fbpx
Wikipedia

NASA AD-1

The NASA AD-1 was both an aircraft and an associated flight test program conducted between 1979 and 1982 at the NASA Dryden Flight Research Center, Edwards California, which successfully demonstrated an aircraft wing that could be pivoted obliquely from zero to 60 degrees during flight.

AD-1
The AD-1 with its wing at a moderate angle
Role Experimental aircraft
National origin United States
Manufacturer Ames Industrial Co.
Designer Burt Rutan
First flight December 21, 1979
Retired August 1982
Primary user NASA
Number built 1

The unique oblique wing was demonstrated on a small, subsonic jet-powered research aircraft called the AD-1 (Ames-Dryden-1). The aircraft was flown 79 times during the research program, which evaluated the basic pivot-wing concept and gathered information on handling qualities and aerodynamics at various speeds and degrees of pivot.

Project background

 
The NASA Oblique Wing Research Aircraft, the predecessor to the AD-1.

The first known oblique wing design was the Blohm & Voss P.202, proposed by Richard Vogt in 1942.[1] The oblique wing concept was later promoted by Robert T. Jones, an aeronautical engineer at NASA's Ames Research Center, Moffett Field, California. Analytical and wind tunnel studies Jones initiated at Ames indicated that a transport-size oblique-wing aircraft, flying at speeds up to Mach 1.4, would have substantially better aerodynamic performance than aircraft with more conventional wings. At high speeds, both subsonic and supersonic, the wing would be pivoted at up to 60 degrees to the aircraft's fuselage for better high-speed performance. The studies showed these angles would decrease aerodynamic drag, permitting increased speed and longer range with the same fuel expenditure. At lower speeds, during takeoffs and landings, the wing would be perpendicular to the fuselage like a conventional wing to provide maximum lift and control qualities. As the aircraft gained speed, the wing would be pivoted to increase the oblique angle, thereby reducing the drag and decreasing fuel consumption. The wing could only be swept in one direction, with the right wingtip moving forward.[citation needed]

Aircraft

 
The AD-1 and pilot Richard E. Gray

The AD-1 aircraft was delivered to Dryden in February 1979. The Ames Industrial Co., Bohemia, New York, constructed it, under a US$240,000 fixed-price contract. NASA specified the overall vehicle design using a geometric configuration studied by Boeing Commercial Airplanes, Seattle, Washington. The Rutan Aircraft Factory, Mojave, California, provided the detailed design and load analysis for the intentionally low-speed, low-cost aircraft (there, the aircraft was known internally as the Model 35). The low speed and cost, of course, limited the complexity of the vehicle and the scope of its technical objectives.

Piloting the aircraft on its first flight December 21, 1979, was NASA research pilot Thomas C. McMurtry, who was also the pilot on the final flight August 7, 1982. Another well-known test pilot involved in the project was Pete Knight.

The AD-1 was powered by two small Microturbo TRS18-046 turbojet engines, each producing 220 pounds-force (0.98 kN) of static thrust at sea level. These were essentially the same engines used in the BD-5J. The aircraft was limited for reasons of safety to a speed of about 170 mph (270 km/h).

The AD-1 was 38.8 feet (11.8 m) in length and had a wingspan of 32.3 feet (9.8 m) unswept. It was constructed of plastic reinforced with fiberglass, in a sandwich with the skin separated by a rigid foam core. It had a gross weight of 2,145 pounds (973 kg), and an empty weight of 1,450 pounds (660 kg).

A fixed tricycle landing gear, mounted close to the fuselage to lessen aerodynamic drag, gave the aircraft a very "squatty" appearance on the ground. It was only 6.75 feet (2.06 m) high. The wing was pivoted by an electrically-driven gear mechanism located inside the fuselage, just forward of the engines.

Flight research

 
Overhead view

The research program to validate the oblique wing concept was typical of any NASA high-risk project — to advance through each test element and expand the operating envelope, methodically and carefully. The basic purpose of the AD-1 project was to investigate the low-speed characteristics of an oblique-wing configuration.

The AD-1 made its first flight late in 1979. The wing was pivoted incrementally over the next 18 months until the full 60-degree angle was reached in mid-1981. The aircraft continued to be flown for another year, obtaining data at various speeds and wing-pivot angles until the final flight in August 1982.

The final flight of the AD-1 did not occur at Dryden, however, but at the Experimental Aircraft Association's (EAA) annual exhibition at Oshkosh, Wisconsin, where it was flown eight times to demonstrate its unique configuration.

Following the flight research, Jones still considered the oblique wing as a viable lift concept for large transoceanic or transcontinental transports. This particular low-speed, low-cost research vehicle, however, exhibited aeroelastic and pitch-roll-coupling effects that contributed to poor handling qualities at sweep angles above 45 degrees. The fiberglass structure limited wing stiffness that would have improved the aircraft's handling qualities, as an improved (and thus more expensive) control system would also have done.

 
NASA AD-1 on display at the Hiller Aviation Museum

Thus, although the AD-1 structure allowed completion of the program's technical objectives, there was still a need for a transonic oblique-wing research aircraft to assess the effects of compressibility, evaluate a more representative structure, and analyze flight performance at transonic speeds (those on either side of the speed of sound).

After completion of the test program, the AD-1 was retired and is now on exhibit in the Hiller Aviation Museum in San Carlos, California.[2]

Specifications

Data from Linehan 2011[3]

General characteristics

  • Crew: 1 (pilot)
  • Length: 38 ft 10 in (11.83 m)
  • Wingspan: 32 ft 4 in (9.85 m) unswept
  • Swept wingspan: 16 ft 2 in (4.93 m) swept 60° sweep angle
  • Height: 6 ft 9 in (2.06 m)
  • Wing area: 93 sq ft (8.6 m2)
  • Airfoil: NACA 3612-02, 40[4]
  • Empty weight: 1,450 lb (658 kg)
  • Gross weight: 2,145 lb (973 kg)
  • Fuel capacity: 80 US gallons (300 L)
  • Powerplant: 2 × Microturbo TRS 18 turbojets, 220 lbf (0.98 kN) thrust each

Performance

  • Maximum speed: 200 mph (320 km/h, 170 kn)
  • Service ceiling: 12,000 ft (3,700 m)

See also

Aircraft of comparable role, configuration, and era

Related lists

References

Citations

  This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

  1. ^ www.obliqueflyingwing.com
  2. ^ (PDF). www.hiller.org. Archived from the original (PDF) on October 25, 2006. Retrieved October 27, 2006.
  3. ^ Linehan 2011, p.59.
  4. ^ Lednicer, David (September 15, 2010). . Urbana, IL: University of Illinois at Urbana-Champaign. Archived from the original on April 20, 2010. Retrieved October 21, 2011.

Bibliography

  • AD-1 Construction Completed, Dryden X-Press, February 23, 1979, p. 2.
  • Robert E. Curry and Alex G. Sim, In-Flight Total Forces, Moments, and Static Aeroelastic Characteristics of an Oblique-Wing Research Airplane (Edwards, CA: NASA TP-2224, 1984)
  • Robert E. Curry and Alexander G. Sim, The Unique Aerodynamic Characteristics of the AD-1 Oblique-Wing Research Airplane, AIAA paper 82-1329 presented at the AIAA 9th Atmospheric Flight Mechanics Conference, Aug. 9–11, 1982, San Diego, CA
  • Flight logs for the AD-1 in the NASA Dryden Historical Reference Collection.
  • Thomas C. McMurtry, A. G. Sim, and W. H. Andrews, AD-1 Oblique Wing Aircraft Program, AIAA paper 81-2354 presented at the AIAA/SETP/SFTE/ASE/ITEA/IEEE 1st Flight Testing Conference, Nov. 11–13, 1981, Las Vegas, NV.
  • Alex G. Sim and Robert E. Curry, Flight Characteristics of the AD-1 Oblique-Wing Research Airplane, (Edwards, CA: NASA TP-2223, 1985)
  • Alex G. Sim and Robert E. Curry, Flight-Determined Aerodynamic Derivatives of the AD-1 Oblique-Wing Research Aircraft (Edwards, CA: NASA TP-2222, 1984)
  • Linehan, Dan (2011). Burt Rutan's Race to Space: The Magician of Mojave and His Flying Innovations. Minneapolis, MN: Zenith Press. ISBN 978-0-7603-3815-5. Retrieved October 21, 2011.
  • Taylor, John W. R. Jane's All The World's Aircraft 1980-81. London:Jane's Publishing, 1980. ISBN 0-7106-0705-9.

External links

    nasa, both, aircraft, associated, flight, test, program, conducted, between, 1979, 1982, nasa, dryden, flight, research, center, edwards, california, which, successfully, demonstrated, aircraft, wing, that, could, pivoted, obliquely, from, zero, degrees, durin. The NASA AD 1 was both an aircraft and an associated flight test program conducted between 1979 and 1982 at the NASA Dryden Flight Research Center Edwards California which successfully demonstrated an aircraft wing that could be pivoted obliquely from zero to 60 degrees during flight AD 1The AD 1 with its wing at a moderate angleRole Experimental aircraftNational origin United StatesManufacturer Ames Industrial Co Designer Burt RutanFirst flight December 21 1979Retired August 1982Primary user NASANumber built 1The unique oblique wing was demonstrated on a small subsonic jet powered research aircraft called the AD 1 Ames Dryden 1 The aircraft was flown 79 times during the research program which evaluated the basic pivot wing concept and gathered information on handling qualities and aerodynamics at various speeds and degrees of pivot Contents 1 Project background 2 Aircraft 3 Flight research 4 Specifications 5 See also 6 References 6 1 Citations 6 2 Bibliography 7 External linksProject background Edit The NASA Oblique Wing Research Aircraft the predecessor to the AD 1 The first known oblique wing design was the Blohm amp Voss P 202 proposed by Richard Vogt in 1942 1 The oblique wing concept was later promoted by Robert T Jones an aeronautical engineer at NASA s Ames Research Center Moffett Field California Analytical and wind tunnel studies Jones initiated at Ames indicated that a transport size oblique wing aircraft flying at speeds up to Mach 1 4 would have substantially better aerodynamic performance than aircraft with more conventional wings At high speeds both subsonic and supersonic the wing would be pivoted at up to 60 degrees to the aircraft s fuselage for better high speed performance The studies showed these angles would decrease aerodynamic drag permitting increased speed and longer range with the same fuel expenditure At lower speeds during takeoffs and landings the wing would be perpendicular to the fuselage like a conventional wing to provide maximum lift and control qualities As the aircraft gained speed the wing would be pivoted to increase the oblique angle thereby reducing the drag and decreasing fuel consumption The wing could only be swept in one direction with the right wingtip moving forward citation needed Aircraft Edit The AD 1 and pilot Richard E GrayThe AD 1 aircraft was delivered to Dryden in February 1979 The Ames Industrial Co Bohemia New York constructed it under a US 240 000 fixed price contract NASA specified the overall vehicle design using a geometric configuration studied by Boeing Commercial Airplanes Seattle Washington The Rutan Aircraft Factory Mojave California provided the detailed design and load analysis for the intentionally low speed low cost aircraft there the aircraft was known internally as the Model 35 The low speed and cost of course limited the complexity of the vehicle and the scope of its technical objectives Piloting the aircraft on its first flight December 21 1979 was NASA research pilot Thomas C McMurtry who was also the pilot on the final flight August 7 1982 Another well known test pilot involved in the project was Pete Knight The AD 1 was powered by two small Microturbo TRS18 046 turbojet engines each producing 220 pounds force 0 98 kN of static thrust at sea level These were essentially the same engines used in the BD 5J The aircraft was limited for reasons of safety to a speed of about 170 mph 270 km h The AD 1 was 38 8 feet 11 8 m in length and had a wingspan of 32 3 feet 9 8 m unswept It was constructed of plastic reinforced with fiberglass in a sandwich with the skin separated by a rigid foam core It had a gross weight of 2 145 pounds 973 kg and an empty weight of 1 450 pounds 660 kg A fixed tricycle landing gear mounted close to the fuselage to lessen aerodynamic drag gave the aircraft a very squatty appearance on the ground It was only 6 75 feet 2 06 m high The wing was pivoted by an electrically driven gear mechanism located inside the fuselage just forward of the engines Flight research Edit Overhead viewThe research program to validate the oblique wing concept was typical of any NASA high risk project to advance through each test element and expand the operating envelope methodically and carefully The basic purpose of the AD 1 project was to investigate the low speed characteristics of an oblique wing configuration The AD 1 made its first flight late in 1979 The wing was pivoted incrementally over the next 18 months until the full 60 degree angle was reached in mid 1981 The aircraft continued to be flown for another year obtaining data at various speeds and wing pivot angles until the final flight in August 1982 The final flight of the AD 1 did not occur at Dryden however but at the Experimental Aircraft Association s EAA annual exhibition at Oshkosh Wisconsin where it was flown eight times to demonstrate its unique configuration Following the flight research Jones still considered the oblique wing as a viable lift concept for large transoceanic or transcontinental transports This particular low speed low cost research vehicle however exhibited aeroelastic and pitch roll coupling effects that contributed to poor handling qualities at sweep angles above 45 degrees The fiberglass structure limited wing stiffness that would have improved the aircraft s handling qualities as an improved and thus more expensive control system would also have done NASA AD 1 on display at the Hiller Aviation MuseumThus although the AD 1 structure allowed completion of the program s technical objectives there was still a need for a transonic oblique wing research aircraft to assess the effects of compressibility evaluate a more representative structure and analyze flight performance at transonic speeds those on either side of the speed of sound After completion of the test program the AD 1 was retired and is now on exhibit in the Hiller Aviation Museum in San Carlos California 2 Specifications EditData from Linehan 2011 3 General characteristicsCrew 1 pilot Length 38 ft 10 in 11 83 m Wingspan 32 ft 4 in 9 85 m unswept Swept wingspan 16 ft 2 in 4 93 m swept 60 sweep angle Height 6 ft 9 in 2 06 m Wing area 93 sq ft 8 6 m2 Airfoil NACA 3612 02 40 4 Empty weight 1 450 lb 658 kg Gross weight 2 145 lb 973 kg Fuel capacity 80 US gallons 300 L Powerplant 2 Microturbo TRS 18 turbojets 220 lbf 0 98 kN thrust eachPerformance Maximum speed 200 mph 320 km h 170 kn Service ceiling 12 000 ft 3 700 m See also EditAsymmetrical aircraftAircraft of comparable role configuration and era Northrop Grumman Switchblade DSI NASA Oblique Wing RPVRelated lists List of NASA aircraft List of experimental aircraftReferences EditCitations Edit This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration A Summary Of A Half Century of Oblique Wing Research www obliqueflyingwing com Hiller Aviation Museum Briefing PDF www hiller org Archived from the original PDF on October 25 2006 Retrieved October 27 2006 Linehan 2011 p 59 Lednicer David September 15 2010 The Incomplete Guide to Airfoil Usage Urbana IL University of Illinois at Urbana Champaign Archived from the original on April 20 2010 Retrieved October 21 2011 Bibliography Edit AD 1 Construction Completed Dryden X Press February 23 1979 p 2 Robert E Curry and Alex G Sim In Flight Total Forces Moments and Static Aeroelastic Characteristics of an Oblique Wing Research Airplane Edwards CA NASA TP 2224 1984 Robert E Curry and Alexander G Sim The Unique Aerodynamic Characteristics of the AD 1 Oblique Wing Research Airplane AIAA paper 82 1329 presented at the AIAA 9th Atmospheric Flight Mechanics Conference Aug 9 11 1982 San Diego CA Flight logs for the AD 1 in the NASA Dryden Historical Reference Collection Thomas C McMurtry A G Sim and W H Andrews AD 1 Oblique Wing Aircraft Program AIAA paper 81 2354 presented at the AIAA SETP SFTE ASE ITEA IEEE 1st Flight Testing Conference Nov 11 13 1981 Las Vegas NV Alex G Sim and Robert E Curry Flight Characteristics of the AD 1 Oblique Wing Research Airplane Edwards CA NASA TP 2223 1985 Alex G Sim and Robert E Curry Flight Determined Aerodynamic Derivatives of the AD 1 Oblique Wing Research Aircraft Edwards CA NASA TP 2222 1984 Linehan Dan 2011 Burt Rutan s Race to Space The Magician of Mojave and His Flying Innovations Minneapolis MN Zenith Press ISBN 978 0 7603 3815 5 Retrieved October 21 2011 Taylor John W R Jane s All The World s Aircraft 1980 81 London Jane s Publishing 1980 ISBN 0 7106 0705 9 External links Edit Wikimedia Commons has media related to NASA AD 1 NASA Dryden AD 1 Fact Sheet Retrieved from https en wikipedia org w index php title NASA AD 1 amp oldid 1165609814, wikipedia, wiki, book, books, library,

    article

    , read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.