fbpx
Wikipedia

Self-propulsion

Self-propulsion is the autonomous displacement of nano-, micro- and macroscopic natural and artificial objects, containing their own means of motion.[2][3][4][5][6][7] Self-propulsion is driven mainly by interfacial phenomena.[8] Various mechanisms of self-propelling have been introduced and investigated, which exploited phoretic effects,[9] gradient surfaces, breaking the wetting symmetry of a droplet on a surface,[10][11] the Leidenfrost effect,[12][13][14] the self-generated hydrodynamic and chemical fields originating from the geometrical confinements,[15] and soluto- and thermo-capillary Marangoni flows.[16][17][1] Self-propelled system demonstrate a potential as micro-fluidics devices[18] and micro-mixers.[19] Self-propelled liquid marbles have been demonstrated.[14]

The sequence of images demonstrating the rotation of the self-propelled PVC tubing, containing camphor.[1] The time separation between frames is 0.33 s.

See also edit

References edit

  1. ^ a b Frenkel, Mark; Whyman, Gene; Shulzinger, Evgeny; Starostin, Anton; Bormashenko, Edward (2017-03-27). "Self-propelling rotator driven by soluto-capillary marangoni flows". Applied Physics Letters. 110 (13): 131604. arXiv:1710.09134. Bibcode:2017ApPhL.110m1604F. doi:10.1063/1.4979590.
  2. ^ Abbott, Nicholas L.; Velev, Orlin D. (2016). "Active particles propelled into researchers' focus". Current Opinion in Colloid & Interface Science. 21: 1–3. doi:10.1016/j.cocis.2016.01.002.
  3. ^ Shapere, Alfred; Wilczek, Frank (1987-05-18). "Self-propulsion at low Reynolds number". Physical Review Letters. 58 (20): 2051–2054. Bibcode:1987PhRvL..58.2051S. doi:10.1103/PhysRevLett.58.2051. PMID 10034637.
  4. ^ Bico, José; Quéré, David (September 2002). "Self-propelling slugs". Journal of Fluid Mechanics. 467 (1): 101–127. Bibcode:2002JFM...467..101B. doi:10.1017/s002211200200126x.
  5. ^ Ghosh, Ambarish; Fischer, Peer (2009-06-10). "Controlled Propulsion of Artificial Magnetic Nanostructured Propellers". Nano Letters. 9 (6): 2243–2245. Bibcode:2009NanoL...9.2243G. doi:10.1021/nl900186w. PMID 19413293.
  6. ^ Kühn, Philipp T.; de Miranda, Barbara Santos; van Rijn, Patrick (2015-12-01). "Directed Autonomic Flow: Functional Motility Fluidics". Advanced Materials. 27 (45): 7401–7406. doi:10.1002/adma.201503000. PMID 26467031.
  7. ^ Zhao, Guanjia; Pumera, Martin (2012-09-01). "Macroscopic Self-Propelled Objects". Chemistry: An Asian Journal. 7 (9): 1994–2002. doi:10.1002/asia.201200206. PMID 22615262.
  8. ^ Bormashenko, Edward (2017). Physics of Wetting Phenomena and Applications of Fluids on Surfaces. Berlin/Boston, United States: De Gruyter. ISBN 9783110444810. OCLC 1004545593.
  9. ^ Moran, Jeffrey L.; Posner, Jonathan D. (August 2011). "Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis". Journal of Fluid Mechanics. 680: 31–66. Bibcode:2011JFM...680...31M. doi:10.1017/jfm.2011.132.
  10. ^ Daniel, Susan; Chaudhury, Manoj K.; Chen, John C. (2001-01-26). "Fast Drop Movements Resulting from the Phase Change on a Gradient Surface". Science. 291 (5504): 633–636. Bibcode:2001Sci...291..633D. doi:10.1126/science.291.5504.633. PMID 11158672.
  11. ^ Daniel, Susan; Sircar, Sanjoy; Gliem, Jill; Chaudhury, Manoj K. (2004-05-01). "Ratcheting Motion of Liquid Drops on Gradient Surfaces". Langmuir. 20 (10): 4085–4092. doi:10.1021/la036221a.
  12. ^ Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V. (2014-01-28). "Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets". ACS Nano. 8 (1): 860–867. CiteSeerX 10.1.1.642.2490. doi:10.1021/nn405585m. PMID 24298880.
  13. ^ Lagubeau, Guillaume; Merrer, Marie Le; Clanet, Christophe; Quéré, David (May 2011). "Leidenfrost on a ratchet". Nature Physics. 7 (5): 395–398. Bibcode:2011NatPh...7..395L. doi:10.1038/nphys1925.
  14. ^ a b Bormashenko, Edward; Bormashenko, Yelena; Grynyov, Roman; Aharoni, Hadas; Whyman, Gene; Binks, Bernard P. (2015-05-07). "Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow". The Journal of Physical Chemistry C. 119 (18): 9910–9915. arXiv:1502.04292. Bibcode:2015arXiv150204292B. doi:10.1021/acs.jpcc.5b01307.
  15. ^ Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M. (2015). "Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering". Soft Matter. 11 (3): 434–438. arXiv:1407.3216. Bibcode:2014SMat...11..434U. doi:10.1039/c4sm02317j. PMID 25466926.
  16. ^ Izri, Ziane; van der Linden, Marjolein N.; Michelin, Sébastien; Dauchot, Olivier (2014). "Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion". Physical Review Letters. 113 (24): 248302. arXiv:1406.5950. Bibcode:2014PhRvL.113x8302I. doi:10.1103/PhysRevLett.113.248302. PMID 25541808.
  17. ^ Nakata, Satoshi; Matsuo, Kyoko (2005-02-01). "Characteristic Self-Motion of a Camphor Boat Sensitive to Ester Vapor". Langmuir. 21 (3): 982–984. doi:10.1021/la047776o. PMID 15667178.
  18. ^ Teh, Shia-Yen; Lin, Robert; Hung, Lung-Hsin; Lee, Abraham P. (2008-01-29). "Droplet microfluidics". Lab on a Chip. 8 (2): 198–220. doi:10.1039/b715524g. PMID 18231657.
  19. ^ Nguyen, Nam-Trung; Wu, Zhigang (2005). "Micromixers—a review". Journal of Micromechanics and Microengineering. 15 (2): R1–R16. Bibcode:2005JMiMi..15R...1N. doi:10.1088/0960-1317/15/2/r01.

self, propulsion, autonomous, displacement, nano, micro, macroscopic, natural, artificial, objects, containing, their, means, motion, driven, mainly, interfacial, phenomena, various, mechanisms, self, propelling, have, been, introduced, investigated, which, ex. Self propulsion is the autonomous displacement of nano micro and macroscopic natural and artificial objects containing their own means of motion 2 3 4 5 6 7 Self propulsion is driven mainly by interfacial phenomena 8 Various mechanisms of self propelling have been introduced and investigated which exploited phoretic effects 9 gradient surfaces breaking the wetting symmetry of a droplet on a surface 10 11 the Leidenfrost effect 12 13 14 the self generated hydrodynamic and chemical fields originating from the geometrical confinements 15 and soluto and thermo capillary Marangoni flows 16 17 1 Self propelled system demonstrate a potential as micro fluidics devices 18 and micro mixers 19 Self propelled liquid marbles have been demonstrated 14 The sequence of images demonstrating the rotation of the self propelled PVC tubing containing camphor 1 The time separation between frames is 0 33 s See also editSelf propelled particlesReferences edit a b Frenkel Mark Whyman Gene Shulzinger Evgeny Starostin Anton Bormashenko Edward 2017 03 27 Self propelling rotator driven by soluto capillary marangoni flows Applied Physics Letters 110 13 131604 arXiv 1710 09134 Bibcode 2017ApPhL 110m1604F doi 10 1063 1 4979590 Abbott Nicholas L Velev Orlin D 2016 Active particles propelled into researchers focus Current Opinion in Colloid amp Interface Science 21 1 3 doi 10 1016 j cocis 2016 01 002 Shapere Alfred Wilczek Frank 1987 05 18 Self propulsion at low Reynolds number Physical Review Letters 58 20 2051 2054 Bibcode 1987PhRvL 58 2051S doi 10 1103 PhysRevLett 58 2051 PMID 10034637 Bico Jose Quere David September 2002 Self propelling slugs Journal of Fluid Mechanics 467 1 101 127 Bibcode 2002JFM 467 101B doi 10 1017 s002211200200126x Ghosh Ambarish Fischer Peer 2009 06 10 Controlled Propulsion of Artificial Magnetic Nanostructured Propellers Nano Letters 9 6 2243 2245 Bibcode 2009NanoL 9 2243G doi 10 1021 nl900186w PMID 19413293 Kuhn Philipp T de Miranda Barbara Santos van Rijn Patrick 2015 12 01 Directed Autonomic Flow Functional Motility Fluidics Advanced Materials 27 45 7401 7406 doi 10 1002 adma 201503000 PMID 26467031 Zhao Guanjia Pumera Martin 2012 09 01 Macroscopic Self Propelled Objects Chemistry An Asian Journal 7 9 1994 2002 doi 10 1002 asia 201200206 PMID 22615262 Bormashenko Edward 2017 Physics of Wetting Phenomena and Applications of Fluids on Surfaces Berlin Boston United States De Gruyter ISBN 9783110444810 OCLC 1004545593 Moran Jeffrey L Posner Jonathan D August 2011 Electrokinetic locomotion due to reaction induced charge auto electrophoresis Journal of Fluid Mechanics 680 31 66 Bibcode 2011JFM 680 31M doi 10 1017 jfm 2011 132 Daniel Susan Chaudhury Manoj K Chen John C 2001 01 26 Fast Drop Movements Resulting from the Phase Change on a Gradient Surface Science 291 5504 633 636 Bibcode 2001Sci 291 633D doi 10 1126 science 291 5504 633 PMID 11158672 Daniel Susan Sircar Sanjoy Gliem Jill Chaudhury Manoj K 2004 05 01 Ratcheting Motion of Liquid Drops on Gradient Surfaces Langmuir 20 10 4085 4092 doi 10 1021 la036221a Agapov Rebecca L Boreyko Jonathan B Briggs Dayrl P Srijanto Bernadeta R Retterer Scott T Collier C Patrick Lavrik Nickolay V 2014 01 28 Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets ACS Nano 8 1 860 867 CiteSeerX 10 1 1 642 2490 doi 10 1021 nn405585m PMID 24298880 Lagubeau Guillaume Merrer Marie Le Clanet Christophe Quere David May 2011 Leidenfrost on a ratchet Nature Physics 7 5 395 398 Bibcode 2011NatPh 7 395L doi 10 1038 nphys1925 a b Bormashenko Edward Bormashenko Yelena Grynyov Roman Aharoni Hadas Whyman Gene Binks Bernard P 2015 05 07 Self Propulsion of Liquid Marbles Leidenfrost like Levitation Driven by Marangoni Flow The Journal of Physical Chemistry C 119 18 9910 9915 arXiv 1502 04292 Bibcode 2015arXiv150204292B doi 10 1021 acs jpcc 5b01307 Uspal W E Popescu M N Dietrich S Tasinkevych M 2015 Self propulsion of a catalytically active particle near a planar wall from reflection to sliding and hovering Soft Matter 11 3 434 438 arXiv 1407 3216 Bibcode 2014SMat 11 434U doi 10 1039 c4sm02317j PMID 25466926 Izri Ziane van der Linden Marjolein N Michelin Sebastien Dauchot Olivier 2014 Self Propulsion of Pure Water Droplets by Spontaneous Marangoni Stress Driven Motion Physical Review Letters 113 24 248302 arXiv 1406 5950 Bibcode 2014PhRvL 113x8302I doi 10 1103 PhysRevLett 113 248302 PMID 25541808 Nakata Satoshi Matsuo Kyoko 2005 02 01 Characteristic Self Motion of a Camphor Boat Sensitive to Ester Vapor Langmuir 21 3 982 984 doi 10 1021 la047776o PMID 15667178 Teh Shia Yen Lin Robert Hung Lung Hsin Lee Abraham P 2008 01 29 Droplet microfluidics Lab on a Chip 8 2 198 220 doi 10 1039 b715524g PMID 18231657 Nguyen Nam Trung Wu Zhigang 2005 Micromixers a review Journal of Micromechanics and Microengineering 15 2 R1 R16 Bibcode 2005JMiMi 15R 1N doi 10 1088 0960 1317 15 2 r01 Retrieved from https en wikipedia org w index php title Self propulsion amp oldid 1028016643, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.