fbpx
Wikipedia

Isotopes of silver

Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with all stable istopes having nuclear spins of 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.[4]

Isotopes of silver (47Ag)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
105Ag synth 41.3 d ε 105Pd
γ
106mAg synth 8.28 d ε 106Pd
γ
107Ag 51.8% stable
108mAg synth 439 y ε 108Pd
IT 108Ag
γ
109Ag 48.2% stable
110m2Ag synth 249.86 d β 110Cd
γ
111Ag synth 7.43 d β 111Cd
γ
Standard atomic weight Ar°(Ag)

40 radioisotopes have been characterized with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.43 days, and 112Ag with a half-life of 3.13 hours.

All of the remaining radioactive isotopes have half-lives that are less than an hour, and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states, with the most stable being 108mAg (half-life 439 years), 110mAg (half-life 249.86 days) and 106mAg (half-life 8.28 days).

Isotopes of silver range in atomic weight from 91.960 u (92Ag) to 132.969 u (133Ag). The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.

The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.

The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus 107Ag correlations observed in bodies, which have clearly been melted since the accretion of the Solar System, must reflect the presence of live short-lived nuclides in the early Solar System.

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion[1] Range of variation
92Ag 47 45 91.95971(43)# 1# ms
[>400 ns]
β+ 92Pd
p 91Pd
93Ag 47 46 92.95019(43)# 228(16) ns β+ 93Pd 9/2+#
p 92Pd
β+, p 92Rh
94Ag 47 47 93.94374(43)# 27(2) ms β+ (>99.8%) 94Pd 0+#
β+, p (<0.2%) 93Rh
94m1Ag 1350(400)# keV 470(10) ms β+ (83%) 94Pd (7+)
β+, p (17%) 93Rh
94m2Ag 6500(550)# keV 400(40) ms β+ (~68.4%) 94Pd (21+)
β+, p (~27%) 93Rh
p (4.1%) 93Pd
2p (0.5%) 92Rh
95Ag 47 48 94.93569(43)# 1.78(6) s β+ (97.7%) 95Pd (9/2+)
β+, p (2.3%) 94Rh
95m1Ag 344.2(3) keV <0.5 s IT 95Ag (1/2−)
95m2Ag 2531.3(15) keV <16 ms IT 95Ag (23/2+)
95m3Ag 4860.0(15) keV <40 ms IT 95Ag (37/2+)
96Ag 47 49 95.93074(10) 4.45(3) s β+ (95.8%) 96Pd (8+)
β+, p (4.2%) 95Rh
96m1Ag 0(50)# keV 6.9(5) s β+ (85.1%) 96Pd (2+)
β+, p (14.9%) 95Rh
96m2Ag 2461.4(3) keV 103.2(45) μs IT 96Ag (13-)
96m3Ag 2686.7(4) keV 1.561(16) μs IT 96Ag (15+)
96m4Ag 6951.8(14) keV 132(17) ns IT 96Ag (19+)
97Ag 47 50 96.923881(13) 25.5(3) s β+ 97Pd (9/2+)
97mAg 620(40) keV 100# ms (1/2-#)
98Ag 47 51 97.92156(4) 47.5(3) s β+ (99.99%) 98Pd (6)+
β+, p (.0012%) 97Rh
98mAg 107.28(10) keV 161(7) ns IT 98Ag (4+)
99Ag 47 52 98.917646(7) 2.07(5) min β+ 99Pd (9/2)+
99mAg 506.2(4) keV 10.5(5) s IT 99Ag (1/2−)
100Ag 47 53 99.916115(5) 2.01(9) min β+ 100Pd (5)+
100mAg 15.52(16) keV 2.24(13) min IT 100Ag (2)+
β+ 100Pd
101Ag 47 54 100.912684(5) 11.1(3) min β+ 101Pd 9/2+
101mAg 274.1(3) keV 3.10(10) s IT 101Ag 1/2−
102Ag 47 55 101.911705(9) 12.9(3) min β+ 102Pd 5+
102mAg 9.40(7) keV 7.7(5) min β+ (51%) 102Pd 2+
IT (49%) 102Ag
103Ag 47 56 102.908961(4) 65.7(7) min β+ 103Pd 7/2+
103mAg 134.45(4) keV 5.7(3) s IT 103Ag 1/2−
104Ag 47 57 103.908624(5) 69.2(10) min β+ 104Pd 5+
104mAg 6.90(22) keV 33.5(20) min β+ (>99.93%) 104Pd 2+
IT (<0.07%) 104Ag
105Ag 47 58 104.906526(5) 41.29(7) d β+ 105Pd 1/2−
105mAg 25.468(16) keV 7.23(16) min IT (99.66%) 105Ag 7/2+
β+ (.34%) 105Pd
106Ag 47 59 105.906663(3) 23.96(4) min β+ 106Pd 1+
β (rare) 106Cd
106mAg 89.66(7) keV 8.28(2) d β+ 106Pd 6+
IT (rare) 106Ag
107Ag[n 9] 47 60 106.9050915(26) Stable 1/2− 0.51839(8)
107mAg 93.125(19) keV 44.3(2) s IT 107Ag 7/2+
108Ag 47 61 107.9059502(26) 2.382(11) min β (97.15%) 108Cd 1+
β+ (2.85%) 108Pd
108mAg 109.466(7) keV 439(9) y β+ (91.3%) 108Pd 6+
IT (8.96%) 108Ag
109Ag[n 10] 47 62 108.9047558(14) Stable 1/2− 0.48161(8)
109mAg 88.0337(10) keV 39.79(21) s IT 109Ag 7/2+
110Ag 47 63 109.9061107(14) 24.56(11) s β (99.7%) 110Cd 1+
EC (.3%) 110Pd
110m1Ag 1.112(16) keV 660(40) ns IT 110Ag 2−
110m2Ag 117.59(5) keV 249.863(24) d β (98.67%) 110Cd 6+
IT (1.33%) 110Ag
111Ag[n 10] 47 64 110.9052968(16) 7.433(10) d β 111Cd 1/2−
111mAg 59.82(4) keV 64.8(8) s IT (99.3%) 111Ag 7/2+
β (.7%) 111Cd
112Ag 47 65 111.9070485(26) 3.130(8) h β 112Cd 2(−)
113Ag 47 66 112.906573(18) 5.37(5) h β 113mCd 1/2−
113mAg 43.50(10) keV 68.7(16) s IT (64%) 113Ag 7/2+
β (36%) 113Cd
114Ag 47 67 113.908823(5) 4.6(1) s β 114Cd 1+
114mAg 198.9(10) keV 1.50(5) ms IT 114Ag (6+)
115Ag 47 68 114.908767(20) 20.0(5) min β 115mCd 1/2−
115mAg 41.16(10) keV 18.0(7) s β (79%) 115Cd 7/2+
IT (21%) 115Ag
116Ag 47 69 115.911387(4) 3.83(8) min β 116Cd (0-)
116m1Ag 47.90(10) keV 20(1) s β (93%) 116Cd (3+)
IT (7%) 116Ag
116m2Ag 129.80(22) keV 9.3(3) s β (92%) 116Cd (6-)
IT (8%) 116Ag
117Ag 47 70 116.911774(15) 73.6(14) s β 117mCd 1/2−#
117mAg 28.6(2) keV 5.34(5) s β (94%) 117mCd 7/2+#
IT (6%) 117Ag
118Ag 47 71 117.9145955(27) 3.76(15) s β 118Cd (2-)
118m1Ag 45.79(9) keV ~0.1 µs IT 118Ag 1(−) to 2(−)
118m2Ag 127.63(10) keV 2.0(2) s β (59%) 118Cd (5+)
IT (41%) 118Ag
118m3Ag 279.37(20) keV ~0.1 µs IT 118Ag (3+)
119Ag 47 72 118.915570(16) 6.0(5) s β 119mCd 1/2−#
119mAg 20(20)# keV 2.1(1) s β 119Cd 7/2+#
120Ag 47 73 119.918785(5) 1.52(7) s β (>99.997%) 120Cd 4(+)
β, n (<.003%) 119Cd
120m1Ag 0(50)# keV 940(100) ms (0−, 1-)
120m2Ag 203.0(10) keV 384(22) ms IT (68%) 120Sn 7(−)
β (32%) 120Cd
121Ag 47 74 120.920125(13) 777(10) ms β (99.92%) 121Cd 7/2+#
β, n (.076%) 120Cd
121mAg 20(20)# keV 200# ms 1/2-#
122Ag 47 75 121.92366(4) 529(13) ms β (>99.814%) 122Cd (3+)
β, n (.186%) 121Cd
122m1Ag 80(50)# keV 550(50) ms β 122Cd (1-)
β, n (rare) 121Cd
IT (rare) 122Ag
122m2Ag 80(50)# keV 200(50) ms β 122Cd (9-)
β, n (rare) 121Cd
IT (rare) 122Ag
122m3Ag 171(50)# keV 6.3(1) μs IT 122Ag (1+)
123Ag 47 76 122.92532(4) 294(5) ms β (99.44%) 123Cd (7/2+)
β, n (.56%) 122Cd
123m1Ag 59.5(5) keV 100# ms β 123Cd (1/2-)
β, n (rare) 122Cd
123m2Ag 1450(14)# keV 202(20) ns IT 123Ag
123m3Ag 1472.8(8) keV 393(16) ns IT 123Ag (17/2-)
124Ag 47 77 123.92890(27)# 177.9(26) ms β (98.7%) 124Cd (2-)
β, n (1.3%) 123Cd
124m1Ag 50(50)# keV 144(20) ms β 124Cd 9-#
β, n 123Cd
124m2Ag 155.6(5)# keV 140(50) ns IT 124Ag (1+)
124m3Ag 231.1(7)# keV 1.48(15) μs IT 124Ag (1-)
125Ag 47 78 124.93074(47) 160(5) ms β (88.2%) 125Cd (9/2+)
β, n (11.8%) 124Cd
125m1Ag 97.1(5)# keV 50# ms (1/2-)
125m2Ag 97.1(5)# keV 491(20) ns (17/2-)
126Ag 47 79 125.93481(22)# 52(10) ms β (86.3%) 126Cd 3+#
β, n (13.7%) 125Cd
126m1Ag 100(100)# keV 108.4(24) ms 9-#
126m2Ag 97.1(5)# keV 27(6) μs IT 126Ag 1-#
127Ag 47 80 126.93704(22)# 89(2) ms β (85.4%) 127Cd (9/2+)
β, n (14.6%) 126Cd
127m1Ag 20(20)# keV 20# ms (1/2-)
127m2Ag 1938(17) keV 67.5(9) ms β (91.2%) 127Cd (27/2+)
IT (8.8%) 127Ag
128Ag 47 81 127.94127(32)# 60(3) ms β (80%) 128Cd 3+#
β, n (20%) 127Cd
129Ag 47 82 128.94432(43)# 49.9(35) ms β (>80%) 129Cd 9/2+#
β, n (<20%) 128Cd
129mAg 20(20)# keV 10# ms 1/2−#
130Ag 47 83 129.95073(46)# 40.6(45) ms β 130Cd 1-#
131Ag 47 84 130.95625(54)# 35(8) ms β 131Cd 9/2+#
β, n 130Cd
β, 2n 129Cd
132Ag 47 85 131.96307(54)# 30(14) ms β 132Cd 6-#
133Ag 47 86 132.96878(54)# 6-#
This table header & footer:
  1. ^ mAg – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Used to date certain events in the early history of the Solar System
  10. ^ a b Fission product

References edit

  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Silver". CIAAW. 1985.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ "(Ag) Silver NMR".
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  • Isotope masses from:
    • Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  • Isotopic compositions and standard atomic masses from:
    • Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, silver, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, 2018, lea. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Isotopes of silver news newspapers books scholar JSTOR May 2018 Learn how and when to remove this template message Naturally occurring silver 47Ag is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions with 107Ag being slightly more abundant 51 839 natural abundance Notably silver is the only element with all stable istopes having nuclear spins of 1 2 Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra 4 Isotopes of silver 47Ag Main isotopes 1 Decayabun dance half life t1 2 mode pro duct105Ag synth 41 3 d e 105Pdg 106mAg synth 8 28 d e 106Pdg 107Ag 51 8 stable108mAg synth 439 y e 108PdIT 108Agg 109Ag 48 2 stable110m2Ag synth 249 86 d b 110Cdg 111Ag synth 7 43 d b 111Cdg Standard atomic weight Ar Ag 107 8682 0 0002 2 107 87 0 01 abridged 3 viewtalkedit40 radioisotopes have been characterized with the most stable being 105Ag with a half life of 41 29 days 111Ag with a half life of 7 43 days and 112Ag with a half life of 3 13 hours All of the remaining radioactive isotopes have half lives that are less than an hour and the majority of these have half lives that are less than 3 minutes This element has numerous meta states with the most stable being 108mAg half life 439 years 110mAg half life 249 86 days and 106mAg half life 8 28 days Isotopes of silver range in atomic weight from 91 960 u 92Ag to 132 969 u 133Ag The primary decay mode before the most abundant stable isotope 107Ag is electron capture and the primary mode after is beta decay The primary decay products before 107Ag are palladium element 46 isotopes and the primary products after are cadmium element 48 isotopes The palladium isotope 107Pd decays by beta emission to 107Ag with a half life of 6 5 million years Iron meteorites are the only objects with a high enough palladium silver ratio to yield measurable variations in 107Ag abundance Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978 The discoverers suggest that the coalescence and differentiation of iron cored small planets may have occurred 10 million years after a nucleosynthetic event 107Pd versus 107Ag correlations observed in bodies which have clearly been melted since the accretion of the Solar System must reflect the presence of live short lived nuclides in the early Solar System List of isotopes editNuclide n 1 Z N Isotopic mass Da 5 n 2 n 3 Half life 1 n 4 Decaymode 1 n 5 Daughterisotope n 6 n 7 Spin andparity 1 n 8 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion 1 Range of variation92Ag 47 45 91 95971 43 1 ms gt 400 ns b 92Pdp 91Pd93Ag 47 46 92 95019 43 228 16 ns b 93Pd 9 2 p 92Pdb p 92Rh94Ag 47 47 93 94374 43 27 2 ms b gt 99 8 94Pd 0 b p lt 0 2 93Rh94m1Ag 1350 400 keV 470 10 ms b 83 94Pd 7 b p 17 93Rh94m2Ag 6500 550 keV 400 40 ms b 68 4 94Pd 21 b p 27 93Rhp 4 1 93Pd2p 0 5 92Rh95Ag 47 48 94 93569 43 1 78 6 s b 97 7 95Pd 9 2 b p 2 3 94Rh95m1Ag 344 2 3 keV lt 0 5 s IT 95Ag 1 2 95m2Ag 2531 3 15 keV lt 16 ms IT 95Ag 23 2 95m3Ag 4860 0 15 keV lt 40 ms IT 95Ag 37 2 96Ag 47 49 95 93074 10 4 45 3 s b 95 8 96Pd 8 b p 4 2 95Rh96m1Ag 0 50 keV 6 9 5 s b 85 1 96Pd 2 b p 14 9 95Rh96m2Ag 2461 4 3 keV 103 2 45 ms IT 96Ag 13 96m3Ag 2686 7 4 keV 1 561 16 ms IT 96Ag 15 96m4Ag 6951 8 14 keV 132 17 ns IT 96Ag 19 97Ag 47 50 96 923881 13 25 5 3 s b 97Pd 9 2 97mAg 620 40 keV 100 ms 1 2 98Ag 47 51 97 92156 4 47 5 3 s b 99 99 98Pd 6 b p 0012 97Rh98mAg 107 28 10 keV 161 7 ns IT 98Ag 4 99Ag 47 52 98 917646 7 2 07 5 min b 99Pd 9 2 99mAg 506 2 4 keV 10 5 5 s IT 99Ag 1 2 100Ag 47 53 99 916115 5 2 01 9 min b 100Pd 5 100mAg 15 52 16 keV 2 24 13 min IT 100Ag 2 b 100Pd101Ag 47 54 100 912684 5 11 1 3 min b 101Pd 9 2 101mAg 274 1 3 keV 3 10 10 s IT 101Ag 1 2 102Ag 47 55 101 911705 9 12 9 3 min b 102Pd 5 102mAg 9 40 7 keV 7 7 5 min b 51 102Pd 2 IT 49 102Ag103Ag 47 56 102 908961 4 65 7 7 min b 103Pd 7 2 103mAg 134 45 4 keV 5 7 3 s IT 103Ag 1 2 104Ag 47 57 103 908624 5 69 2 10 min b 104Pd 5 104mAg 6 90 22 keV 33 5 20 min b gt 99 93 104Pd 2 IT lt 0 07 104Ag105Ag 47 58 104 906526 5 41 29 7 d b 105Pd 1 2 105mAg 25 468 16 keV 7 23 16 min IT 99 66 105Ag 7 2 b 34 105Pd106Ag 47 59 105 906663 3 23 96 4 min b 106Pd 1 b rare 106Cd106mAg 89 66 7 keV 8 28 2 d b 106Pd 6 IT rare 106Ag107Ag n 9 47 60 106 9050915 26 Stable 1 2 0 51839 8 107mAg 93 125 19 keV 44 3 2 s IT 107Ag 7 2 108Ag 47 61 107 9059502 26 2 382 11 min b 97 15 108Cd 1 b 2 85 108Pd108mAg 109 466 7 keV 439 9 y b 91 3 108Pd 6 IT 8 96 108Ag109Ag n 10 47 62 108 9047558 14 Stable 1 2 0 48161 8 109mAg 88 0337 10 keV 39 79 21 s IT 109Ag 7 2 110Ag 47 63 109 9061107 14 24 56 11 s b 99 7 110Cd 1 EC 3 110Pd110m1Ag 1 112 16 keV 660 40 ns IT 110Ag 2 110m2Ag 117 59 5 keV 249 863 24 d b 98 67 110Cd 6 IT 1 33 110Ag111Ag n 10 47 64 110 9052968 16 7 433 10 d b 111Cd 1 2 111mAg 59 82 4 keV 64 8 8 s IT 99 3 111Ag 7 2 b 7 111Cd112Ag 47 65 111 9070485 26 3 130 8 h b 112Cd 2 113Ag 47 66 112 906573 18 5 37 5 h b 113mCd 1 2 113mAg 43 50 10 keV 68 7 16 s IT 64 113Ag 7 2 b 36 113Cd114Ag 47 67 113 908823 5 4 6 1 s b 114Cd 1 114mAg 198 9 10 keV 1 50 5 ms IT 114Ag 6 115Ag 47 68 114 908767 20 20 0 5 min b 115mCd 1 2 115mAg 41 16 10 keV 18 0 7 s b 79 115Cd 7 2 IT 21 115Ag116Ag 47 69 115 911387 4 3 83 8 min b 116Cd 0 116m1Ag 47 90 10 keV 20 1 s b 93 116Cd 3 IT 7 116Ag116m2Ag 129 80 22 keV 9 3 3 s b 92 116Cd 6 IT 8 116Ag117Ag 47 70 116 911774 15 73 6 14 s b 117mCd 1 2 117mAg 28 6 2 keV 5 34 5 s b 94 117mCd 7 2 IT 6 117Ag118Ag 47 71 117 9145955 27 3 76 15 s b 118Cd 2 118m1Ag 45 79 9 keV 0 1 µs IT 118Ag 1 to 2 118m2Ag 127 63 10 keV 2 0 2 s b 59 118Cd 5 IT 41 118Ag118m3Ag 279 37 20 keV 0 1 µs IT 118Ag 3 119Ag 47 72 118 915570 16 6 0 5 s b 119mCd 1 2 119mAg 20 20 keV 2 1 1 s b 119Cd 7 2 120Ag 47 73 119 918785 5 1 52 7 s b gt 99 997 120Cd 4 b n lt 003 119Cd120m1Ag 0 50 keV 940 100 ms 0 1 120m2Ag 203 0 10 keV 384 22 ms IT 68 120Sn 7 b 32 120Cd121Ag 47 74 120 920125 13 777 10 ms b 99 92 121Cd 7 2 b n 076 120Cd121mAg 20 20 keV 200 ms 1 2 122Ag 47 75 121 92366 4 529 13 ms b gt 99 814 122Cd 3 b n 186 121Cd122m1Ag 80 50 keV 550 50 ms b 122Cd 1 b n rare 121CdIT rare 122Ag122m2Ag 80 50 keV 200 50 ms b 122Cd 9 b n rare 121CdIT rare 122Ag122m3Ag 171 50 keV 6 3 1 ms IT 122Ag 1 123Ag 47 76 122 92532 4 294 5 ms b 99 44 123Cd 7 2 b n 56 122Cd123m1Ag 59 5 5 keV 100 ms b 123Cd 1 2 b n rare 122Cd123m2Ag 1450 14 keV 202 20 ns IT 123Ag123m3Ag 1472 8 8 keV 393 16 ns IT 123Ag 17 2 124Ag 47 77 123 92890 27 177 9 26 ms b 98 7 124Cd 2 b n 1 3 123Cd124m1Ag 50 50 keV 144 20 ms b 124Cd 9 b n 123Cd124m2Ag 155 6 5 keV 140 50 ns IT 124Ag 1 124m3Ag 231 1 7 keV 1 48 15 ms IT 124Ag 1 125Ag 47 78 124 93074 47 160 5 ms b 88 2 125Cd 9 2 b n 11 8 124Cd125m1Ag 97 1 5 keV 50 ms 1 2 125m2Ag 97 1 5 keV 491 20 ns 17 2 126Ag 47 79 125 93481 22 52 10 ms b 86 3 126Cd 3 b n 13 7 125Cd126m1Ag 100 100 keV 108 4 24 ms 9 126m2Ag 97 1 5 keV 27 6 ms IT 126Ag 1 127Ag 47 80 126 93704 22 89 2 ms b 85 4 127Cd 9 2 b n 14 6 126Cd127m1Ag 20 20 keV 20 ms 1 2 127m2Ag 1938 17 keV 67 5 9 ms b 91 2 127Cd 27 2 IT 8 8 127Ag128Ag 47 81 127 94127 32 60 3 ms b 80 128Cd 3 b n 20 127Cd129Ag 47 82 128 94432 43 49 9 35 ms b gt 80 129Cd 9 2 b n lt 20 128Cd129mAg 20 20 keV 10 ms 1 2 130Ag 47 83 129 95073 46 40 6 45 ms b 130Cd 1 131Ag 47 84 130 95625 54 35 8 ms b 131Cd 9 2 b n 130Cdb 2n 129Cd132Ag 47 85 131 96307 54 30 14 ms b 132Cd 6 133Ag 47 86 132 96878 54 6 This table header amp footer view mAg Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron captureIT Isomeric transitionn Neutron emissionp Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Used to date certain events in the early history of the Solar System a b Fission productReferences edit a b c d e Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Silver CIAAW 1985 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Ag Silver NMR Wang Meng Huang W J Kondev F G Audi G Naimi S 2021 The AME 2020 atomic mass evaluation II Tables graphs and references Chinese Physics C 45 3 030003 doi 10 1088 1674 1137 abddaf Isotope masses from Wang Meng Huang W J Kondev F G Audi G Naimi S 2021 The AME 2020 atomic mass evaluation II Tables graphs and references Chinese Physics C 45 3 030003 doi 10 1088 1674 1137 abddaf Isotopic compositions and standard atomic masses from Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of silver amp oldid 1189491076, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.