fbpx
Wikipedia

Stabilator

A stabilator is a fully movable aircraft horizontal stabilizer. It serves the usual functions of longitudinal stability, control and stick force requirements[1] otherwise performed by the separate parts of a conventional horizontal stabilizer and elevator. Apart from reduced drag, particularly at high Mach numbers,[2] it is a useful device for changing the aircraft balance within wide limits, and for reducing stick forces.[3]

General Dynamics F-16 Fighting Falcon jet fighter parked at an airshow, with stabilators deflected downwards

Stabilator is a portmanteau of stabilizer and elevator. It is also known as an all-moving tailplane, all-movable tail(plane), all-moving stabilizer, all-flying tail(plane), all-flying horizontal tail, full-flying stabilizer, and slab tailplane.[2]

General aviation

 
Piper Cherokee with stabilator (and anti-servo tab) deflected upwards

Because it involves a moving balanced surface, a stabilator can allow the pilot to generate a given pitching moment with a lower control force. Due to the high forces involved in tail balancing loads, stabilators are designed to pivot about their aerodynamic center (near the tail's mean quarter-chord). This is the point at which the pitching moment is constant regardless of the angle of attack, and thus any movement of the stabilator can be made without added pilot effort. However, to be certified by the appropriate regulatory agency, an airplane must show an increasing resistance to an increasing pilot input (movement).[citation needed] To provide this resistance, stabilators on small aircraft contain an anti-servo tab (usually acting also as a trim tab) that deflects in the same direction as the stabilator,[4] thus providing an aerodynamic force resisting the pilot's input. General aviation aircraft with stabilators include the Piper Cherokee[2] and the Cessna 177. The Glaser-Dirks DG-100 glider initially used a stabilator without an anti-servo tab to increase resistance: as a result, the pitch movement of the glider is very sensitive. Later models used a conventional stabilizer and elevator.

Military

 
In transonic flight shock waves form on the upper surface of the wing at a different point from the lower surface. As speed increases, the shock wave moves backwards over the wing. On conventional tails this high pressure causes the elevator to be deflected downwards.

All-flying tailplanes were used on many pioneer aircraft and the popular Morane-Saulnier G, H and L monoplanes from France as well as the early Fokker Eindecker monoplane and Halberstadt D.II biplane fighters from Germany all flew with them, although at the cost of stability: none of these aircraft, with the possible exception of the biplane Halberstadts, could be flown hands-off.

Stabilators were developed to achieve adequate pitch control in supersonic flight, and are almost universal on modern military combat aircraft.[2] All[citation needed] non-delta-winged supersonic aircraft use stabilators because with conventional control surfaces, shock waves can form past the elevator hinge, causing severe mach tuck.

The British wartime Miles M.52 supersonic project was designed with stabilators. Though the design only flew as a scale rocket, its all-flying tail was tested on the Miles Falcon.[5] The contemporary American supersonic project, the Bell X-1, adapted its variable incidence tailplane into an all-moving tailplane (based on the Miles M.52 project data) and was operated successfully in 1947.[6]

Entering service in 1951, the Boeing B-47 Stratojet was the world's first purposely built jet bomber to include one piece stabilator design. A stabilator was considered for the Boeing B-52 Stratofortress but rejected due to the unreliability of hydraulics at the time.[2]

The North American F-86 Sabre, the first U.S. Air Force aircraft which could go supersonic (although in a shallow dive) was introduced with a conventional horizontal stabilizer with elevators, which was eventually replaced with a stabilator.

When stabilators can move differentially to perform the roll control function of ailerons, as they do on many modern fighter aircraft they are known as tailerons or rolling tails. A canard surface, looking like a stabilator but not stabilizing like a tailplane,[7] can also be mounted in front of the main wing in a canard configuration (Curtiss-Wright XP-55 Ascender).

Stabilators on military aircraft have the same problem of too light control forces (inducing overcontrol) as general aviation aircraft. Unlike light aircraft, supersonic aircraft are not fitted with anti-servo tabs, which would add unacceptable drag. In older jet fighter aircraft, a resisting force was generated within the control system, either by springs or a resisting hydraulic force, rather than by an external anti-servo tab. For example, in the North American F-100 Super Sabre, springs were attached to the control stick to provide increasing resistance to pilot input.[citation needed] In modern fighters, control inputs are moderated by computers ("fly by wire"), and there is no direct connection between the pilot's stick and the stabilator.

Airliners

 
Adjustable stabilizer on an Embraer E170, with markings showing the degree of nose-up and nose-down trim available

Most modern airliners do not have a stabilator. Instead they have an adjustable horizontal stabilizer, and a separate elevator control. The movable horizontal stabilizer is adjusted to keep the pitch axis in trim during flight as the speed changes, or as fuel is burned and the center of gravity moves. These adjustments are commanded by the autopilot when it is engaged, or by the human pilot if the plane is being flown manually. Adjustable stabilizers are not the same as stabilators: a stabilator is controlled by the pilot's control yoke (or stick), whereas an adjustable stabilizer is controlled by the trim system.

In the Boeing 737, the adjustable stabilizer trim system is powered by an electrically operated jackscrew.[8]

One example of an airliner with a genuine stabilator used for flight control is the Lockheed L-1011.

References

  1. ^ Roskam, Airplane Design, part III, Empennage layout, Longitudinal considerations
  2. ^ a b c d e Abzug, Malcolm J.; Larrabee, E. Eugene (23 September 2002). Airplane Stability and Control: A History of the Technologies that Made Aviation Possible. Cambridge University Press. p. 78. ISBN 978-1-107-32019-2. Retrieved 17 October 2022. All-movable tail surfaces became interesting... when high Mach number theory and transonic wind-tunnel tests disclosed poor performance of ordinary flap-type controls.
  3. ^ Daroll Stinton, The design of the aeroplane, Control surfaces, p. 447 and 449 : "...for variation of tab size, gear ratio and stabilator pivot position, the stick-free neutral point can be varied almost at will.
  4. ^ Phillips, William Hewitt (November 1998). "6. Problems Encountered as a Result of Wartime Developments". Journey in Aeronautical Research: A Career at NASA Langley Research Center. NASA History Office. Retrieved 17 October 2022. the tab on the all-movable tail was changed from a servo tab to a geared unbalancing tab. With this arrangement, the control forces were similar to those on a conventional airplane
  5. ^ Brown, Eric. Wings on my Sleeve. London: Weidenfeld & Nicolson, 2006. ISBN 978-0-297-84565-2.
  6. ^ Miller, Jay. The X-Planes: X-1 to X-45. Hinckley, UK: Midland, 2001. ISBN 1-85780-109-1.
  7. ^ Hoerner, Fluid dynamic lift, about XP-55, p. 11-29, Stability Contributions : "Stabilization in any canard configuration can only be obtained from the wing."
  8. ^ Federal Register. Office of the Federal Register, National Archives and Records Service, General Services Administration. July 1978. p. 32404. Retrieved 18 October 2022.

External links

  • Stabilators (NASA) – Includes Java applet

stabilator, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, 2013, learn, wh. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Stabilator news newspapers books scholar JSTOR May 2013 Learn how and when to remove this template message A stabilator is a fully movable aircraft horizontal stabilizer It serves the usual functions of longitudinal stability control and stick force requirements 1 otherwise performed by the separate parts of a conventional horizontal stabilizer and elevator Apart from reduced drag particularly at high Mach numbers 2 it is a useful device for changing the aircraft balance within wide limits and for reducing stick forces 3 General Dynamics F 16 Fighting Falcon jet fighter parked at an airshow with stabilators deflected downwards Stabilator is a portmanteau of stabilizer and elevator It is also known as an all moving tailplane all movable tail plane all moving stabilizer all flying tail plane all flying horizontal tail full flying stabilizer and slab tailplane 2 Contents 1 General aviation 2 Military 3 Airliners 4 References 5 External linksGeneral aviation Edit Piper Cherokee with stabilator and anti servo tab deflected upwards Because it involves a moving balanced surface a stabilator can allow the pilot to generate a given pitching moment with a lower control force Due to the high forces involved in tail balancing loads stabilators are designed to pivot about their aerodynamic center near the tail s mean quarter chord This is the point at which the pitching moment is constant regardless of the angle of attack and thus any movement of the stabilator can be made without added pilot effort However to be certified by the appropriate regulatory agency an airplane must show an increasing resistance to an increasing pilot input movement citation needed To provide this resistance stabilators on small aircraft contain an anti servo tab usually acting also as a trim tab that deflects in the same direction as the stabilator 4 thus providing an aerodynamic force resisting the pilot s input General aviation aircraft with stabilators include the Piper Cherokee 2 and the Cessna 177 The Glaser Dirks DG 100 glider initially used a stabilator without an anti servo tab to increase resistance as a result the pitch movement of the glider is very sensitive Later models used a conventional stabilizer and elevator Military Edit In transonic flight shock waves form on the upper surface of the wing at a different point from the lower surface As speed increases the shock wave moves backwards over the wing On conventional tails this high pressure causes the elevator to be deflected downwards All flying tailplanes were used on many pioneer aircraft and the popular Morane Saulnier G H and L monoplanes from France as well as the early Fokker Eindecker monoplane and Halberstadt D II biplane fighters from Germany all flew with them although at the cost of stability none of these aircraft with the possible exception of the biplane Halberstadts could be flown hands off Stabilators were developed to achieve adequate pitch control in supersonic flight and are almost universal on modern military combat aircraft 2 All citation needed non delta winged supersonic aircraft use stabilators because with conventional control surfaces shock waves can form past the elevator hinge causing severe mach tuck The British wartime Miles M 52 supersonic project was designed with stabilators Though the design only flew as a scale rocket its all flying tail was tested on the Miles Falcon 5 The contemporary American supersonic project the Bell X 1 adapted its variable incidence tailplane into an all moving tailplane based on the Miles M 52 project data and was operated successfully in 1947 6 Entering service in 1951 the Boeing B 47 Stratojet was the world s first purposely built jet bomber to include one piece stabilator design A stabilator was considered for the Boeing B 52 Stratofortress but rejected due to the unreliability of hydraulics at the time 2 The North American F 86 Sabre the first U S Air Force aircraft which could go supersonic although in a shallow dive was introduced with a conventional horizontal stabilizer with elevators which was eventually replaced with a stabilator When stabilators can move differentially to perform the roll control function of ailerons as they do on many modern fighter aircraft they are known as tailerons or rolling tails A canard surface looking like a stabilator but not stabilizing like a tailplane 7 can also be mounted in front of the main wing in a canard configuration Curtiss Wright XP 55 Ascender Stabilators on military aircraft have the same problem of too light control forces inducing overcontrol as general aviation aircraft Unlike light aircraft supersonic aircraft are not fitted with anti servo tabs which would add unacceptable drag In older jet fighter aircraft a resisting force was generated within the control system either by springs or a resisting hydraulic force rather than by an external anti servo tab For example in the North American F 100 Super Sabre springs were attached to the control stick to provide increasing resistance to pilot input citation needed In modern fighters control inputs are moderated by computers fly by wire and there is no direct connection between the pilot s stick and the stabilator Airliners Edit Adjustable stabilizer on an Embraer E170 with markings showing the degree of nose up and nose down trim available Most modern airliners do not have a stabilator Instead they have an adjustable horizontal stabilizer and a separate elevator control The movable horizontal stabilizer is adjusted to keep the pitch axis in trim during flight as the speed changes or as fuel is burned and the center of gravity moves These adjustments are commanded by the autopilot when it is engaged or by the human pilot if the plane is being flown manually Adjustable stabilizers are not the same as stabilators a stabilator is controlled by the pilot s control yoke or stick whereas an adjustable stabilizer is controlled by the trim system In the Boeing 737 the adjustable stabilizer trim system is powered by an electrically operated jackscrew 8 One example of an airliner with a genuine stabilator used for flight control is the Lockheed L 1011 References Edit Roskam Airplane Design part III Empennage layout Longitudinal considerations a b c d e Abzug Malcolm J Larrabee E Eugene 23 September 2002 Airplane Stability and Control A History of the Technologies that Made Aviation Possible Cambridge University Press p 78 ISBN 978 1 107 32019 2 Retrieved 17 October 2022 All movable tail surfaces became interesting when high Mach number theory and transonic wind tunnel tests disclosed poor performance of ordinary flap type controls Daroll Stinton The design of the aeroplane Control surfaces p 447 and 449 for variation of tab size gear ratio and stabilator pivot position the stick free neutral point can be varied almost at will Phillips William Hewitt November 1998 6 Problems Encountered as a Result of Wartime Developments Journey in Aeronautical Research A Career at NASA Langley Research Center NASA History Office Retrieved 17 October 2022 the tab on the all movable tail was changed from a servo tab to a geared unbalancing tab With this arrangement the control forces were similar to those on a conventional airplane Brown Eric Wings on my Sleeve London Weidenfeld amp Nicolson 2006 ISBN 978 0 297 84565 2 Miller Jay The X Planes X 1 to X 45 Hinckley UK Midland 2001 ISBN 1 85780 109 1 Hoerner Fluid dynamic lift about XP 55 p 11 29 Stability Contributions Stabilization in any canard configuration can only be obtained from the wing Federal Register Office of the Federal Register National Archives and Records Service General Services Administration July 1978 p 32404 Retrieved 18 October 2022 External links EditStabilators NASA Includes Java applet Retrieved from https en wikipedia org w index php title Stabilator amp oldid 1121029063, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.