportion of water in the cell. Many boreal hardwood species in northern climates have the ability to prevent ice spreading into the shoots allowing the plant to tolerate the cold.[18] Supercooling has been identified in the evergreen shrubs Rhododendron ferrugineum and Vaccinium vitis-idaea as well as Abies, Picea and Larix species.[18] Freezing outside of the cell and within the cell wall does not affect the survival of the plant.[19] However, the extracellular ice may lead to plant dehydration.[15]

In seawater edit

The presence of salt in seawater affects the freezing point. For that reason, it is possible for seawater to remain in the liquid state at temperatures below melting point. This is "pseudo-supercooling" because the phenomenon is the result of freezing point lowering caused by the presence of salt, not supercooling. This condition is most commonly observed in the oceans around Antarctica where melting of the undersides of ice shelves at high-pressure results in liquid melt-water that can be below the freezing temperature. It is supposed that the water does not immediately refreeze due to a lack of nucleation sites.[20] This provides a challenge to oceanographic instrumentation as ice crystals will readily form on the equipment, potentially affecting the data quality.[21] Ultimately the presence of extremely cold seawater will affect the growth of sea ice.

Applications edit

One commercial application of supercooling is in refrigeration. Freezers can cool drinks to a supercooled level[22] so that when they are opened, they form a slush. Another example is a product that can supercool the beverage in a conventional freezer.[23] The Coca-Cola Company briefly marketed special vending machines containing Sprite in the UK, and Coke in Singapore, which stored the bottles in a supercooled state so that their content would turn to slush upon opening.[24]

Supercooling was successfully applied to organ preservation at Massachusetts General Hospital/Harvard Medical School. Livers that were later transplanted into recipient animals were preserved by supercooling for up to 4 days, quadrupling the limits of what could be achieved by conventional liver preservation methods. The livers were supercooled to a temperature of −6 °C (21 °F) in a specialized solution that protected against freezing and injury from the cold temperature.[25]

Another potential application is drug delivery. In 2015, researchers crystallized membranes at a specific time. Liquid-encapsulated drugs could be delivered to the site and, with a slight environmental change, the liquid rapidly changes into a crystalline form that releases the drug.[26]

In 2016, a team at Iowa State University proposed a method for "soldering without heat" by using encapsulated droplets of supercooled liquid metal to repair heat sensitive electronic devices.[27][28] In 2019, the same team demonstrated the use of undercooled metal to print solid metallic interconnects on surfaces ranging from polar (paper and Jello) to superhydrophobic (rose petals), with all the surfaces being lower modulus than the metal.[29][30]

Eftekhari et al. proposed an empirical theory explaining that supercooling of ionic liquid crystals can build ordered channels for diffusion for energy storage applications. In this case, the electrolyte has a rigid structure comparable to a solid electrolyte, but the diffusion coefficient can be as large as in liquid electrolytes. Supercooling increases the medium viscosity but keeps the directional channels open for diffusion.[31]

See also edit

References edit

  1. ^ Gomes, Gabriel O.; H. Stanley, Eugene; Souza, Mariano de (2019-08-19). "Enhanced Grüneisen Parameter in Supercooled Water". Scientific Reports. 9 (1): 12006. arXiv:1808.00536. Bibcode:2019NatSR...912006O. doi:10.1038/s41598-019-48353-4. ISSN 2045-2322. PMC 6700159. PMID 31427698.
  2. ^ Rathz, Tom. . NASA. Archived from the original on 2009-12-02. Retrieved 2010-01-12.
  3. ^ Science Mission Directorate (April 23, 2001). "Look Ma — No Hands!: What is "Undercooling"?". NASA Science. Retrieved 13 April 2023.
  4. ^ "Water freezing almost instantaneously when shaking a bottle that spend the night outside during a frosty night". 2021-04-07. Retrieved 2021-04-08.
  5. ^ Moore, Emily; Valeria Molinero (24 November 2011). "structural transformation in supercooled water controls the crystallization rate of ice". Nature. 479 (7374): 506–508. arXiv:1107.1622. Bibcode:2011Natur.479..506M. doi:10.1038/nature10586. PMID 22113691. S2CID 1784703.
  6. ^ a b Debenedetti, P. G.; Stanley, H. E. (2003). "Supercooled and Glassy Water" (PDF). Physics Today. 56 (6): 40–46 [p. 42]. Bibcode:2003PhT....56f..40D. doi:10.1063/1.1595053.
  7. ^ Angell, C. Austen (2008). "Insights into Phases of Liquid Water from Study of Its Unusual Glass-Forming Properties". Science. 319 (5863): 582–587. doi:10.1126/science.1131939. PMID 18239117. S2CID 9860383.
  8. ^ Ramsay, J. A. (1949). "A new method of freezing-point determination for small quantities" (PDF). J. Exp. Biol. 26 (1): 57–64. doi:10.1242/jeb.26.1.57. PMID 15406812.
  9. ^ Kurz W, Fisher DJ (1992). "Chapter 3: Morphological Instability of a Solid/Liquid Interface". Fundamentals of Solidification (3rd ed.). Switzerland: Trans Tech Publications Ltd. p. 45-55. ISBN 0-87849-522-3.
  10. ^ J.G. Duman (2001). "Antifreeze and ice nucleator proteins in terrestrial arthropods". Annual Review of Physiology. 63: 327–357. doi:10.1146/annurev.physiol.63.1.327. PMID 11181959.
  11. ^ Garth L Fletcher; Choy L Hew & Peter L Davies (2001). "Antifreeze Proteins of Teleost Fishes". Annual Review of Physiology. 63: 359–390. doi:10.1146/annurev.physiol.63.1.359. PMID 11181960.
  12. ^ C.H. Lowe; P.J. Lardner & E.A. Halpern (1971). "Supercooling in reptiles and other vertebrates". Comparative Biochemistry and Physiology. 39A (1): 125–135. doi:10.1016/0300-9629(71)90352-5. PMID 4399229.
  13. ^ Wisniewski, M.; Fuller, M.; Palta, J.; Carter, J.; Arora, R. (2004-05-24). "Ice Nucleation, Propagation, and Deep Supercooling in Woody Plants". Journal of Crop Improvement. 10 (1–2): 5–16. doi:10.1300/J411v10n01_02. ISSN 1542-7528. S2CID 5362785.
  14. ^ Wisniewski, M (1997). "Observations of ice nucleation and propagation in plants using infrared thermography". Plant Physiology. 113 (2): 327–334. doi:10.1104/pp.113.2.327. PMC 158146. PMID 12223611.
  15. ^ a b Pearce, R (2001). "Plant freezing and damage" (PDF). Annals of Botany. 87 (4): 417–424. doi:10.1006/anbo.2000.1352. Retrieved 11 December 2016.
  16. ^ a b Wisniewski, M (2004). "Ice nucleation, propagation, and deep supercooling in woody plants". Journal of Crop Improvement. 10 (1–2): 5–16. doi:10.1300/j411v10n01_02. S2CID 5362785.
  17. ^ Kuprian, E (2016). "Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite intact xylem connection". PLOS ONE. 11 (9): e0163160. Bibcode:2016PLoSO..1163160K. doi:10.1371/journal.pone.0163160. PMC 5025027. PMID 27632365.
  18. ^ a b Neuner, Gilbert (2014). "Frost resistance in alpine woody plants". Front Plant Sci. 5: 654. doi:10.3389/fpls.2014.00654. PMC 4249714. PMID 25520725.
  19. ^ Burke, M (1976). "Freezing and injury in plants". Annual Review of Plant Physiology. 27: 507–528. doi:10.1146/annurev.pp.27.060176.002451.
  20. ^ Hoppmann, M.; Richter, M.E.; Smith, I.J.; Jendersie, S.; Langhorne, P.J.; Thomas, D.N.; Dieckmann, G.S. (2020). "Platelet ice, the Southern Ocean's hidden ice: a review". Annals of Glaciology. 61 (83): 1–28. Bibcode:2020AnGla..61..341H. doi:10.1017/aog.2020.54.
  21. ^ Robinson, N.J.; Grant, B.S.; Stevens, C.L.; Stewart, C.L.; Williams, M.J.M. (2020). "Oceanographic observations in supercooled water: Protocols for mitigation of measurement errors in profiling and moored sampling". Cold Regions Science and Technology. 170 (102954): 102954. Bibcode:2020CRST..17002954R. doi:10.1016/j.coldregions.2019.102954.
  22. ^ Chill Chamber March 1, 2009, at the Wayback Machine
  23. ^ Slush-It! 2010-01-23 at the Wayback Machine
  24. ^ Charlie Sorrel (2007-09-21). "Coca Cola Plans High Tech, Super Cool Sprite". Wired. Condé Nast. Retrieved 2013-12-05.
  25. ^ Berendsen, TA; Bruinsma, BG; Puts, CF; Saeidi, N; Usta, OB; Uygun, BE; Izamis, Maria-Louisa; Toner, Mehmet; Yarmush, Martin L; Uygun, Korkut (2014). "Supercooling enables long-term transplantation survival following 4 days of liver preservation". Nature Medicine. 20 (7): 790–793. doi:10.1038/nm.3588. PMC 4141719. PMID 24973919.
  26. ^ Hunka, George (2015-05-06). "A "super cool" way to deliver drugs". R&D.
  27. ^ Mitch Jacoby (2016-03-14). "Soldering without heat". Chemical and Engineering News. Retrieved 2016-03-14.
  28. ^ Simge Çınar; Ian D. Tevis; Jiahao Chen; Martin Thuo (2016-02-23). "Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering". Scientific Reports. 6: 21864. Bibcode:2016NatSR...621864C. doi:10.1038/srep21864. PMC 4763186. PMID 26902483.
  29. ^ Mitch Jacoby (2019-07-23). "Heat-free method yields printed metallic circuit connections". Chemical and Engineering News. Retrieved 2019-07-24.
  30. ^ Andrew Martin; Boyce S. Chang; Zachary Martin; Dipark Paramanik; Christophe Frankiewicz; Souvik Kundu; Ian Tevis; Martin Thuo (2019-07-15). "Heat-Free Fabrication of Metallic Interconnects for Flexible/Wearable Devices". Advanced Functional Materials. 29 (40): 1903687. doi:10.1002/adfm.201903687. S2CID 199076266.
  31. ^ Eftekhari, A; Liu, Y; Chen, P (2016). "Different roles of ionic liquids in lithium batteries". Journal of Power Sources. 334: 221–239. Bibcode:2016JPS...334..221E. doi:10.1016/j.jpowsour.2016.10.025.

Further reading edit

  • Giovambattista, N.; Angell, C. A.; Sciortino, F.; Stanley, H. E. (July 2004). "Glass-Transition Temperature of Water: A Simulation Study" (PDF). Physical Review Letters. 93 (4): 047801. arXiv:cond-mat/0403133. Bibcode:2004PhRvL..93d7801G. doi:10.1103/PhysRevLett.93.047801. PMID 15323794. S2CID 8311857.
  • Rogerson, M. A.; Cardoso, S. S. S. (April 2004). "Solidification in heat packs: III. Metallic trigger". AIChE Journal. 49 (2): 522–529. doi:10.1002/aic.690490222. Archived from the original on 2012-12-09.

External links edit

  • Supercooled water and coke on YouTube
  • Supercooled water on YouTube
  • Super Cooled Water #2 on YouTube
  • Supercooled Water Nucleation Experiments on YouTube
  • Supercooled liquids on arxiv.org
  • Radiolab podcast on supercooling

supercooling, confused, with, superfluidity, subcooling, supercool, redirects, here, band, supercool, band, film, supercool, film, also, known, undercooling, process, lowering, temperature, liquid, below, freezing, point, without, becoming, solid, achieved, ab. Not to be confused with superfluidity or subcooling Supercool redirects here For the band see Supercool band For the film see Supercool film Supercooling 1 also known as undercooling 2 3 is the process of lowering the temperature of a liquid below its freezing point without it becoming a solid It is achieved in the absence of a seed crystal or nucleus around which a crystal structure can form The supercooling of water can be achieved without any special techniques other than chemical demineralization down to 48 3 C 54 9 F Supercooled water can occur naturally for example in the atmosphere animals or plants Supercooled water still in liquid stateStart of solidification as a result of leaving the state of rest Contents 1 Explanation 2 Constitutional supercooling 3 In animals 4 In plants 5 In seawater 6 Applications 7 See also 8 References 9 Further reading 10 External linksExplanation editA liquid crossing its standard freezing point will crystalize in the presence of a seed crystal or nucleus around which a crystal structure can form creating a solid Lacking any such nuclei the liquid phase can be maintained all the way down to the temperature at which crystal homogeneous nucleation occurs 4 Homogeneous nucleation can occur above the glass transition temperature but if homogeneous nucleation has not occurred above that temperature an amorphous non crystalline solid will form Water normally freezes at 273 15 K 0 0 C 32 F but it can be supercooled at standard pressure down to its crystal homogeneous nucleation at almost 224 8 K 48 3 C 55 0 F 5 6 The process of supercooling requires water to be pure and free of nucleation sites which can be achieved by processes like reverse osmosis or chemical demineralization but the cooling itself does not require any specialised technique If water is cooled at a rate on the order of 106 K s the crystal nucleation can be avoided and water becomes a glass that is an amorphous non crystalline solid Its glass transition temperature is much colder and harder to determine but studies estimate it at about 136 K 137 C 215 F 7 Glassy water can be heated up to approximately 150 K 123 C 190 F without nucleation occurring 6 In the range of temperatures between 150 and 231 K 123 and 42 2 C 190 and 43 9 F experiments find only crystal ice Droplets of supercooled water often exist in stratus and cumulus clouds An aircraft flying through such a cloud sees an abrupt crystallization of these droplets which can result in the formation of ice on the aircraft s wings or blockage of its instruments and probes unless the aircraft is equipped with an appropriate ice protection system Freezing rain is also caused by supercooled droplets The process opposite to supercooling the melting of a solid above the freezing point is much more difficult and a solid will almost always melt at the same temperature for a given pressure For this reason it is the melting point which is usually identified using melting point apparatus even when the subject of a paper is freezing point determination the actual methodology is the principle of observing the disappearance rather than the formation of ice 8 It is possible at a given pressure to superheat a liquid above its boiling point without it becoming gaseous Supercooling should not be confused with freezing point depression Supercooling is the cooling of a liquid below its freezing point without it becoming solid Freezing point depression is when a solution can be cooled below the freezing point of the corresponding pure liquid due to the presence of the solute an example of this is the freezing point depression that occurs when salt is added to pure water Constitutional supercooling edit nbsp Constitutional supercooling phase diagram concentration and temperatureConstitutional supercooling which occurs during solidification is due to compositional solid changes and results in cooling a liquid below the freezing point ahead of the solid liquid interface When solidifying a liquid the interface is often unstable and the velocity of the solid liquid interface must be small in order to avoid constitutional supercooling Constitutional supercooling is observed when the liquidus temperature gradient at the interface the position x 0 is larger than the imposed temperature gradient TL x x 0 gt T x displaystyle left frac partial T L partial x right x 0 gt frac partial T partial x nbsp The liquidus slope from the binary phase diagram is given by m TL CL displaystyle m partial T L partial C L nbsp so the constitutional supercooling criterion for a binary alloy can be written in terms of the concentration gradient at the interface m CL x x 0 gt T x displaystyle m left frac partial C L partial x right x 0 gt frac partial T partial x nbsp The concentration gradient ahead of a planar interface is given by CL x x 0 CLS CSL vD displaystyle left frac partial C L partial x right x 0 C LS C SL frac v D nbsp where v displaystyle v nbsp is the interface velocity D displaystyle D nbsp the diffusion coefficient and CLS displaystyle C LS nbsp and CSL displaystyle C SL nbsp are the compositions of the liquid and solid at the interface respectively i e CLS CL x 0 displaystyle C LS C L x 0 nbsp For the steady state growth of a planar interface the composition of the solid is equal to the nominal alloy composition CSL C0 displaystyle C SL C 0 nbsp and the partition coefficient k CSL CLS displaystyle k C SL C LS nbsp can be assumed constant Therefore the minimum thermal gradient necessary to create a stable solid front is given by T x mC0 1 k vkD displaystyle frac partial T partial x frac mC 0 1 k v kD nbsp For more information see Chapter 3 of 9 In animals editIn order to survive extreme low temperatures in certain environments some animals use the phenomenon of supercooling that allow them to remain unfrozen and avoid cell damage and death There are many techniques that aid in maintaining a liquid state such as the production of antifreeze proteins or AFPs which bind to ice crystals to prevent water molecules from binding and spreading the growth of ice 10 The winter flounder is one such fish that utilizes these proteins to survive in its frigid environment The liver secretes noncolligative proteins into the bloodstream 11 Other animals use colligative antifreezes which increases the concentration of solutes in their bodily fluids thus lowering their freezing point Fish that rely on supercooling for survival must also live well below the water surface because if they came into contact with ice nuclei they would freeze immediately Animals that undergo supercooling to survive must also remove ice nucleating agents from their bodies because they act as a starting point for freezing Supercooling is also a common feature in some insect reptile and other ectotherm species The potato cyst nematode larva Globodera rostochiensis could survive inside their cysts in a supercooled state to temperatures as low as 38 C 36 F even with the cyst encased in ice As an animal gets farther and farther below its melting point the chance of spontaneous freezing increases dramatically for its internal fluids as this is a thermodynamically unstable state The fluids eventually reach the supercooling point which is the temperature at which the supercooled solution freezes spontaneously due to being so far below its normal freezing point 12 Animals unintentionally undergo supercooling and are only able to decrease the odds of freezing once supercooled Even though supercooling is essential for survival there are many risks associated with it In plants editPlants can also survive extreme cold conditions brought forth during the winter months Many plant species located in northern climates can acclimate under these cold conditions by supercooling thus these plants survive temperatures as low as 40 C 40 F 13 Although this supercooling phenomenon is poorly understood it has been recognized through infrared thermography Ice nucleation occurs in certain plant organs and tissues debatably beginning in the xylem tissue and spreading throughout the rest of the plant 14 15 Infrared thermography allows for droplets of water to be visualized as they crystalize in extracellular spaces 16 Supercooling inhibits the formation of ice within the tissue by ice nucleation and allows the cells to maintain water in a liquid state and further allows the water within the cell to stay separate from extracellular ice 16 Cellular barriers such as lignin suberin and the cuticle inhibit ice nucleators and force water into the supercooled tissue 17 The xylem and primary tissue of plants are very susceptible to cold temperatures because of the large proportion of water in the cell Many boreal hardwood species in northern climates have the ability to prevent ice spreading into the shoots allowing the plant to tolerate the cold 18 Supercooling has been identified in the evergreen shrubs Rhododendron ferrugineum and Vaccinium vitis idaea as well as Abies Picea and Larix species 18 Freezing outside of the cell and within the cell wall does not affect the survival of the plant 19 However the extracellular ice may lead to plant dehydration 15 In seawater editThe presence of salt in seawater affects the freezing point For that reason it is possible for seawater to remain in the liquid state at temperatures below melting point This is pseudo supercooling because the phenomenon is the result of freezing point lowering caused by the presence of salt not supercooling This condition is most commonly observed in the oceans around Antarctica where melting of the undersides of ice shelves at high pressure results in liquid melt water that can be below the freezing temperature It is supposed that the water does not immediately refreeze due to a lack of nucleation sites 20 This provides a challenge to oceanographic instrumentation as ice crystals will readily form on the equipment potentially affecting the data quality 21 Ultimately the presence of extremely cold seawater will affect the growth of sea ice Applications editOne commercial application of supercooling is in refrigeration Freezers can cool drinks to a supercooled level 22 so that when they are opened they form a slush Another example is a product that can supercool the beverage in a conventional freezer 23 The Coca Cola Company briefly marketed special vending machines containing Sprite in the UK and Coke in Singapore which stored the bottles in a supercooled state so that their content would turn to slush upon opening 24 Supercooling was successfully applied to organ preservation at Massachusetts General Hospital Harvard Medical School Livers that were later transplanted into recipient animals were preserved by supercooling for up to 4 days quadrupling the limits of what could be achieved by conventional liver preservation methods The livers were supercooled to a temperature of 6 C 21 F in a specialized solution that protected against freezing and injury from the cold temperature 25 Another potential application is drug delivery In 2015 researchers crystallized membranes at a specific time Liquid encapsulated drugs could be delivered to the site and with a slight environmental change the liquid rapidly changes into a crystalline form that releases the drug 26 In 2016 a team at Iowa State University proposed a method for soldering without heat by using encapsulated droplets of supercooled liquid metal to repair heat sensitive electronic devices 27 28 In 2019 the same team demonstrated the use of undercooled metal to print solid metallic interconnects on surfaces ranging from polar paper and Jello to superhydrophobic rose petals with all the surfaces being lower modulus than the metal 29 30 Eftekhari et al proposed an empirical theory explaining that supercooling of ionic liquid crystals can build ordered channels for diffusion for energy storage applications In this case the electrolyte has a rigid structure comparable to a solid electrolyte but the diffusion coefficient can be as large as in liquid electrolytes Supercooling increases the medium viscosity but keeps the directional channels open for diffusion 31 See also editAmorphous solid Pumpable ice technology Subcooling Ultracold atom Viscous liquid Freezing rainReferences edit Gomes Gabriel O H Stanley Eugene Souza Mariano de 2019 08 19 Enhanced Gruneisen Parameter in Supercooled Water Scientific Reports 9 1 12006 arXiv 1808 00536 Bibcode 2019NatSR 912006O doi 10 1038 s41598 019 48353 4 ISSN 2045 2322 PMC 6700159 PMID 31427698 Rathz Tom Undercooling NASA Archived from the original on 2009 12 02 Retrieved 2010 01 12 Science Mission Directorate April 23 2001 Look Ma No Hands What is Undercooling NASA Science Retrieved 13 April 2023 Water freezing almost instantaneously when shaking a bottle that spend the night outside during a frosty night 2021 04 07 Retrieved 2021 04 08 Moore Emily Valeria Molinero 24 November 2011 structural transformation in supercooled water controls the crystallization rate of ice Nature 479 7374 506 508 arXiv 1107 1622 Bibcode 2011Natur 479 506M doi 10 1038 nature10586 PMID 22113691 S2CID 1784703 a b Debenedetti P G Stanley H E 2003 Supercooled and Glassy Water PDF Physics Today 56 6 40 46 p 42 Bibcode 2003PhT 56f 40D doi 10 1063 1 1595053 Angell C Austen 2008 Insights into Phases of Liquid Water from Study of Its Unusual Glass Forming Properties Science 319 5863 582 587 doi 10 1126 science 1131939 PMID 18239117 S2CID 9860383 Ramsay J A 1949 A new method of freezing point determination for small quantities PDF J Exp Biol 26 1 57 64 doi 10 1242 jeb 26 1 57 PMID 15406812 Kurz W Fisher DJ 1992 Chapter 3 Morphological Instability of a Solid Liquid Interface Fundamentals of Solidification 3rd ed Switzerland Trans Tech Publications Ltd p 45 55 ISBN 0 87849 522 3 J G Duman 2001 Antifreeze and ice nucleator proteins in terrestrial arthropods Annual Review of Physiology 63 327 357 doi 10 1146 annurev physiol 63 1 327 PMID 11181959 Garth L Fletcher Choy L Hew amp Peter L Davies 2001 Antifreeze Proteins of Teleost Fishes Annual Review of Physiology 63 359 390 doi 10 1146 annurev physiol 63 1 359 PMID 11181960 C H Lowe P J Lardner amp E A Halpern 1971 Supercooling in reptiles and other vertebrates Comparative Biochemistry and Physiology 39A 1 125 135 doi 10 1016 0300 9629 71 90352 5 PMID 4399229 Wisniewski M Fuller M Palta J Carter J Arora R 2004 05 24 Ice Nucleation Propagation and Deep Supercooling in Woody Plants Journal of Crop Improvement 10 1 2 5 16 doi 10 1300 J411v10n01 02 ISSN 1542 7528 S2CID 5362785 Wisniewski M 1997 Observations of ice nucleation and propagation in plants using infrared thermography Plant Physiology 113 2 327 334 doi 10 1104 pp 113 2 327 PMC 158146 PMID 12223611 a b Pearce R 2001 Plant freezing and damage PDF Annals of Botany 87 4 417 424 doi 10 1006 anbo 2000 1352 Retrieved 11 December 2016 a b Wisniewski M 2004 Ice nucleation propagation and deep supercooling in woody plants Journal of Crop Improvement 10 1 2 5 16 doi 10 1300 j411v10n01 02 S2CID 5362785 Kuprian E 2016 Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite intact xylem connection PLOS ONE 11 9 e0163160 Bibcode 2016PLoSO 1163160K doi 10 1371 journal pone 0163160 PMC 5025027 PMID 27632365 a b Neuner Gilbert 2014 Frost resistance in alpine woody plants Front Plant Sci 5 654 doi 10 3389 fpls 2014 00654 PMC 4249714 PMID 25520725 Burke M 1976 Freezing and injury in plants Annual Review of Plant Physiology 27 507 528 doi 10 1146 annurev pp 27 060176 002451 Hoppmann M Richter M E Smith I J Jendersie S Langhorne P J Thomas D N Dieckmann G S 2020 Platelet ice the Southern Ocean s hidden ice a review Annals of Glaciology 61 83 1 28 Bibcode 2020AnGla 61 341H doi 10 1017 aog 2020 54 Robinson N J Grant B S Stevens C L Stewart C L Williams M J M 2020 Oceanographic observations in supercooled water Protocols for mitigation of measurement errors in profiling and moored sampling Cold Regions Science and Technology 170 102954 102954 Bibcode 2020CRST 17002954R doi 10 1016 j coldregions 2019 102954 Chill Chamber Archived March 1 2009 at the Wayback Machine Slush It Archived 2010 01 23 at the Wayback Machine Charlie Sorrel 2007 09 21 Coca Cola Plans High Tech Super Cool Sprite Wired Conde Nast Retrieved 2013 12 05 Berendsen TA Bruinsma BG Puts CF Saeidi N Usta OB Uygun BE Izamis Maria Louisa Toner Mehmet Yarmush Martin L Uygun Korkut 2014 Supercooling enables long term transplantation survival following 4 days of liver preservation Nature Medicine 20 7 790 793 doi 10 1038 nm 3588 PMC 4141719 PMID 24973919 Hunka George 2015 05 06 A super cool way to deliver drugs R amp D Mitch Jacoby 2016 03 14 Soldering without heat Chemical and Engineering News Retrieved 2016 03 14 Simge Cinar Ian D Tevis Jiahao Chen Martin Thuo 2016 02 23 Mechanical Fracturing of Core Shell Undercooled Metal Particles for Heat Free Soldering Scientific Reports 6 21864 Bibcode 2016NatSR 621864C doi 10 1038 srep21864 PMC 4763186 PMID 26902483 Mitch Jacoby 2019 07 23 Heat free method yields printed metallic circuit connections Chemical and Engineering News Retrieved 2019 07 24 Andrew Martin Boyce S Chang Zachary Martin Dipark Paramanik Christophe Frankiewicz Souvik Kundu Ian Tevis Martin Thuo 2019 07 15 Heat Free Fabrication of Metallic Interconnects for Flexible Wearable Devices Advanced Functional Materials 29 40 1903687 doi 10 1002 adfm 201903687 S2CID 199076266 Eftekhari A Liu Y Chen P 2016 Different roles of ionic liquids in lithium batteries Journal of Power Sources 334 221 239 Bibcode 2016JPS 334 221E doi 10 1016 j jpowsour 2016 10 025 Further reading editGiovambattista N Angell C A Sciortino F Stanley H E July 2004 Glass Transition Temperature of Water A Simulation Study PDF Physical Review Letters 93 4 047801 arXiv cond mat 0403133 Bibcode 2004PhRvL 93d7801G doi 10 1103 PhysRevLett 93 047801 PMID 15323794 S2CID 8311857 Rogerson M A Cardoso S S S April 2004 Solidification in heat packs III Metallic trigger AIChE Journal 49 2 522 529 doi 10 1002 aic 690490222 Archived from the original on 2012 12 09 External links editSupercooled water and coke on YouTube Supercooled water on YouTube Super Cooled Water 2 on YouTube Supercooled Water Nucleation Experiments on YouTube Supercooled liquids on arxiv org Radiolab podcast on supercooling Retrieved from https en wikipedia org w index php title Supercooling amp oldid 1210161300, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.