fbpx
Wikipedia

Satellite laser ranging

In satellite laser ranging (SLR) a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data. The laser pulse can also be reflected by the surface of a satellite without a retroreflector, which is used for tracking space debris.[1]

Laser Ranging System of the geodetic observatory Wettzell, Bavaria

Satellite laser ranging is a proven geodetic technique with significant potential for important contributions to scientific studies of the earth/atmosphere/ocean system. It is the most accurate technique currently available to determine the geocentric position of an Earth satellite, allowing for the precise calibration of radar altimeters and separation of long-term instrumentation drift from secular changes in ocean topography.

Its ability to measure the variations over time in Earth's gravity field and to monitor motion of the station network with respect to the geocenter, together with the capability to monitor vertical motion in an absolute system, makes it unique for modeling and evaluating long-term climate change by:[2]

  • providing a reference system for post-glacial rebound, plate tectonics, sea level and ice volume change[3]
  • determining the temporal mass redistribution of the solid earth, ocean, and atmosphere system[4]
  • determining Earth orientation parameters, such as Earth pole coordinates and length-of-day variations[5]
  • determining of precise satellite orbits for artificial satellites with and without active devices onboard[6][7]
  • monitoring the response of the atmosphere to seasonal variations in solar heating.[8]

SLR provides a unique capability for verification of the predictions of the theory of general relativity, such as the frame-dragging effect.

SLR stations form an important part of the international network of space geodetic observatories, which include VLBI, GPS, DORIS and PRARE systems. On several critical missions, SLR has provided failsafe redundancy when other radiometric tracking systems have failed.

History edit

 
Satellite Laser Ranging

Laser ranging to a near-Earth satellite was first carried out by NASA in 1964 with the launch of the Beacon-B satellite. Since that time, ranging precision, spurred by scientific requirements, has improved by a factor of a thousand from a few metres to a few millimetres, and more satellites equipped with retroreflectors have been launched.

Several sets of retroreflectors were installed on Earth's Moon as part of the American Apollo and Soviet Lunokhod space programs. These retroreflectors are also ranged on a regular basis (lunar laser ranging), providing a highly accurate measurement of the dynamics of the Earth/Moon system.

During the subsequent decades, the global satellite laser ranging network has evolved into a powerful source of data for studies of the solid Earth and its ocean and atmospheric systems. In addition, SLR provides precise orbit determination for spaceborne radar altimeter missions mapping the ocean surface (which are used to model global ocean circulation), for mapping volumetric changes in continental ice masses, and for land topography. It provides a means for subnanosecond global time transfer, and a basis for special tests of the Theory of General Relativity.

The International Laser Ranging Service was formed in 1998[9] by the global SLR community to enhance geophysical and geodetic research activities, replacing the previous CSTG Satellite and Laser Ranging Subcommission.

Applications edit

SLR data has provided the standard, highly accurate, long wavelength gravity field reference model which supports all precision orbit determination and provides the basis for studying temporal gravitational variations due to mass redistribution. The height of the geoid has been determined to less than ten centimeters at long wavelengths less than 1,500 km.

SLR provides mm/year accurate determinations of tectonic drift station motion on a global scale in a geocentric reference frame. Combined with gravity models and decadal changes in Earth rotation, these results contribute to modeling of convection in the Earth's mantle by providing constraints on related Earth interior processes. The velocity of the fiducial station in Hawaii is 70 mm/year and closely matches the rate of the background geophysical model.

List of satellites edit

List of passive satellites edit

Several dedicated laser ranging satellites were put in orbit:[10]

List of shared satellites edit

Several satellites carried laser retroreflectors, sharing the bus with other instruments:

See also edit

References edit

  1. ^ Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T. (October 2017). "Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging: Spin-Up of Topex". Earth and Space Science. 4 (10): 661–668. doi:10.1002/2017EA000329.
  2. ^ Pearlman, M.; Arnold, D.; Davis, M.; Barlier, F.; Biancale, R.; Vasiliev, V.; Ciufolini, I.; Paolozzi, A.; Pavlis, E. C.; Sośnica, K.; Bloßfeld, M. (November 2019). "Laser geodetic satellites: a high-accuracy scientific tool". Journal of Geodesy. 93 (11): 2181–2194. Bibcode:2019JGeod..93.2181P. doi:10.1007/s00190-019-01228-y. S2CID 127408940.
  3. ^ Zajdel, R.; Sośnica, K.; Drożdżewski, M.; Bury, G.; Strugarek, D. (November 2019). "Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS". Journal of Geodesy. 93 (11): 2293–2313. Bibcode:2019JGeod..93.2293Z. doi:10.1007/s00190-019-01307-0.
  4. ^ a b Sośnica, Krzysztof; Jäggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf (October 2015). "Time variable Earth's gravity field from SLR satellites". Journal of Geodesy. 89 (10): 945–960. Bibcode:2015JGeod..89..945S. doi:10.1007/s00190-015-0825-1.
  5. ^ Sośnica, K.; Bury, G.; Zajdel, R.; Strugarek, D.; Drożdżewski, M.; Kazmierski, K. (December 2019). "Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS". Earth, Planets and Space. 71 (1): 20. Bibcode:2019EP&S...71...20S. doi:10.1186/s40623-019-1000-3.
  6. ^ Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław (December 2019). "Multi-GNSS orbit determination using satellite laser ranging". Journal of Geodesy. 93 (12): 2447–2463. Bibcode:2019JGeod..93.2447B. doi:10.1007/s00190-018-1143-1.
  7. ^ Strugarek, Dariusz; Sośnica, Krzysztof; Jäggi, Adrian (January 2019). "Characteristics of GOCE orbits based on Satellite Laser Ranging". Advances in Space Research. 63 (1): 417–431. Bibcode:2019AdSpR..63..417S. doi:10.1016/j.asr.2018.08.033. S2CID 125791718.
  8. ^ Bury, Grzegorz; Sosnica, Krzysztof; Zajdel, Radoslaw (June 2019). "Impact of the Atmospheric Non-tidal Pressure Loading on Global Geodetic Parameters Based on Satellite Laser Ranging to GNSS". IEEE Transactions on Geoscience and Remote Sensing. 57 (6): 3574–3590. Bibcode:2019ITGRS..57.3574B. doi:10.1109/TGRS.2018.2885845. S2CID 127713034.
  9. ^ Pearlman, Michael R.; Noll, Carey E.; Pavlis, Erricos C.; Lemoine, Frank G.; Combrink, Ludwig; Degnan, John J.; Kirchner, Georg; Schreiber, Ulrich (November 2019). "The ILRS: approaching 20 years and planning for the future". Journal of Geodesy. 93 (11): 2161–2180. Bibcode:2019JGeod..93.2161P. doi:10.1007/s00190-019-01241-1. S2CID 127335882.
  10. ^ "International Laser Ranging Service". Ilrs.gsfc.nasa.gov. Retrieved 2022-08-20.
  11. ^ Kucharski, Daniel; Kirchner, Georg; Otsubo, Toshimichi; Kunimori, Hiroo; Jah, Moriba K.; Koidl, Franz; Bennett, James C.; Lim, Hyung-Chul; Wang, Peiyuan; Steindorfer, Michael; Sośnica, Krzysztof (August 2019). "Hypertemporal photometric measurement of spaceborne mirrors specular reflectivity for Laser Time Transfer link model". Advances in Space Research. 64 (4): 957–963. Bibcode:2019AdSpR..64..957K. doi:10.1016/j.asr.2019.05.030. S2CID 191188229.
  12. ^ "Calsphere 1, 2, 3, 4". Space.skyrocket.de. Retrieved 2016-02-13.
  13. ^ Lindborg, Christina. "Etalon". Russia and Navigation Systems. Federation of American Scientists. Retrieved 10 November 2012.
  14. ^ Sośnica, Krzysztof (1 August 2015). "LAGEOS Sensitivity to Ocean Tides". Acta Geophysica. 63 (4): 1181–1203. Bibcode:2015AcGeo..63.1181S. doi:10.1515/acgeo-2015-0032.
  15. ^ Krzysztof, Sośnica (1 March 2015). "Impact of the Atmospheric Drag on Starlette, Stella, Ajisai, and Lares Orbits". Artificial Satellites. 50 (1): 1–18. Bibcode:2015ArtSa..50....1S. doi:10.1515/arsa-2015-0001.
  16. ^ "Larets".
  17. ^ "International Laser Ranging Service". Ilrs.gsfc.nasa.gov. Retrieved 2022-08-20.
  18. ^ "NASA - NSSDCA - Spacecraft - Details". Nssdc.gsfc.nasa.gov. 1999-06-05. Retrieved 2016-02-13.
  19. ^ Sośnica, Krzysztof; Jäggi, Adrian; Thaller, Daniela; Beutler, Gerhard; Dach, Rolf (August 2014). "Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame" (PDF). Journal of Geodesy. 88 (8): 789–804. Bibcode:2014JGeod..88..789S. doi:10.1007/s00190-014-0722-z. S2CID 121163799.
  20. ^ a b c d Pearlman, M.; Arnold, D.; Davis, M.; Barlier, F.; Biancale, R.; Vasiliev, V.; Ciufolini, I.; Paolozzi, A.; Pavlis, E. C.; Sośnica, K.; Bloßfeld, M. (November 2019). "Laser geodetic satellites: a high-accuracy scientific tool". Journal of Geodesy. 93 (11): 2181–2194. Bibcode:2019JGeod..93.2181P. doi:10.1007/s00190-019-01228-y. S2CID 127408940.
  21. ^ Strugarek, Dariusz; Sosnica, Krzysztof; Jaeggi, Adrian (January 2019). "Characteristics of GOCE orbits based on Satellite Laser Ranging". Advances in Space Research. Elsevier. 63 (1): 417–431. Bibcode:2019AdSpR..63..417S. doi:10.1016/j.asr.2018.08.033. S2CID 125791718.
  22. ^ Kazmierski, Kamil; Zajdel, Radoslaw; Sośnica, Krzysztof (October 2020). "Evolution of orbit and clock quality for real-time multi-GNSS solutions". GPS Solutions. 24 (4): 111. doi:10.1007/s10291-020-01026-6.
  23. ^ Sośnica, Krzysztof; Thaller, Daniela; Dach, Rolf; Steigenberger, Peter; Beutler, Gerhard; Arnold, Daniel; Jäggi, Adrian (July 2015). "Satellite laser ranging to GPS and GLONASS". Journal of Geodesy. 89 (7): 725–743. Bibcode:2015JGeod..89..725S. doi:10.1007/s00190-015-0810-8.
  24. ^ Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz (February 2018). "Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes". Journal of Geodesy. 92 (2): 131–148. Bibcode:2018JGeod..92..131S. doi:10.1007/s00190-017-1050-x.
  25. ^ Sośnica, Krzysztof; Zajdel, Radosław; Bury, Grzegorz; Bosy, Jarosław; Moore, Michael; Masoumi, Salim (April 2020). "Quality assessment of experimental IGS multi-GNSS combined orbits". GPS Solutions. 24 (2): 54. doi:10.1007/s10291-020-0965-5.
  26. ^ . ilrs.cddis.eosdis.nasa.gov. Archived from the original on 2019-03-25. Retrieved 2019-03-25.
  27. ^ Sośnica, K.; Bury, G.; Zajdel, R. (16 March 2018). "Contribution of Multi‐GNSS Constellation to SLR‐Derived Terrestrial Reference Frame". Geophysical Research Letters. 45 (5): 2339–2348. Bibcode:2018GeoRL..45.2339S. doi:10.1002/2017GL076850. S2CID 134160047.
  28. ^ Strugarek, Dariusz; Sośnica, Krzysztof; Arnold, Daniel; Jäggi, Adrian; Zajdel, Radosław; Bury, Grzegorz; Drożdżewski, Mateusz (30 September 2019). "Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites". Remote Sensing. 11 (19): 2282. Bibcode:2019RemS...11.2282S. doi:10.3390/rs11192282.
  29. ^ Costes, Vincent; Gasc, Karine; Sengenes, Pierre; Salcedo, Corinne; Imperiali, Stéphan; du Jeu, Christian (2017-11-01). "Development of the Laser Retroreflector Array (LRA) for SARAL". In Kadowaki, Naoto (ed.). International Conference on Space Optics — ICSO 2010. Vol. 10565. pp. 105652K. Bibcode:2017SPIE10565E..2KC. doi:10.1117/12.2309261. ISBN 9781510616196.

Further reading edit

  • Pavlis, Erricos C.; Luceri, Vincenza; Otsubo, Toshimichi; Schreiber, Ulrich (eds) Satellite Laser Ranging Journal of Geodesy Volume 93, issue 11, November 2019
  • "Satellite Laser Ranging and Earth Science" (PDF). NASA International Laser Ranging Service. Retrieved 2009-06-23. (public domain)
  • Seeber, Günter (2003) Satellite Geodesy Walter de Gruyter ISBN 9783110175493 pg 404
  • Kramer, Herbert J. (2002) Observation of the Earth and Its Environment: Survey of Missions and Sensors Springer ISBN 9783540423881 pg 131-132
  • Turcotte, Donald L. (ed) (1993) Contributions of Space Geodesy to Geodynamics Washington, DC: American Geophysical Union Geodynamics Series, ISSN 0277-6669
  • U.S. National Research Council (1985) Geodesy: a look to the future NAP pg 80-84

External links edit

  • International Laser Ranging Service website
  • McDonald Laser Ranging Station
  • NERC Space Geodesy Facility
  • Retroreflectors on the Moon
  • Fixed Shutter Dome (FSD) for SLR

satellite, laser, ranging, this, article, about, looking, type, satellite, laser, down, looking, type, satellite, laser, altimetry, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help, improve, . This article is about the up looking type of satellite laser For the down looking type see Satellite laser altimetry This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations November 2020 Learn how and when to remove this template message In satellite laser ranging SLR a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data The laser pulse can also be reflected by the surface of a satellite without a retroreflector which is used for tracking space debris 1 Laser Ranging System of the geodetic observatory Wettzell BavariaSatellite laser ranging is a proven geodetic technique with significant potential for important contributions to scientific studies of the earth atmosphere ocean system It is the most accurate technique currently available to determine the geocentric position of an Earth satellite allowing for the precise calibration of radar altimeters and separation of long term instrumentation drift from secular changes in ocean topography Its ability to measure the variations over time in Earth s gravity field and to monitor motion of the station network with respect to the geocenter together with the capability to monitor vertical motion in an absolute system makes it unique for modeling and evaluating long term climate change by 2 providing a reference system for post glacial rebound plate tectonics sea level and ice volume change 3 determining the temporal mass redistribution of the solid earth ocean and atmosphere system 4 determining Earth orientation parameters such as Earth pole coordinates and length of day variations 5 determining of precise satellite orbits for artificial satellites with and without active devices onboard 6 7 monitoring the response of the atmosphere to seasonal variations in solar heating 8 SLR provides a unique capability for verification of the predictions of the theory of general relativity such as the frame dragging effect SLR stations form an important part of the international network of space geodetic observatories which include VLBI GPS DORIS and PRARE systems On several critical missions SLR has provided failsafe redundancy when other radiometric tracking systems have failed Contents 1 History 2 Applications 3 List of satellites 3 1 List of passive satellites 3 2 List of shared satellites 4 See also 5 References 6 Further reading 7 External linksHistory edit nbsp Satellite Laser RangingLaser ranging to a near Earth satellite was first carried out by NASA in 1964 with the launch of the Beacon B satellite Since that time ranging precision spurred by scientific requirements has improved by a factor of a thousand from a few metres to a few millimetres and more satellites equipped with retroreflectors have been launched Several sets of retroreflectors were installed on Earth s Moon as part of the American Apollo and Soviet Lunokhod space programs These retroreflectors are also ranged on a regular basis lunar laser ranging providing a highly accurate measurement of the dynamics of the Earth Moon system During the subsequent decades the global satellite laser ranging network has evolved into a powerful source of data for studies of the solid Earth and its ocean and atmospheric systems In addition SLR provides precise orbit determination for spaceborne radar altimeter missions mapping the ocean surface which are used to model global ocean circulation for mapping volumetric changes in continental ice masses and for land topography It provides a means for subnanosecond global time transfer and a basis for special tests of the Theory of General Relativity The International Laser Ranging Service was formed in 1998 9 by the global SLR community to enhance geophysical and geodetic research activities replacing the previous CSTG Satellite and Laser Ranging Subcommission Applications editSLR data has provided the standard highly accurate long wavelength gravity field reference model which supports all precision orbit determination and provides the basis for studying temporal gravitational variations due to mass redistribution The height of the geoid has been determined to less than ten centimeters at long wavelengths less than 1 500 km SLR provides mm year accurate determinations of tectonic drift station motion on a global scale in a geocentric reference frame Combined with gravity models and decadal changes in Earth rotation these results contribute to modeling of convection in the Earth s mantle by providing constraints on related Earth interior processes The velocity of the fiducial station in Hawaii is 70 mm year and closely matches the rate of the background geophysical model List of satellites editList of passive satellites edit For broader coverage of this topic see List of passive satellites Several dedicated laser ranging satellites were put in orbit 10 Ajisai Experimental Geodetic Payload 11 BLITS 4 Calsphere satellites 12 Etalon 13 Kosmos 1989 Kosmos 2024 LAGEOS 14 LAGEOS 1 LAGEOS 2 see STS 52 LARES 15 LARES 1 LARES 2 Larets 16 17 STARSHINE Starshine 1 18 see STS 96 Starshine 2 see STS 108 Starlette and Stella 19 List of shared satellites edit Several satellites carried laser retroreflectors sharing the bus with other instruments Beacon Explorers Beacon Explorer B and Beacon Explorer C 20 GEOS GEOS 1 GEOS 2 GEOS 3 20 Diademe satellites fr 20 PEOLE fr 20 CHAMP GRACE GOCE 21 Navigation satellites GLONASS 22 GPS two experimental satellites 23 Galileo 24 BeiDou 25 NavIC 26 QZSS 27 Altimeter satellites GEOS 3 TOPEX Poseidon Sentinel 3 28 SARAL 29 See also editLidar Lunar laser ranging Retroreflector In satellites Laser communication in spaceReferences edit Kucharski D Kirchner G Bennett J C Lachut M Sosnica K Koshkin N Shakun L Koidl F Steindorfer M Wang P Fan C Han X Grunwaldt L Wilkinson M Rodriguez J Bianco G Vespe F Catalan M Salmins K del Pino J R Lim H C Park E Moore C Lejba P Suchodolski T October 2017 Photon Pressure Force on Space Debris TOPEX Poseidon Measured by Satellite Laser Ranging Spin Up of Topex Earth and Space Science 4 10 661 668 doi 10 1002 2017EA000329 Pearlman M Arnold D Davis M Barlier F Biancale R Vasiliev V Ciufolini I Paolozzi A Pavlis E C Sosnica K Blossfeld M November 2019 Laser geodetic satellites a high accuracy scientific tool Journal of Geodesy 93 11 2181 2194 Bibcode 2019JGeod 93 2181P doi 10 1007 s00190 019 01228 y S2CID 127408940 Zajdel R Sosnica K Drozdzewski M Bury G Strugarek D November 2019 Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS Journal of Geodesy 93 11 2293 2313 Bibcode 2019JGeod 93 2293Z doi 10 1007 s00190 019 01307 0 a b Sosnica Krzysztof Jaggi Adrian Meyer Ulrich Thaller Daniela Beutler Gerhard Arnold Daniel Dach Rolf October 2015 Time variable Earth s gravity field from SLR satellites Journal of Geodesy 89 10 945 960 Bibcode 2015JGeod 89 945S doi 10 1007 s00190 015 0825 1 Sosnica K Bury G Zajdel R Strugarek D Drozdzewski M Kazmierski K December 2019 Estimating global geodetic parameters using SLR observations to Galileo GLONASS BeiDou GPS and QZSS Earth Planets and Space 71 1 20 Bibcode 2019EP amp S 71 20S doi 10 1186 s40623 019 1000 3 Bury Grzegorz Sosnica Krzysztof Zajdel Radoslaw December 2019 Multi GNSS orbit determination using satellite laser ranging Journal of Geodesy 93 12 2447 2463 Bibcode 2019JGeod 93 2447B doi 10 1007 s00190 018 1143 1 Strugarek Dariusz Sosnica Krzysztof Jaggi Adrian January 2019 Characteristics of GOCE orbits based on Satellite Laser Ranging Advances in Space Research 63 1 417 431 Bibcode 2019AdSpR 63 417S doi 10 1016 j asr 2018 08 033 S2CID 125791718 Bury Grzegorz Sosnica Krzysztof Zajdel Radoslaw June 2019 Impact of the Atmospheric Non tidal Pressure Loading on Global Geodetic Parameters Based on Satellite Laser Ranging to GNSS IEEE Transactions on Geoscience and Remote Sensing 57 6 3574 3590 Bibcode 2019ITGRS 57 3574B doi 10 1109 TGRS 2018 2885845 S2CID 127713034 Pearlman Michael R Noll Carey E Pavlis Erricos C Lemoine Frank G Combrink Ludwig Degnan John J Kirchner Georg Schreiber Ulrich November 2019 The ILRS approaching 20 years and planning for the future Journal of Geodesy 93 11 2161 2180 Bibcode 2019JGeod 93 2161P doi 10 1007 s00190 019 01241 1 S2CID 127335882 International Laser Ranging Service Ilrs gsfc nasa gov Retrieved 2022 08 20 Kucharski Daniel Kirchner Georg Otsubo Toshimichi Kunimori Hiroo Jah Moriba K Koidl Franz Bennett James C Lim Hyung Chul Wang Peiyuan Steindorfer Michael Sosnica Krzysztof August 2019 Hypertemporal photometric measurement of spaceborne mirrors specular reflectivity for Laser Time Transfer link model Advances in Space Research 64 4 957 963 Bibcode 2019AdSpR 64 957K doi 10 1016 j asr 2019 05 030 S2CID 191188229 Calsphere 1 2 3 4 Space skyrocket de Retrieved 2016 02 13 Lindborg Christina Etalon Russia and Navigation Systems Federation of American Scientists Retrieved 10 November 2012 Sosnica Krzysztof 1 August 2015 LAGEOS Sensitivity to Ocean Tides Acta Geophysica 63 4 1181 1203 Bibcode 2015AcGeo 63 1181S doi 10 1515 acgeo 2015 0032 Krzysztof Sosnica 1 March 2015 Impact of the Atmospheric Drag on Starlette Stella Ajisai and Lares Orbits Artificial Satellites 50 1 1 18 Bibcode 2015ArtSa 50 1S doi 10 1515 arsa 2015 0001 Larets International Laser Ranging Service Ilrs gsfc nasa gov Retrieved 2022 08 20 NASA NSSDCA Spacecraft Details Nssdc gsfc nasa gov 1999 06 05 Retrieved 2016 02 13 Sosnica Krzysztof Jaggi Adrian Thaller Daniela Beutler Gerhard Dach Rolf August 2014 Contribution of Starlette Stella and AJISAI to the SLR derived global reference frame PDF Journal of Geodesy 88 8 789 804 Bibcode 2014JGeod 88 789S doi 10 1007 s00190 014 0722 z S2CID 121163799 a b c d Pearlman M Arnold D Davis M Barlier F Biancale R Vasiliev V Ciufolini I Paolozzi A Pavlis E C Sosnica K Blossfeld M November 2019 Laser geodetic satellites a high accuracy scientific tool Journal of Geodesy 93 11 2181 2194 Bibcode 2019JGeod 93 2181P doi 10 1007 s00190 019 01228 y S2CID 127408940 Strugarek Dariusz Sosnica Krzysztof Jaeggi Adrian January 2019 Characteristics of GOCE orbits based on Satellite Laser Ranging Advances in Space Research Elsevier 63 1 417 431 Bibcode 2019AdSpR 63 417S doi 10 1016 j asr 2018 08 033 S2CID 125791718 Kazmierski Kamil Zajdel Radoslaw Sosnica Krzysztof October 2020 Evolution of orbit and clock quality for real time multi GNSS solutions GPS Solutions 24 4 111 doi 10 1007 s10291 020 01026 6 Sosnica Krzysztof Thaller Daniela Dach Rolf Steigenberger Peter Beutler Gerhard Arnold Daniel Jaggi Adrian July 2015 Satellite laser ranging to GPS and GLONASS Journal of Geodesy 89 7 725 743 Bibcode 2015JGeod 89 725S doi 10 1007 s00190 015 0810 8 Sosnica Krzysztof Prange Lars Kazmierski Kamil Bury Grzegorz Drozdzewski Mateusz Zajdel Radoslaw Hadas Tomasz February 2018 Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes Journal of Geodesy 92 2 131 148 Bibcode 2018JGeod 92 131S doi 10 1007 s00190 017 1050 x Sosnica Krzysztof Zajdel Radoslaw Bury Grzegorz Bosy Jaroslaw Moore Michael Masoumi Salim April 2020 Quality assessment of experimental IGS multi GNSS combined orbits GPS Solutions 24 2 54 doi 10 1007 s10291 020 0965 5 IRNSS Reflector Information ilrs cddis eosdis nasa gov Archived from the original on 2019 03 25 Retrieved 2019 03 25 Sosnica K Bury G Zajdel R 16 March 2018 Contribution of Multi GNSS Constellation to SLR Derived Terrestrial Reference Frame Geophysical Research Letters 45 5 2339 2348 Bibcode 2018GeoRL 45 2339S doi 10 1002 2017GL076850 S2CID 134160047 Strugarek Dariusz Sosnica Krzysztof Arnold Daniel Jaggi Adrian Zajdel Radoslaw Bury Grzegorz Drozdzewski Mateusz 30 September 2019 Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel 3 Satellites Remote Sensing 11 19 2282 Bibcode 2019RemS 11 2282S doi 10 3390 rs11192282 Costes Vincent Gasc Karine Sengenes Pierre Salcedo Corinne Imperiali Stephan du Jeu Christian 2017 11 01 Development of the Laser Retroreflector Array LRA for SARAL In Kadowaki Naoto ed International Conference on Space Optics ICSO 2010 Vol 10565 pp 105652K Bibcode 2017SPIE10565E 2KC doi 10 1117 12 2309261 ISBN 9781510616196 Further reading editPavlis Erricos C Luceri Vincenza Otsubo Toshimichi Schreiber Ulrich eds Satellite Laser Ranging Journal of Geodesy Volume 93 issue 11 November 2019 Satellite Laser Ranging and Earth Science PDF NASA International Laser Ranging Service Retrieved 2009 06 23 public domain Seeber Gunter 2003 Satellite Geodesy Walter de Gruyter ISBN 9783110175493 pg 404 Kramer Herbert J 2002 Observation of the Earth and Its Environment Survey of Missions and Sensors Springer ISBN 9783540423881 pg 131 132 Turcotte Donald L ed 1993 Contributions of Space Geodesy to Geodynamics Washington DC American Geophysical Union Geodynamics Series ISSN 0277 6669 U S National Research Council 1985 Geodesy a look to the future NAP pg 80 84External links editInternational Laser Ranging Service website McDonald Laser Ranging Station NERC Space Geodesy Facility Retroreflectors on the Moon Fixed Shutter Dome FSD for SLR Retrieved from https en wikipedia org w index php title Satellite laser ranging amp oldid 1177811726, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.