fbpx
Wikipedia

Riemann–Siegel formula

In mathematics, the Riemann–Siegel formula is an asymptotic formula for the error of the approximate functional equation of the Riemann zeta function, an approximation of the zeta function by a sum of two finite Dirichlet series. It was found by Siegel (1932) in unpublished manuscripts of Bernhard Riemann dating from the 1850s. Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably. When used along the critical line, it is often useful to use it in a form where it becomes a formula for the Z function.

If M and N are non-negative integers, then the zeta function is equal to

where

is the factor appearing in the functional equation ζ(s) = γ(1 − s) ζ(1 − s), and

is a contour integral whose contour starts and ends at +∞ and circles the singularities of absolute value at most 2πM. The approximate functional equation gives an estimate for the size of the error term. Siegel (1932)[1] and Edwards (1974) derive the Riemann–Siegel formula from this by applying the method of steepest descent to this integral to give an asymptotic expansion for the error term R(s) as a series of negative powers of Im(s). In applications s is usually on the critical line, and the positive integers M and N are chosen to be about (2πIm(s))1/2. Gabcke (1979) found good bounds for the error of the Riemann–Siegel formula.

Riemann's integral formula edit

Riemann showed that

 

where the contour of integration is a line of slope −1 passing between 0 and 1 (Edwards 1974, 7.9).

He used this to give the following integral formula for the zeta function:

 

References edit

  1. ^ Barkan, Eric; Sklar, David (2018). "On Riemanns Nachlass for Analytic Number Theory: A translation of Siegel's Uber". arXiv:1810.05198 [math.HO].
  • Berry, Michael V. (1995), "The Riemann–Siegel expansion for the zeta function: high orders and remainders", Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 450 (1939): 439–462, doi:10.1098/rspa.1995.0093, ISSN 0962-8444, MR 1349513, Zbl 0842.11030
  • Edwards, H.M. (1974), Riemann's zeta function, Pure and Applied Mathematics, vol. 58, New York-London: Academic Press, ISBN 0-12-232750-0, Zbl 0315.10035
  • Gabcke, Wolfgang (1979), Neue Herleitung und Explizite Restabschätzung der Riemann-Siegel-Formel (in German), Georg-August-Universität Göttingen, hdl:11858/00-1735-0000-0022-6013-8, Zbl 0499.10040
  • Patterson, S.J. (1988), An introduction to the theory of the Riemann zeta-function, Cambridge Studies in Advanced Mathematics, vol. 14, Cambridge: Cambridge University Press, ISBN 0-521-33535-3, Zbl 0641.10029
  • Siegel, C. L. (1932), "Über Riemanns Nachlaß zur analytischen Zahlentheorie", Quellen Studien zur Geschichte der Math. Astron. Und Phys. Abt. B: Studien 2: 45–80, JFM 58.1037.07, Zbl 0004.10501 Reprinted in Gesammelte Abhandlungen, Vol. 1. Berlin: Springer-Verlag, 1966.

External links edit

riemann, siegel, formula, mathematics, asymptotic, formula, error, approximate, functional, equation, riemann, zeta, function, approximation, zeta, function, finite, dirichlet, series, found, siegel, 1932, unpublished, manuscripts, bernhard, riemann, dating, f. In mathematics the Riemann Siegel formula is an asymptotic formula for the error of the approximate functional equation of the Riemann zeta function an approximation of the zeta function by a sum of two finite Dirichlet series It was found by Siegel 1932 in unpublished manuscripts of Bernhard Riemann dating from the 1850s Siegel derived it from the Riemann Siegel integral formula an expression for the zeta function involving contour integrals It is often used to compute values of the Riemann Siegel formula sometimes in combination with the Odlyzko Schonhage algorithm which speeds it up considerably When used along the critical line it is often useful to use it in a form where it becomes a formula for the Z function If M and N are non negative integers then the zeta function is equal to z s n 1N1ns g 1 s n 1M1n1 s R s displaystyle zeta s sum n 1 N frac 1 n s gamma 1 s sum n 1 M frac 1 n 1 s R s where g s p12 sG s2 G 12 1 s displaystyle gamma s pi tfrac 1 2 s frac Gamma left tfrac s 2 right Gamma left tfrac 1 2 1 s right is the factor appearing in the functional equation z s g 1 s z 1 s and R s G 1 s 2pi x s 1e Nxex 1dx displaystyle R s frac Gamma 1 s 2 pi i int frac x s 1 e Nx e x 1 dx is a contour integral whose contour starts and ends at and circles the singularities of absolute value at most 2pM The approximate functional equation gives an estimate for the size of the error term Siegel 1932 1 and Edwards 1974 derive the Riemann Siegel formula from this by applying the method of steepest descent to this integral to give an asymptotic expansion for the error term R s as a series of negative powers of Im s In applications s is usually on the critical line and the positive integers M and N are chosen to be about 2p Im s 1 2 Gabcke 1979 found good bounds for the error of the Riemann Siegel formula Riemann s integral formula editRiemann showed that 0 1e ipu2 2pipuepiu e piudu eipp2 eippeipp e ipp displaystyle int 0 searrow 1 frac e i pi u 2 2 pi ipu e pi iu e pi iu du frac e i pi p 2 e i pi p e i pi p e i pi p nbsp where the contour of integration is a line of slope 1 passing between 0 and 1 Edwards 1974 7 9 He used this to give the following integral formula for the zeta function p s2G s2 z s p s2G s2 0 1x sepix2epix e pixdx p 1 s2G 1 s2 0 1xs 1e pix2epix e pixdx displaystyle pi tfrac s 2 Gamma left tfrac s 2 right zeta s pi tfrac s 2 Gamma left tfrac s 2 right int 0 swarrow 1 frac x s e pi ix 2 e pi ix e pi ix dx pi frac 1 s 2 Gamma left tfrac 1 s 2 right int 0 searrow 1 frac x s 1 e pi ix 2 e pi ix e pi ix dx nbsp References edit Barkan Eric Sklar David 2018 On Riemanns Nachlass for Analytic Number Theory A translation of Siegel s Uber arXiv 1810 05198 math HO Berry Michael V 1995 The Riemann Siegel expansion for the zeta function high orders and remainders Proceedings of the Royal Society of London Series A Mathematical Physical and Engineering Sciences 450 1939 439 462 doi 10 1098 rspa 1995 0093 ISSN 0962 8444 MR 1349513 Zbl 0842 11030 Edwards H M 1974 Riemann s zeta function Pure and Applied Mathematics vol 58 New York London Academic Press ISBN 0 12 232750 0 Zbl 0315 10035 Gabcke Wolfgang 1979 Neue Herleitung und Explizite Restabschatzung der Riemann Siegel Formel in German Georg August Universitat Gottingen hdl 11858 00 1735 0000 0022 6013 8 Zbl 0499 10040 Patterson S J 1988 An introduction to the theory of the Riemann zeta function Cambridge Studies in Advanced Mathematics vol 14 Cambridge Cambridge University Press ISBN 0 521 33535 3 Zbl 0641 10029 Siegel C L 1932 Uber Riemanns Nachlass zur analytischen Zahlentheorie Quellen Studien zur Geschichte der Math Astron Und Phys Abt B Studien 2 45 80 JFM 58 1037 07 Zbl 0004 10501 Reprinted in Gesammelte Abhandlungen Vol 1 Berlin Springer Verlag 1966 External links editGourdon X Numerical evaluation of the Riemann Zeta function Weisstein Eric W Riemann Siegel Formula MathWorld Retrieved from https en wikipedia org w index php title Riemann Siegel formula amp oldid 1197485797, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.