fbpx
Wikipedia

Ricci flow

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow (/ˈri/ REE-chee, Italian: [ˈrittʃi]), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

Several stages of Ricci flow on a 2D manifold.

The Ricci flow, so named for the presence of the Ricci tensor in its definition, was introduced by Richard Hamilton, who used it through the 1980s to prove striking new results in Riemannian geometry. Later extensions of Hamilton's methods by various authors resulted in new applications to geometry, including the resolution of the differentiable sphere conjecture by Simon Brendle and Richard Schoen.

Following Shing-Tung Yau's suggestion that the singularities of solutions of the Ricci flow could identify the topological data predicted by William Thurston's geometrization conjecture, Hamilton produced a number of results in the 1990s which were directed towards the conjecture's resolution. In 2002 and 2003, Grigori Perelman presented a number of fundamental new results about the Ricci flow, including a novel variant of some technical aspects of Hamilton's program. Hamilton and Perelman's works are now widely regarded as forming a proof of the Thurston conjecture, including as a special case the Poincaré conjecture, which had been a well-known open problem in the field of geometric topology since 1904. Their results are considered as a milestone in the fields of geometry and topology.

Mathematical definition

On a smooth manifold M, a smooth Riemannian metric g automatically determines the Ricci tensor Ricg. For each element p of M, by definition gp is a positive-definite inner product on the tangent space TpM at p. If given a one-parameter family of Riemannian metrics gt, one may then consider the derivative /t gt, which then assigns to each particular value of t and p a symmetric bilinear form on TpM. Since the Ricci tensor of a Riemannian metric also assigns to each p a symmetric bilinear form on TpM, the following definition is meaningful.

  • Given a smooth manifold M and an open real interval (a, b), a Ricci flow assigns, to each t in the interval (a,b), a Riemannian metric gt on M such that /t gt = −2 Ricgt.

The Ricci tensor is often thought of as an average value of the sectional curvatures, or as an algebraic trace of the Riemann curvature tensor. However, for the analysis of existence and uniqueness of Ricci flows, it is extremely significant that the Ricci tensor can be defined, in local coordinates, by a formula involving the first and second derivatives of the metric tensor. This makes the Ricci flow into a geometrically-defined partial differential equation. The analysis of the ellipticity of the local coordinate formula provides the foundation for the existence of Ricci flows; see the following section for the corresponding result.

Let k be a nonzero number. Given a Ricci flow gt on an interval (a,b), consider Gt = gkt for t between a/k and b/k. Then /t Gt = −2k RicGt. So, with this very trivial change of parameters, the number −2 appearing in the definition of the Ricci flow could be replaced by any other nonzero number. For this reason, the use of −2 can be regarded as an arbitrary convention, albeit one which essentially every paper and exposition on Ricci flow follows. The only significant difference is that if −2 were replaced by a positive number, then the existence theorem discussed in the following section would become a theorem which produces a Ricci flow that moves backwards (rather than forwards) in parameter values from initial data.

The parameter t is usually called time, although this is only as part of standard informal terminology in the mathematical field of partial differential equations. It is not physically meaningful terminology. In fact, in the standard quantum field theoretic interpretation of the Ricci flow in terms of the renormalization group, the parameter t corresponds to length or energy, rather than time.[1]

Normalized Ricci flow

Suppose that M is a compact smooth manifold, and let gt be a Ricci flow for t in the interval (a, b). Define Ψ:(a, b) → (0, ∞) so that each of the Riemannian metrics Ψ(t)gt has volume 1; this is possible since M is compact. (More generally, it would be possible if each Riemannian metric gt had finite volume.) Then define F:(a, b) → (0, ∞) to be the antiderivative of Ψ which vanishes at a. Since Ψ is positive-valued, F is a bijection onto its image (0, S). Now the Riemannian metrics Gs  =  Ψ(F −1(s))gF −1(s), defined for parameters s ∈ (0, S), satisfy

 
Here R denotes scalar curvature. This is called the normalized Ricci flow equation. Thus, with an explicitly defined change of scale Ψ and a reparametrization of the parameter values, a Ricci flow can be converted into a normalized Ricci flow. The converse also holds, by reversing the above calculations.

The primary reason for considering the normalized Ricci flow is that it allows a convenient statement of the major convergence theorems for Ricci flow. However, it is not essential to do so, and for virtually all purposes it suffices to consider Ricci flow in its standard form. Moreover, the normalized Ricci flow is not generally meaningful on noncompact manifolds.

Existence and uniqueness

Let   be a smooth closed manifold, and let   be any smooth Riemannian metric on  . Making use of the Nash–Moser implicit function theorem, Hamilton (1982) showed the following existence theorem:

  • There exists a positive number   and a Ricci flow   parametrized by   such that   converges to   in the   topology as   decreases to 0.

He showed the following uniqueness theorem:

  • If   and   are two Ricci flows as in the above existence theorem, then   for all  

The existence theorem provides a one-parameter family of smooth Riemannian metrics. In fact, any such one-parameter family also depends smoothly on the parameter. Precisely, this says that relative to any smooth coordinate chart   on  , the function   is smooth for any  .

Dennis DeTurck subsequently gave a proof of the above results which uses the Banach implicit function theorem instead.[2] His work is essentially a simpler Riemannian version of Yvonne Choquet-Bruhat's well-known proof and interpretation of well-posedness for the Einstein equations in Lorentzian geometry.

As a consequence of Hamilton's existence and uniqueness theorem, when given the data  , one may speak unambiguously of the Ricci flow on   with initial data  , and one may select   to take on its maximal possible value, which could be infinite. The principle behind virtually all major applications of Ricci flow, in particular in the proof of the Poincaré conjecture and geometrization conjecture, is that, as   approaches this maximal value, the behavior of the metrics   can reveal and reflect deep information about  .

Convergence theorems

Complete expositions of the following convergence theorems are given in Andrews & Hopper (2011) and Brendle (2010).

Let (M, g0) be a smooth closed Riemannian manifold. Under any of the following three conditions:

  • M is two-dimensional
  • M is three-dimensional and g0 has positive Ricci curvature
  • M has dimension greater than three and the product metric on (M, g0) × ℝ has positive isotropic curvature

the normalized Ricci flow with initial data g0 exists for all positive time and converges smoothly, as t goes to infinity, to a metric of constant curvature.

The three-dimensional result is due to Hamilton (1982). Hamilton's proof, inspired by and loosely modeled upon James Eells and Joseph Sampson's epochal 1964 paper on convergence of the harmonic map heat flow,[3] included many novel features, such as an extension of the maximum principle to the setting of symmetric 2-tensors. His paper (together with that of Eells−Sampson) is among the most widely cited in the field of differential geometry. There is an exposition of his result in Chow, Lu & Ni (2006, Chapter 3).

In terms of the proof, the two-dimensional case is properly viewed as a collection of three different results, one for each of the cases in which the Euler characteristic of M is positive, zero, or negative. As demonstrated by Hamilton (1988), the negative case is handled by the maximum principle, while the zero case is handled by integral estimates; the positive case is more subtle, and Hamilton dealt with the subcase in which g0 has positive curvature by combining a straightforward adaptation of Peter Li and Shing-Tung Yau's gradient estimate to the Ricci flow together with an innovative "entropy estimate". The full positive case was demonstrated by Bennett Chow (1991), in an extension of Hamilton's techniques. Since any Ricci flow on a two-dimensional manifold is confined to a single conformal class, it can be recast as a partial differential equation for a scalar function on the fixed Riemannian manifold (M, g0). As such, the Ricci flow in this setting can also be studied by purely analytic methods; correspondingly, there are alternative non-geometric proofs of the two-dimensional convergence theorem.

The higher-dimensional case has a longer history. Soon after Hamilton's breakthrough result, Gerhard Huisken extended his methods to higher dimensions, showing that if g0 almost has constant positive curvature (in the sense of smallness of certain components of the Ricci decomposition), then the normalized Ricci flow converges smoothly to constant curvature. Hamilton (1986) found a novel formulation of the maximum principle in terms of trapping by convex sets, which led to a general criterion relating convergence of the Ricci flow of positively curved metrics to the existence of "pinching sets" for a certain multidimensional ordinary differential equation. As a consequence, he was able to settle the case in which M is four-dimensional and g0 has positive curvature operator. Twenty years later, Christoph Böhm and Burkhard Wilking found a new algebraic method of constructing "pinching sets," thereby removing the assumption of four-dimensionality from Hamilton's result (Böhm & Wilking 2008). Simon Brendle and Richard Schoen showed that positivity of the isotropic curvature is preserved by the Ricci flow on a closed manifold; by applying Böhm and Wilking's method, they were able to derive a new Ricci flow convergence theorem (Brendle & Schoen 2009). Their convergence theorem included as a special case the resolution of the differentiable sphere theorem, which at the time had been a long-standing conjecture. The convergence theorem given above is due to Brendle (2008), which subsumes the earlier higher-dimensional convergence results of Huisken, Hamilton, Böhm & Wilking, and Brendle & Schoen.

Corollaries

The results in dimensions three and higher show that any smooth closed manifold M which admits a metric g0 of the given type must be a space form of positive curvature. Since these space forms are largely understood by work of Élie Cartan and others, one may draw corollaries such as

  • Suppose that M is a smooth closed 3-dimensional manifold which admits a smooth Riemannian metric of positive Ricci curvature. If M is simply-connected then it must be diffeomorphic to the 3-sphere.

So if one could show directly that any smooth closed simply-connected 3-dimensional manifold admits a smooth Riemannian metric of positive Ricci curvature, then the Poincaré conjecture would immediately follow. However, as matters are understood at present, this result is only known as a (trivial) corollary of the Poincaré conjecture, rather than vice versa.

Possible extensions

Given any n larger than two, there exist many closed n-dimensional smooth manifolds which do not have any smooth Riemannian metrics of constant curvature. So one cannot hope to be able to simply drop the curvature conditions from the above convergence theorems. It could be possible to replace the curvature conditions by some alternatives, but the existence of compact manifolds such as complex projective space, which has a metric of nonnegative curvature operator (the Fubini-Study metric) but no metric of constant curvature, makes it unclear how much these conditions could be pushed. Likewise, the possibility of formulating analogous convergence results for negatively curved Riemannian metrics is complicated by the existence of closed Riemannian manifolds whose curvature is arbitrarily close to constant and yet admit no metrics of constant curvature.[4]

Li–Yau inequalities

Making use of a technique pioneered by Peter Li and Shing-Tung Yau for parabolic differential equations on Riemannian manifolds, Hamilton (1993a) proved the following "Li–Yau inequality."[5]

  • Let   be a smooth manifold, and let   be a solution of the Ricci flow with   such that each   is complete with bounded curvature. Furthermore, suppose that each   has nonnegative curvature operator. Then, for any curve   with  , one has
     

Perelman (2002) showed the following alternative Li–Yau inequality.

  • Let   be a smooth closed  -manifold, and let   be a solution of the Ricci flow. Consider the backwards heat equation for  -forms, i.e.  ; given   and  , consider the particular solution which, upon integration, converges weakly to the Dirac delta measure as   increases to  . Then, for any curve   with  , one has
     
    where  .

Both of these remarkable inequalities are of profound importance for the proof of the Poincaré conjecture and geometrization conjecture. The terms on the right hand side of Perelman's Li–Yau inequality motivates the definition of his "reduced length" functional, the analysis of which leads to his "noncollapsing theorem." The noncollapsing theorem allows application of Hamilton's compactness theorem (Hamilton 1995) to construct "singularity models," which are Ricci flows on new three-dimensional manifolds. Owing to the Hamilton–Ivey estimate, these new Ricci flows have nonnegative curvature. Hamilton's Li–Yau inequality can then be applied to see that the scalar curvature is, at each point, a nondecreasing (nonnegative) function of time. This is a powerful result that allows many further arguments to go through. In the end, Perelman shows that any of his singularity models is asymptotically like a complete gradient shrinking Ricci soliton, which are completely classified; see the previous section.

See Chow, Lu & Ni (2006, Chapters 10 and 11) for details on Hamilton's Li–Yau inequality; the books Chow et al. (2008) and Müller (2006) contain expositions of both inequalities above.

Examples

Constant-curvature and Einstein metrics

Let   be a Riemannian manifold which is Einstein, meaning that there is a number   such that  . Then   is a Ricci flow with  , since then

 

If   is closed, then according to Hamilton's uniqueness theorem above, this is the only Ricci flow with initial data  . One sees, in particular, that:

  • if   is positive, then the Ricci flow "contracts"   since the scale factor   is less than 1 for positive  ; furthermore, one sees that   can only be less than  , in order that   is a Riemannian metric. This is the simplest examples of a "finite-time singularity."
  • if   is zero, which is synonymous with   being Ricci-flat, then   is independent of time, and so the maximal interval of existence is the entire real line.
  • if   is negative, then the Ricci flow "expands"   since the scale factor   is greater than 1 for all positive  ; furthermore one sees that   can be taken arbitrarily large. One says that the Ricci flow, for this initial metric, is "immortal."

In each case, since the Riemannian metrics assigned to different values of   differ only by a constant scale factor, one can see that the normalized Ricci flow   exists for all time and is constant in  ; in particular, it converges smoothly (to its constant value) as  .

The Einstein condition has as a special case that of constant curvature; hence the particular examples of the sphere (with its standard metric) and hyperbolic space appear as special cases of the above.

Ricci solitons

Ricci solitons are Ricci flows that may change their size but not their shape up to diffeomorphisms.

  • Cylinders Sk × Rl (for k ≥ 2) shrink self similarly under the Ricci flow up to diffeomorphisms
  • A significant 2-dimensional example is the cigar soliton, which is given by the metric (dx2 + dy2)/(e4t + x2 + y2) on the Euclidean plane. Although this metric shrinks under the Ricci flow, its geometry remains the same. Such solutions are called steady Ricci solitons.
  • An example of a 3-dimensional steady Ricci soliton is the Bryant soliton, which is rotationally symmetric, has positive curvature, and is obtained by solving a system of ordinary differential equations. A similar construction works in arbitrary dimension.
  • There exist numerous families of Kähler manifolds, invariant under a U(n) action and birational to Cn, which are Ricci solitons. These examples were constructed by Cao and Feldman-Ilmanen-Knopf. (Chow-Knopf 2004)
  • A 4-dimensional example exhibiting only torus symmetry was recently discovered by Bamler-Cifarelli-Conlon-Deruelle.


A gradient shrinking Ricci soliton consists of a smooth Riemannian manifold (M,g) and f ∈ C(M) such that

 

One of the major achievements of Perelman (2002) was to show that, if M is a closed three-dimensional smooth manifold, then finite-time singularities of the Ricci flow on M are modeled on complete gradient shrinking Ricci solitons (possibly on underlying manifolds distinct from M). In 2008, Huai-Dong Cao, Bing-Long Chen, and Xi-Ping Zhu completed the classification of these solitons, showing:

  • Suppose (M,g,f) is a complete gradient shrinking Ricci soliton with dim(M) = 3. If M is simply-connected then the Riemannian manifold (M,g) is isometric to  ,  , or  , each with their standard Riemannian metrics. This was originally shown by Perelman (2003a) with some extra conditional assumptions. Note that if M is not simply-connected, then one may consider the universal cover   and then the above theorem applies to  

There is not yet a good understanding of gradient shrinking Ricci solitons in any higher dimensions.

Relationship to uniformization and geometrization

Hamilton's first work on Ricci flow was published at the same time as William Thurston's geometrization conjecture, which concerns the topological classification of three-dimensional smooth manifolds.[6] Hamilton's idea was to define a kind of nonlinear diffusion equation which would tend to smooth out irregularities in the metric. Suitable canonical forms had already been identified by Thurston; the possibilities, called Thurston model geometries, include the three-sphere S3, three-dimensional Euclidean space E3, three-dimensional hyperbolic space H3, which are homogeneous and isotropic, and five slightly more exotic Riemannian manifolds, which are homogeneous but not isotropic. (This list is closely related to, but not identical with, the Bianchi classification of the three-dimensional real Lie algebras into nine classes.)

Hamilton succeeded in proving that any smooth closed three-manifold which admits a metric of positive Ricci curvature also admits a unique Thurston geometry, namely a spherical metric, which does indeed act like an attracting fixed point under the Ricci flow, renormalized to preserve volume. (Under the unrenormalized Ricci flow, the manifold collapses to a point in finite time.) However, this doesn't prove the full geometrization conjecture, because of the restrictive assumption on curvature.

Indeed, a triumph of nineteenth-century geometry was the proof of the uniformization theorem, the analogous topological classification of smooth two-manifolds, where Hamilton showed that the Ricci flow does indeed evolve a negatively curved two-manifold into a two-dimensional multi-holed torus which is locally isometric to the hyperbolic plane. This topic is closely related to important topics in analysis, number theory, dynamical systems, mathematical physics, and even cosmology.

Note that the term "uniformization" suggests a kind of smoothing away of irregularities in the geometry, while the term "geometrization" suggests placing a geometry on a smooth manifold. Geometry is being used here in a precise manner akin to Klein's notion of geometry (see Geometrization conjecture for further details). In particular, the result of geometrization may be a geometry that is not isotropic. In most cases including the cases of constant curvature, the geometry is unique. An important theme in this area is the interplay between real and complex formulations. In particular, many discussions of uniformization speak of complex curves rather than real two-manifolds.

Singularities

Hamilton showed that a compact Riemannian manifold always admits a short-time Ricci flow solution. Later Shi generalized the short-time existence result to complete manifolds of bounded curvature.[7] In general, however, due to the highly non-linear nature of the Ricci flow equation, singularities form in finite time. These singularities are curvature singularities, which means that as one approaches the singular time the norm of the curvature tensor   blows up to infinity in the region of the singularity. A fundamental problem in Ricci flow is to understand all the possible geometries of singularities. When successful, this can lead to insights into the topology of manifolds. For instance, analyzing the geometry of singular regions that may develop in 3d Ricci flow, is the crucial ingredient in Perelman's proof the Poincare and Geometrization Conjectures.

Blow-up limits of singularities

To study the formation of singularities it is useful, as in the study of other non-linear differential equations, to consider blow-ups limits. Intuitively speaking, one zooms into the singular region of the Ricci flow by rescaling time and space. Under certain assumptions, the zoomed in flow tends to a limiting Ricci flow  , called a singularity model. Singularity models are ancient Ricci flows, i.e. they can be extended infinitely into the past. Understanding the possible singularity models in Ricci flow is an active research endeavor.

Below, we sketch the blow-up procedure in more detail: Let   be a Ricci flow that develops a singularity as  . Let   be a sequence of points in spacetime such that

 

as  . Then one considers the parabolically rescaled metrics

 

Due to the symmetry of the Ricci flow equation under parabolic dilations, the metrics   are also solutions to the Ricci flow equation. In the case that

 

i.e. up to time   the maximum of the curvature is attained at  , then the pointed sequence of Ricci flows   subsequentially converges smoothly to a limiting ancient Ricci flow  . Note that in general   is not diffeomorphic to  .

Type I and Type II singularities

Hamilton distinguishes between Type I and Type II singularities in Ricci flow. In particular, one says a Ricci flow  , encountering a singularity a time   is of Type I if

 .

Otherwise the singularity is of Type II. It is known that the blow-up limits of Type I singularities are gradient shrinking Ricci solitons.[8] In the Type II case it is an open question whether the singularity model must be a steady Ricci soliton—so far all known examples are.

Singularities in 3d Ricci flow

In 3d the possible blow-up limits of Ricci flow singularities are well-understood. By Hamilton, Perelman and recent[when?] work by Brendle, blowing up at points of maximum curvature leads to one of the following three singularity models:

  • The shrinking round spherical space form  
  • The shrinking round cylinder  
  • The Bryant soliton

The first two singularity models arise from Type I singularities, whereas the last one arises from a Type II singularity.

Singularities in 4d Ricci flow

In four dimensions very little is known about the possible singularities, other than that the possibilities are far more numerous than in three dimensions. To date the following singularity models are known

  •  
  •  
  • The 4d Bryant soliton
  • Compact Einstein manifold of positive scalar curvature
  • Compact gradient Kahler–Ricci shrinking soliton
  • The FIK shrinker [9]
  • The BCCD shrinker [10]

Note that the first three examples are generalizations of 3d singularity models. The FIK shrinker models the collapse of an embedded sphere with self-intersection number −1.

Relation to diffusion

To see why the evolution equation defining the Ricci flow is indeed a kind of nonlinear diffusion equation, we can consider the special case of (real) two-manifolds in more detail. Any metric tensor on a two-manifold can be written with respect to an exponential isothermal coordinate chart in the form

 

(These coordinates provide an example of a conformal coordinate chart, because angles, but not distances, are correctly represented.)

The easiest way to compute the Ricci tensor and Laplace-Beltrami operator for our Riemannian two-manifold is to use the differential forms method of Élie Cartan. Take the coframe field

 

so that metric tensor becomes

 

Next, given an arbitrary smooth function  , compute the exterior derivative

 

Take the Hodge dual

 

Take another exterior derivative

 

(where we used the anti-commutative property of the exterior product). That is,

 

Taking another Hodge dual gives

 

which gives the desired expression for the Laplace/Beltrami operator

 

To compute the curvature tensor, we take the exterior derivative of the covector fields making up our coframe:

 
 

From these expressions, we can read off the only independent Spin connection one-form

 

where we have taken advantage of the anti-symmetric property of the connection ( ). Take another exterior derivative

 

This gives the curvature two-form

 

from which we can read off the only linearly independent component of the Riemann tensor using

 

Namely

 

from which the only nonzero components of the Ricci tensor are

 

From this, we find components with respect to the coordinate cobasis, namely

 

But the metric tensor is also diagonal, with

 

and after some elementary manipulation, we obtain an elegant expression for the Ricci flow:

 

This is manifestly analogous to the best known of all diffusion equations, the heat equation

 

where now   is the usual Laplacian on the Euclidean plane. The reader may object that the heat equation is of course a linear partial differential equation—where is the promised nonlinearity in the p.d.e. defining the Ricci flow?

The answer is that nonlinearity enters because the Laplace-Beltrami operator depends upon the same function p which we used to define the metric. But notice that the flat Euclidean plane is given by taking  . So if   is small in magnitude, we can consider it to define small deviations from the geometry of a flat plane, and if we retain only first order terms in computing the exponential, the Ricci flow on our two-dimensional almost flat Riemannian manifold becomes the usual two dimensional heat equation. This computation suggests that, just as (according to the heat equation) an irregular temperature distribution in a hot plate tends to become more homogeneous over time, so too (according to the Ricci flow) an almost flat Riemannian manifold will tend to flatten out the same way that heat can be carried off "to infinity" in an infinite flat plate. But if our hot plate is finite in size, and has no boundary where heat can be carried off, we can expect to homogenize the temperature, but clearly we cannot expect to reduce it to zero. In the same way, we expect that the Ricci flow, applied to a distorted round sphere, will tend to round out the geometry over time, but not to turn it into a flat Euclidean geometry.

Recent developments

The Ricci flow has been intensively studied since 1981. Some recent work has focused on the question of precisely how higher-dimensional Riemannian manifolds evolve under the Ricci flow, and in particular, what types of parametric singularities may form. For instance, a certain class of solutions to the Ricci flow demonstrates that neckpinch singularities will form on an evolving n-dimensional metric Riemannian manifold having a certain topological property (positive Euler characteristic), as the flow approaches some characteristic time  . In certain cases, such neckpinches will produce manifolds called Ricci solitons.

For a 3-dimensional manifold, Perelman showed how to continue past the singularities using surgery on the manifold.

Kähler metrics remain Kähler under Ricci flow, and so Ricci flow has also been studied in this setting, where it is called Kähler–Ricci flow.

Notes

  1. ^ Friedan, D. (1980). "Nonlinear models in 2+ε dimensions". Physical Review Letters (Submitted manuscript). 45 (13): 1057–1060. Bibcode:1980PhRvL..45.1057F. doi:10.1103/PhysRevLett.45.1057.
  2. ^ DeTurck, Dennis M. (1983). "Deforming metrics in the direction of their Ricci tensors". J. Differential Geom. 18 (1): 157–162. doi:10.4310/jdg/1214509286.
  3. ^ Eells, James Jr.; Sampson, J.H. (1964). "Harmonic mappings of Riemannian manifolds". Amer. J. Math. 86 (1): 109–160. doi:10.2307/2373037. JSTOR 2373037.
  4. ^ Gromov, M.; Thurston, W. (1987). "Pinching constants for hyperbolic manifolds". Invent. Math. 89 (1): 1–12. doi:10.1007/BF01404671. S2CID 119850633.
  5. ^ Li, Peter; Yau, Shing-Tung (1986). "On the parabolic kernel of the Schrödinger operator". Acta Math. 156 (3–4): 153–201. doi:10.1007/BF02399203. S2CID 120354778.
  6. ^ Weeks, Jeffrey R. (1985). The Shape of Space: how to visualize surfaces and three-dimensional manifolds. New York: Marcel Dekker. ISBN 978-0-8247-7437-0.. A popular book that explains the background for the Thurston classification program.
  7. ^ Shi, W.-X. (1989). "Deforming the metric on complete Riemannian manifolds". Journal of Differential Geometry. 30: 223–301. doi:10.4310/jdg/1214443292.
  8. ^ Enders, J.; Mueller, R.; Topping, P. (2011). "On Type I Singularities in Ricci flow". Communications in Analysis and Geometry. 19 (5): 905–922. arXiv:1005.1624. doi:10.4310/CAG.2011.v19.n5.a4. S2CID 968534.
  9. ^ Maximo, D. (2014). "On the blow-up of four-dimensional Ricci flow singularities". J. Reine Angew. Math. 2014 (692): 153171. arXiv:1204.5967. doi:10.1515/crelle-2012-0080. S2CID 17651053.
  10. ^ Bamler, R.; Cifarelli, C.; Conlon, R.; Deruelle, A. (2022). "A new complete two-dimensional shrinking gradient Kähler-Ricci soliton". arXiv:2206.10785 [math.DG].

References

Articles for a popular mathematical audience.

  • Anderson, Michael T. (2004). "Geometrization of 3-manifolds via the Ricci flow" (PDF). Notices Amer. Math. Soc. 51 (2): 184–193. MR 2026939.
  • Milnor, John (2003). "Towards the Poincaré Conjecture and the classification of 3-manifolds" (PDF). Notices Amer. Math. Soc. 50 (10): 1226–1233. MR 2009455.
  • Morgan, John W. (2005). "Recent progress on the Poincaré conjecture and the classification of 3-manifolds". Bull. Amer. Math. Soc. (N.S.). 42 (1): 57–78. doi:10.1090/S0273-0979-04-01045-6. MR 2115067.
  • Tao, T. (2008). "Ricci flow" (PDF). In Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.). The Princeton Companion to Mathematics. Princeton University Press. pp. 279–281. ISBN 978-0-691-11880-2.

Research articles.

  • Böhm, Christoph; Wilking, Burkhard (2008). "Manifolds with positive curvature operators are space forms". Ann. of Math. (2). 167 (3): 1079–1097. arXiv:math/0606187. doi:10.4007/annals.2008.167.1079. JSTOR 40345372. MR 2415394. S2CID 15521923.
  • Brendle, Simon (2008). "A general convergence result for the Ricci flow in higher dimensions". Duke Math. J. 145 (3): 585–601. arXiv:0706.1218. doi:10.1215/00127094-2008-059. MR 2462114. S2CID 438716. Zbl 1161.53052.
  • Brendle, Simon; Schoen, Richard (2009). "Manifolds with 1/4-pinched curvature are space forms". J. Amer. Math. Soc. 22 (1): 287–307. arXiv:0705.0766. Bibcode:2009JAMS...22..287B. doi:10.1090/S0894-0347-08-00613-9. JSTOR 40587231. MR 2449060. S2CID 2901565.
  • Cao, Huai-Dong; Xi-Ping Zhu (June 2006). "A Complete Proof of the Poincaré and Geometrization Conjectures — application of the Hamilton-Perelman theory of the Ricci flow" (PDF). Asian Journal of Mathematics. 10 (2). MR 2488948. .
    • Revised version: Huai-Dong Cao; Xi-Ping Zhu (2006). "Hamilton-Perelman's Proof of the Poincaré Conjecture and the Geometrization Conjecture". arXiv:math.DG/0612069.
  • Chow, Bennett (1991). "The Ricci flow on the 2-sphere". J. Differential Geom. 33 (2): 325–334. doi:10.4310/jdg/1214446319. MR 1094458. Zbl 0734.53033.
  • Colding, Tobias H.; Minicozzi, William P., II (2005). "Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman" (PDF). J. Amer. Math. Soc. 18 (3): 561–569. arXiv:math/0308090. doi:10.1090/S0894-0347-05-00486-8. JSTOR 20161247. MR 2138137. S2CID 2810043.
  • Hamilton, Richard S. (1982). "Three-manifolds with positive Ricci curvature". Journal of Differential Geometry. 17 (2): 255–306. doi:10.4310/jdg/1214436922. MR 0664497. Zbl 0504.53034.
  • Hamilton, Richard S. (1986). "Four-manifolds with positive curvature operator". J. Differential Geom. 24 (2): 153–179. doi:10.4310/jdg/1214440433. MR 0862046. Zbl 0628.53042.
  • Hamilton, Richard S. (1988). "The Ricci flow on surfaces". Mathematics and general relativity (Santa Cruz, CA, 1986). Contemp. Math. Vol. 71. Amer. Math. Soc., Providence, RI. pp. 237–262. doi:10.1090/conm/071/954419. MR 0954419.
  • Hamilton, Richard S. (1993a). "The Harnack estimate for the Ricci flow". J. Differential Geom. 37 (1): 225–243. doi:10.4310/jdg/1214453430. MR 1198607. Zbl 0804.53023.
  • Hamilton, Richard S. (1993b). "Eternal solutions to the Ricci flow". J. Differential Geom. 38 (1): 1–11. doi:10.4310/jdg/1214454093. MR 1231700. Zbl 0792.53041.
  • Hamilton, Richard S. (1995a). "A compactness property for solutions of the Ricci flow". Amer. J. Math. 117 (3): 545–572. doi:10.2307/2375080. JSTOR 2375080. MR 1333936.
  • Hamilton, Richard S. (1995b). "The formation of singularities in the Ricci flow". Surveys in differential geometry, Vol. II (Cambridge, MA, 1993). Int. Press, Cambridge, MA. pp. 7–136. doi:10.4310/SDG.1993.v2.n1.a2. MR 1375255.
  • Hamilton, Richard S. (1997). "Four-manifolds with positive isotropic curvature". Comm. Anal. Geom. 5 (1): 1–92. doi:10.4310/CAG.1997.v5.n1.a1. MR 1456308. Zbl 0892.53018.
  • Hamilton, Richard S. (1999). "Non-singular solutions of the Ricci flow on three-manifolds". Comm. Anal. Geom. 7 (4): 695–729. doi:10.4310/CAG.1999.v7.n4.a2. MR 1714939.
  • Bruce Kleiner; John Lott (2008). "Notes on Perelman's papers". Geometry & Topology. 12 (5): 2587–2855. arXiv:math.DG/0605667. doi:10.2140/gt.2008.12.2587. MR 2460872. S2CID 119133773.
  • Perelman, Grisha (2002). "The entropy formula for the Ricci flow and its geometric applications". arXiv:math/0211159.
  • Perelman, Grisha (2003a). "Ricci flow with surgery on three-manifolds". arXiv:math/0303109.
  • Perelman, Grisha (2003b). "Finite extinction time for the solutions to the Ricci flow on certain three-manifolds". arXiv:math/0307245.

Textbooks

  • Andrews, Ben; Hopper, Christopher (2011). The Ricci Flow in Riemannian Geometry: A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem. Lecture Notes in Mathematics. Vol. 2011. Heidelberg: Springer. doi:10.1007/978-3-642-16286-2. ISBN 978-3-642-16285-5.
  • Brendle, Simon (2010). Ricci Flow and the Sphere Theorem. Graduate Studies in Mathematics. Vol. 111. Providence, RI: American Mathematical Society. doi:10.1090/gsm/111. ISBN 978-0-8218-4938-5.
  • Cao, H.D.; Chow, B.; Chu, S.C.; Yau, S.T., eds. (2003). Collected Papers on Ricci Flow. Series in Geometry and Topology. Vol. 37. Somerville, MA: International Press. ISBN 1-57146-110-8.
  • Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei (2007). The Ricci Flow: Techniques and Applications. Part I. Geometric Aspects. Mathematical Surveys and Monographs. Vol. 135. Providence, RI: American Mathematical Society. doi:10.1090/surv/135. ISBN 978-0-8218-3946-1.
  • Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei (2008). The Ricci Flow: Techniques and Applications. Part II. Analytic Aspects. Mathematical Surveys and Monographs. Vol. 144. Providence, RI: American Mathematical Society. doi:10.1090/surv/144. ISBN 978-0-8218-4429-8.
  • Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei (2010). The Ricci Flow: Techniques and Applications. Part III. Geometric-Analytic Aspects. Mathematical Surveys and Monographs. Vol. 163. Providence, RI: American Mathematical Society. doi:10.1090/surv/163. ISBN 978-0-8218-4661-2.
  • Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei (2015). The Ricci Flow: Techniques and Applications. Part IV. Long-Time Solutions and Related Topics. Mathematical Surveys and Monographs. Vol. 206. Providence, RI: American Mathematical Society. doi:10.1090/surv/206. ISBN 978-0-8218-4991-0.
  • Chow, Bennett; Knopf, Dan (2004). The Ricci Flow: An Introduction. Mathematical Surveys and Monographs. Vol. 110. Providence, RI: American Mathematical Society. doi:10.1090/surv/110. ISBN 0-8218-3515-7.
  • Chow, Bennett; Lu, Peng; Ni, Lei (2006). Hamilton's Ricci Flow. Graduate Studies in Mathematics. Vol. 77. Beijing, New York: American Mathematical Society, Providence, RI; Science Press. doi:10.1090/gsm/077. ISBN 978-0-8218-4231-7.
  • Morgan, John W.; Fong, Frederick Tsz-Ho (2010). Ricci Flow and Geometrization of 3-Manifolds. University Lecture Series. Vol. 53. Providence, RI: American Mathematical Society. doi:10.1090/ulect/053. ISBN 978-0-8218-4963-7.
  • Morgan, John; Tian, Gang (2007). Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs. Vol. 3. Providence, RI and Cambridge, MA: American Mathematical Society and Clay Mathematics Institute. ISBN 978-0-8218-4328-4.
  • Müller, Reto (2006). Differential Harnack inequalities and the Ricci flow. EMS Series of Lectures in Mathematics. Zürich: European Mathematical Society (EMS). doi:10.4171/030. hdl:2318/1701023. ISBN 978-3-03719-030-2.
  • Topping, Peter (2006). Lectures on the Ricci Flow. London Mathematical Society Lecture Note Series. Vol. 325. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511721465. ISBN 0-521-68947-3.
  • Zhang, Qi S. (2011). Sobolev Inequalities, Heat Kernels under Ricci Flow, and the Poincaré Conjecture. Boca Raton, FL: CRC Press. ISBN 978-1-4398-3459-6.

External links

ricci, flow, mathematical, fields, differential, geometry, geometric, analysis, chee, italian, ˈrittʃi, sometimes, also, referred, hamilton, certain, partial, differential, equation, riemannian, metric, often, said, analogous, diffusion, heat, heat, equation, . In the mathematical fields of differential geometry and geometric analysis the Ricci flow ˈ r iː tʃ i REE chee Italian ˈrittʃi sometimes also referred to as Hamilton s Ricci flow is a certain partial differential equation for a Riemannian metric It is often said to be analogous to the diffusion of heat and the heat equation due to formal similarities in the mathematical structure of the equation However it is nonlinear and exhibits many phenomena not present in the study of the heat equation Several stages of Ricci flow on a 2D manifold The Ricci flow so named for the presence of the Ricci tensor in its definition was introduced by Richard Hamilton who used it through the 1980s to prove striking new results in Riemannian geometry Later extensions of Hamilton s methods by various authors resulted in new applications to geometry including the resolution of the differentiable sphere conjecture by Simon Brendle and Richard Schoen Following Shing Tung Yau s suggestion that the singularities of solutions of the Ricci flow could identify the topological data predicted by William Thurston s geometrization conjecture Hamilton produced a number of results in the 1990s which were directed towards the conjecture s resolution In 2002 and 2003 Grigori Perelman presented a number of fundamental new results about the Ricci flow including a novel variant of some technical aspects of Hamilton s program Hamilton and Perelman s works are now widely regarded as forming a proof of the Thurston conjecture including as a special case the Poincare conjecture which had been a well known open problem in the field of geometric topology since 1904 Their results are considered as a milestone in the fields of geometry and topology Contents 1 Mathematical definition 1 1 Normalized Ricci flow 2 Existence and uniqueness 3 Convergence theorems 3 1 Corollaries 3 2 Possible extensions 4 Li Yau inequalities 5 Examples 5 1 Constant curvature and Einstein metrics 5 2 Ricci solitons 6 Relationship to uniformization and geometrization 7 Singularities 7 1 Blow up limits of singularities 7 2 Type I and Type II singularities 7 3 Singularities in 3d Ricci flow 7 4 Singularities in 4d Ricci flow 8 Relation to diffusion 9 Recent developments 10 Notes 11 References 12 Textbooks 13 External linksMathematical definition EditOn a smooth manifold M a smooth Riemannian metric g automatically determines the Ricci tensor Ricg For each element p of M by definition gp is a positive definite inner product on the tangent space TpM at p If given a one parameter family of Riemannian metrics gt one may then consider the derivative t gt which then assigns to each particular value of t and p a symmetric bilinear form on TpM Since the Ricci tensor of a Riemannian metric also assigns to each p a symmetric bilinear form on TpM the following definition is meaningful Given a smooth manifold M and an open real interval a b a Ricci flow assigns to each t in the interval a b a Riemannian metric gt on M such that t gt 2 Ricgt The Ricci tensor is often thought of as an average value of the sectional curvatures or as an algebraic trace of the Riemann curvature tensor However for the analysis of existence and uniqueness of Ricci flows it is extremely significant that the Ricci tensor can be defined in local coordinates by a formula involving the first and second derivatives of the metric tensor This makes the Ricci flow into a geometrically defined partial differential equation The analysis of the ellipticity of the local coordinate formula provides the foundation for the existence of Ricci flows see the following section for the corresponding result Let k be a nonzero number Given a Ricci flow gt on an interval a b consider Gt gkt for t between a k and b k Then t Gt 2k RicGt So with this very trivial change of parameters the number 2 appearing in the definition of the Ricci flow could be replaced by any other nonzero number For this reason the use of 2 can be regarded as an arbitrary convention albeit one which essentially every paper and exposition on Ricci flow follows The only significant difference is that if 2 were replaced by a positive number then the existence theorem discussed in the following section would become a theorem which produces a Ricci flow that moves backwards rather than forwards in parameter values from initial data The parameter t is usually called time although this is only as part of standard informal terminology in the mathematical field of partial differential equations It is not physically meaningful terminology In fact in the standard quantum field theoretic interpretation of the Ricci flow in terms of the renormalization group the parameter t corresponds to length or energy rather than time 1 Normalized Ricci flow Edit Suppose that M is a compact smooth manifold and let gt be a Ricci flow for t in the interval a b Define PS a b 0 so that each of the Riemannian metrics PS t gt has volume 1 this is possible since M is compact More generally it would be possible if each Riemannian metric gt had finite volume Then define F a b 0 to be the antiderivative of PS which vanishes at a Since PS is positive valued F is a bijection onto its image 0 S Now the Riemannian metrics Gs PS F 1 s gF 1 s defined for parameters s 0 S satisfy s G s 2 Ric G s 2 n M R G s d m G s M d m G s G s displaystyle frac partial partial s G s 2 operatorname Ric G s frac 2 n frac int M R G s d mu G s int M d mu G s G s Here R denotes scalar curvature This is called the normalized Ricci flow equation Thus with an explicitly defined change of scale PS and a reparametrization of the parameter values a Ricci flow can be converted into a normalized Ricci flow The converse also holds by reversing the above calculations The primary reason for considering the normalized Ricci flow is that it allows a convenient statement of the major convergence theorems for Ricci flow However it is not essential to do so and for virtually all purposes it suffices to consider Ricci flow in its standard form Moreover the normalized Ricci flow is not generally meaningful on noncompact manifolds Existence and uniqueness EditLet M displaystyle M be a smooth closed manifold and let g 0 displaystyle g 0 be any smooth Riemannian metric on M displaystyle M Making use of the Nash Moser implicit function theorem Hamilton 1982 showed the following existence theorem There exists a positive number T displaystyle T and a Ricci flow g t displaystyle g t parametrized by t 0 T displaystyle t in 0 T such that g t displaystyle g t converges to g 0 displaystyle g 0 in the C displaystyle C infty topology as t displaystyle t decreases to 0 He showed the following uniqueness theorem If g t t 0 T displaystyle g t t in 0 T and g t t 0 T displaystyle widetilde g t t in 0 widetilde T are two Ricci flows as in the above existence theorem then g t g t displaystyle g t widetilde g t for all t 0 min T T displaystyle t in 0 min T widetilde T The existence theorem provides a one parameter family of smooth Riemannian metrics In fact any such one parameter family also depends smoothly on the parameter Precisely this says that relative to any smooth coordinate chart U ϕ displaystyle U phi on M displaystyle M the function g i j U 0 T R displaystyle g ij U times 0 T to mathbb R is smooth for any i j 1 n displaystyle i j 1 dots n Dennis DeTurck subsequently gave a proof of the above results which uses the Banach implicit function theorem instead 2 His work is essentially a simpler Riemannian version of Yvonne Choquet Bruhat s well known proof and interpretation of well posedness for the Einstein equations in Lorentzian geometry As a consequence of Hamilton s existence and uniqueness theorem when given the data M g 0 displaystyle M g 0 one may speak unambiguously of the Ricci flow on M displaystyle M with initial data g 0 displaystyle g 0 and one may select T displaystyle T to take on its maximal possible value which could be infinite The principle behind virtually all major applications of Ricci flow in particular in the proof of the Poincare conjecture and geometrization conjecture is that as t displaystyle t approaches this maximal value the behavior of the metrics g t displaystyle g t can reveal and reflect deep information about M displaystyle M Convergence theorems EditComplete expositions of the following convergence theorems are given in Andrews amp Hopper 2011 and Brendle 2010 Let M g0 be a smooth closed Riemannian manifold Under any of the following three conditions M is two dimensional M is three dimensional and g0 has positive Ricci curvature M has dimension greater than three and the product metric on M g0 ℝ has positive isotropic curvaturethe normalized Ricci flow with initial data g0 exists for all positive time and converges smoothly as t goes to infinity to a metric of constant curvature The three dimensional result is due to Hamilton 1982 Hamilton s proof inspired by and loosely modeled upon James Eells and Joseph Sampson s epochal 1964 paper on convergence of the harmonic map heat flow 3 included many novel features such as an extension of the maximum principle to the setting of symmetric 2 tensors His paper together with that of Eells Sampson is among the most widely cited in the field of differential geometry There is an exposition of his result in Chow Lu amp Ni 2006 Chapter 3 In terms of the proof the two dimensional case is properly viewed as a collection of three different results one for each of the cases in which the Euler characteristic of M is positive zero or negative As demonstrated by Hamilton 1988 the negative case is handled by the maximum principle while the zero case is handled by integral estimates the positive case is more subtle and Hamilton dealt with the subcase in which g0 has positive curvature by combining a straightforward adaptation of Peter Li and Shing Tung Yau s gradient estimate to the Ricci flow together with an innovative entropy estimate The full positive case was demonstrated by Bennett Chow 1991 in an extension of Hamilton s techniques Since any Ricci flow on a two dimensional manifold is confined to a single conformal class it can be recast as a partial differential equation for a scalar function on the fixed Riemannian manifold M g0 As such the Ricci flow in this setting can also be studied by purely analytic methods correspondingly there are alternative non geometric proofs of the two dimensional convergence theorem The higher dimensional case has a longer history Soon after Hamilton s breakthrough result Gerhard Huisken extended his methods to higher dimensions showing that if g0 almost has constant positive curvature in the sense of smallness of certain components of the Ricci decomposition then the normalized Ricci flow converges smoothly to constant curvature Hamilton 1986 found a novel formulation of the maximum principle in terms of trapping by convex sets which led to a general criterion relating convergence of the Ricci flow of positively curved metrics to the existence of pinching sets for a certain multidimensional ordinary differential equation As a consequence he was able to settle the case in which M is four dimensional and g0 has positive curvature operator Twenty years later Christoph Bohm and Burkhard Wilking found a new algebraic method of constructing pinching sets thereby removing the assumption of four dimensionality from Hamilton s result Bohm amp Wilking 2008 Simon Brendle and Richard Schoen showed that positivity of the isotropic curvature is preserved by the Ricci flow on a closed manifold by applying Bohm and Wilking s method they were able to derive a new Ricci flow convergence theorem Brendle amp Schoen 2009 Their convergence theorem included as a special case the resolution of the differentiable sphere theorem which at the time had been a long standing conjecture The convergence theorem given above is due to Brendle 2008 which subsumes the earlier higher dimensional convergence results of Huisken Hamilton Bohm amp Wilking and Brendle amp Schoen Corollaries Edit The results in dimensions three and higher show that any smooth closed manifold M which admits a metric g0 of the given type must be a space form of positive curvature Since these space forms are largely understood by work of Elie Cartan and others one may draw corollaries such as Suppose that M is a smooth closed 3 dimensional manifold which admits a smooth Riemannian metric of positive Ricci curvature If M is simply connected then it must be diffeomorphic to the 3 sphere So if one could show directly that any smooth closed simply connected 3 dimensional manifold admits a smooth Riemannian metric of positive Ricci curvature then the Poincare conjecture would immediately follow However as matters are understood at present this result is only known as a trivial corollary of the Poincare conjecture rather than vice versa Possible extensions Edit Given any n larger than two there exist many closed n dimensional smooth manifolds which do not have any smooth Riemannian metrics of constant curvature So one cannot hope to be able to simply drop the curvature conditions from the above convergence theorems It could be possible to replace the curvature conditions by some alternatives but the existence of compact manifolds such as complex projective space which has a metric of nonnegative curvature operator the Fubini Study metric but no metric of constant curvature makes it unclear how much these conditions could be pushed Likewise the possibility of formulating analogous convergence results for negatively curved Riemannian metrics is complicated by the existence of closed Riemannian manifolds whose curvature is arbitrarily close to constant and yet admit no metrics of constant curvature 4 Li Yau inequalities EditMaking use of a technique pioneered by Peter Li and Shing Tung Yau for parabolic differential equations on Riemannian manifolds Hamilton 1993a proved the following Li Yau inequality 5 Let M displaystyle M be a smooth manifold and let g t displaystyle g t be a solution of the Ricci flow with t 0 T displaystyle t in 0 T such that each g t displaystyle g t is complete with bounded curvature Furthermore suppose that each g t displaystyle g t has nonnegative curvature operator Then for any curve g t 1 t 2 M displaystyle gamma t 1 t 2 to M with t 1 t 2 0 T displaystyle t 1 t 2 subset 0 T one has d d t R g t g t R g t g t t 1 2 Ric g t g t g t 0 displaystyle frac d dt big R g t gamma t big frac R g t gamma t t frac 1 2 operatorname Ric g t gamma t gamma t geq 0 Perelman 2002 showed the following alternative Li Yau inequality Let M displaystyle M be a smooth closed n displaystyle n manifold and let g t displaystyle g t be a solution of the Ricci flow Consider the backwards heat equation for n displaystyle n forms i e t w D g t w 0 displaystyle tfrac partial partial t omega Delta g t omega 0 given p M displaystyle p in M and t 0 0 T displaystyle t 0 in 0 T consider the particular solution which upon integration converges weakly to the Dirac delta measure as t displaystyle t increases to t 0 displaystyle t 0 Then for any curve g t 1 t 2 M displaystyle gamma t 1 t 2 to M with t 1 t 2 0 T displaystyle t 1 t 2 subset 0 T one has d d t f g t t f g t t 2 t 0 t R g t g t g t g t 2 2 displaystyle frac d dt big f gamma t t big frac f big gamma t t big 2 t 0 t leq frac R g t gamma t gamma t g t 2 2 where w 4 p t 0 t n 2 e f d m g t displaystyle omega 4 pi t 0 t n 2 e f text d mu g t Both of these remarkable inequalities are of profound importance for the proof of the Poincare conjecture and geometrization conjecture The terms on the right hand side of Perelman s Li Yau inequality motivates the definition of his reduced length functional the analysis of which leads to his noncollapsing theorem The noncollapsing theorem allows application of Hamilton s compactness theorem Hamilton 1995 to construct singularity models which are Ricci flows on new three dimensional manifolds Owing to the Hamilton Ivey estimate these new Ricci flows have nonnegative curvature Hamilton s Li Yau inequality can then be applied to see that the scalar curvature is at each point a nondecreasing nonnegative function of time This is a powerful result that allows many further arguments to go through In the end Perelman shows that any of his singularity models is asymptotically like a complete gradient shrinking Ricci soliton which are completely classified see the previous section See Chow Lu amp Ni 2006 Chapters 10 and 11 for details on Hamilton s Li Yau inequality the books Chow et al 2008 and Muller 2006 contain expositions of both inequalities above Examples EditConstant curvature and Einstein metrics Edit Let M g displaystyle M g be a Riemannian manifold which is Einstein meaning that there is a number l displaystyle lambda such that Ric g l g displaystyle text Ric g lambda g Then g t 1 2 l t g displaystyle g t 1 2 lambda t g is a Ricci flow with g 0 g displaystyle g 0 g since then t g t 2 l g 2 Ric g 2 Ric g t displaystyle frac partial partial t g t 2 lambda g 2 operatorname Ric g 2 operatorname Ric g t If M displaystyle M is closed then according to Hamilton s uniqueness theorem above this is the only Ricci flow with initial data g displaystyle g One sees in particular that if l displaystyle lambda is positive then the Ricci flow contracts g displaystyle g since the scale factor 1 2 l t displaystyle 1 2 lambda t is less than 1 for positive t displaystyle t furthermore one sees that t displaystyle t can only be less than 1 2 l displaystyle 1 2 lambda in order that g t displaystyle g t is a Riemannian metric This is the simplest examples of a finite time singularity if l displaystyle lambda is zero which is synonymous with g displaystyle g being Ricci flat then g t displaystyle g t is independent of time and so the maximal interval of existence is the entire real line if l displaystyle lambda is negative then the Ricci flow expands g displaystyle g since the scale factor 1 2 l t displaystyle 1 2 lambda t is greater than 1 for all positive t displaystyle t furthermore one sees that t displaystyle t can be taken arbitrarily large One says that the Ricci flow for this initial metric is immortal In each case since the Riemannian metrics assigned to different values of t displaystyle t differ only by a constant scale factor one can see that the normalized Ricci flow G s displaystyle G s exists for all time and is constant in s displaystyle s in particular it converges smoothly to its constant value as s displaystyle s to infty The Einstein condition has as a special case that of constant curvature hence the particular examples of the sphere with its standard metric and hyperbolic space appear as special cases of the above Ricci solitons Edit Ricci solitons are Ricci flows that may change their size but not their shape up to diffeomorphisms Cylinders Sk Rl for k 2 shrink self similarly under the Ricci flow up to diffeomorphisms A significant 2 dimensional example is the cigar soliton which is given by the metric dx2 dy2 e4t x2 y2 on the Euclidean plane Although this metric shrinks under the Ricci flow its geometry remains the same Such solutions are called steady Ricci solitons An example of a 3 dimensional steady Ricci soliton is the Bryant soliton which is rotationally symmetric has positive curvature and is obtained by solving a system of ordinary differential equations A similar construction works in arbitrary dimension There exist numerous families of Kahler manifolds invariant under a U n action and birational to Cn which are Ricci solitons These examples were constructed by Cao and Feldman Ilmanen Knopf Chow Knopf 2004 A 4 dimensional example exhibiting only torus symmetry was recently discovered by Bamler Cifarelli Conlon Deruelle A gradient shrinking Ricci soliton consists of a smooth Riemannian manifold M g and f C M such that Ric g Hess g f 1 2 g displaystyle operatorname Ric g operatorname Hess g f frac 1 2 g One of the major achievements of Perelman 2002 was to show that if M is a closed three dimensional smooth manifold then finite time singularities of the Ricci flow on M are modeled on complete gradient shrinking Ricci solitons possibly on underlying manifolds distinct from M In 2008 Huai Dong Cao Bing Long Chen and Xi Ping Zhu completed the classification of these solitons showing Suppose M g f is a complete gradient shrinking Ricci soliton with dim M 3 If M is simply connected then the Riemannian manifold M g is isometric to R 3 displaystyle mathbb R 3 S 3 displaystyle S 3 or S 2 R displaystyle S 2 times mathbb R each with their standard Riemannian metrics This was originally shown by Perelman 2003a with some extra conditional assumptions Note that if M is not simply connected then one may consider the universal cover p M M displaystyle pi M to M and then the above theorem applies to M p g f p displaystyle M pi ast g f circ pi There is not yet a good understanding of gradient shrinking Ricci solitons in any higher dimensions Relationship to uniformization and geometrization EditHamilton s first work on Ricci flow was published at the same time as William Thurston s geometrization conjecture which concerns the topological classification of three dimensional smooth manifolds 6 Hamilton s idea was to define a kind of nonlinear diffusion equation which would tend to smooth out irregularities in the metric Suitable canonical forms had already been identified by Thurston the possibilities called Thurston model geometries include the three sphere S3 three dimensional Euclidean space E3 three dimensional hyperbolic space H3 which are homogeneous and isotropic and five slightly more exotic Riemannian manifolds which are homogeneous but not isotropic This list is closely related to but not identical with the Bianchi classification of the three dimensional real Lie algebras into nine classes Hamilton succeeded in proving that any smooth closed three manifold which admits a metric of positive Ricci curvature also admits a unique Thurston geometry namely a spherical metric which does indeed act like an attracting fixed point under the Ricci flow renormalized to preserve volume Under the unrenormalized Ricci flow the manifold collapses to a point in finite time However this doesn t prove the full geometrization conjecture because of the restrictive assumption on curvature Indeed a triumph of nineteenth century geometry was the proof of the uniformization theorem the analogous topological classification of smooth two manifolds where Hamilton showed that the Ricci flow does indeed evolve a negatively curved two manifold into a two dimensional multi holed torus which is locally isometric to the hyperbolic plane This topic is closely related to important topics in analysis number theory dynamical systems mathematical physics and even cosmology Note that the term uniformization suggests a kind of smoothing away of irregularities in the geometry while the term geometrization suggests placing a geometry on a smooth manifold Geometry is being used here in a precise manner akin to Klein s notion of geometry see Geometrization conjecture for further details In particular the result of geometrization may be a geometry that is not isotropic In most cases including the cases of constant curvature the geometry is unique An important theme in this area is the interplay between real and complex formulations In particular many discussions of uniformization speak of complex curves rather than real two manifolds Singularities EditHamilton showed that a compact Riemannian manifold always admits a short time Ricci flow solution Later Shi generalized the short time existence result to complete manifolds of bounded curvature 7 In general however due to the highly non linear nature of the Ricci flow equation singularities form in finite time These singularities are curvature singularities which means that as one approaches the singular time the norm of the curvature tensor Rm displaystyle operatorname Rm blows up to infinity in the region of the singularity A fundamental problem in Ricci flow is to understand all the possible geometries of singularities When successful this can lead to insights into the topology of manifolds For instance analyzing the geometry of singular regions that may develop in 3d Ricci flow is the crucial ingredient in Perelman s proof the Poincare and Geometrization Conjectures Blow up limits of singularities Edit To study the formation of singularities it is useful as in the study of other non linear differential equations to consider blow ups limits Intuitively speaking one zooms into the singular region of the Ricci flow by rescaling time and space Under certain assumptions the zoomed in flow tends to a limiting Ricci flow M g t t 0 displaystyle M infty g infty t t in infty 0 called a singularity model Singularity models are ancient Ricci flows i e they can be extended infinitely into the past Understanding the possible singularity models in Ricci flow is an active research endeavor Below we sketch the blow up procedure in more detail Let M g t t 0 T displaystyle M g t t in 0 T be a Ricci flow that develops a singularity as t T displaystyle t rightarrow T Let p i t i M 0 T displaystyle p i t i in M times 0 T be a sequence of points in spacetime such that K i Rm g t i p i displaystyle K i left operatorname Rm g t i right p i rightarrow infty as i displaystyle i rightarrow infty Then one considers the parabolically rescaled metrics g i t K i g t i t K i t K i t i 0 displaystyle g i t K i g left t i frac t K i right quad t in K i t i 0 Due to the symmetry of the Ricci flow equation under parabolic dilations the metrics g i t displaystyle g i t are also solutions to the Ricci flow equation In the case that R m K i on M 0 t i displaystyle Rm leq K i text on M times 0 t i i e up to time t i displaystyle t i the maximum of the curvature is attained at p i displaystyle p i then the pointed sequence of Ricci flows M g i t p i displaystyle M g i t p i subsequentially converges smoothly to a limiting ancient Ricci flow M g t p displaystyle M infty g infty t p infty Note that in general M displaystyle M infty is not diffeomorphic to M displaystyle M Type I and Type II singularities Edit Hamilton distinguishes between Type I and Type II singularities in Ricci flow In particular one says a Ricci flow M g t t 0 T displaystyle M g t t in 0 T encountering a singularity a time T displaystyle T is of Type I if sup t lt T T t R m lt displaystyle sup t lt T T t Rm lt infty Otherwise the singularity is of Type II It is known that the blow up limits of Type I singularities are gradient shrinking Ricci solitons 8 In the Type II case it is an open question whether the singularity model must be a steady Ricci soliton so far all known examples are Singularities in 3d Ricci flow Edit In 3d the possible blow up limits of Ricci flow singularities are well understood By Hamilton Perelman and recent when work by Brendle blowing up at points of maximum curvature leads to one of the following three singularity models The shrinking round spherical space form S 3 G displaystyle S 3 Gamma The shrinking round cylinder S 2 R displaystyle S 2 times mathbb R The Bryant solitonThe first two singularity models arise from Type I singularities whereas the last one arises from a Type II singularity Singularities in 4d Ricci flow Edit In four dimensions very little is known about the possible singularities other than that the possibilities are far more numerous than in three dimensions To date the following singularity models are known S 3 R displaystyle S 3 times mathbb R S 2 R 2 displaystyle S 2 times mathbb R 2 The 4d Bryant soliton Compact Einstein manifold of positive scalar curvature Compact gradient Kahler Ricci shrinking soliton The FIK shrinker 9 The BCCD shrinker 10 Note that the first three examples are generalizations of 3d singularity models The FIK shrinker models the collapse of an embedded sphere with self intersection number 1 Relation to diffusion EditTo see why the evolution equation defining the Ricci flow is indeed a kind of nonlinear diffusion equation we can consider the special case of real two manifolds in more detail Any metric tensor on a two manifold can be written with respect to an exponential isothermal coordinate chart in the form d s 2 exp 2 p x y d x 2 d y 2 displaystyle ds 2 exp 2 p x y left dx 2 dy 2 right These coordinates provide an example of a conformal coordinate chart because angles but not distances are correctly represented The easiest way to compute the Ricci tensor and Laplace Beltrami operator for our Riemannian two manifold is to use the differential forms method of Elie Cartan Take the coframe field s 1 exp p d x s 2 exp p d y displaystyle sigma 1 exp p dx sigma 2 exp p dy so that metric tensor becomes s 1 s 1 s 2 s 2 exp 2 p d x d x d y d y displaystyle sigma 1 otimes sigma 1 sigma 2 otimes sigma 2 exp 2p left dx otimes dx dy otimes dy right Next given an arbitrary smooth function h x y displaystyle h x y compute the exterior derivative d h h x d x h y d y exp p h x s 1 exp p h y s 2 displaystyle dh h x dx h y dy exp p h x sigma 1 exp p h y sigma 2 Take the Hodge dual d h exp p h y s 1 exp p h x s 2 h y d x h x d y displaystyle star dh exp p h y sigma 1 exp p h x sigma 2 h y dx h x dy Take another exterior derivative d d h h y y d y d x h x x d x d y h x x h y y d x d y displaystyle d star dh h yy dy wedge dx h xx dx wedge dy left h xx h yy right dx wedge dy where we used the anti commutative property of the exterior product That is d d h exp 2 p h x x h y y s 1 s 2 displaystyle d star dh exp 2p left h xx h yy right sigma 1 wedge sigma 2 Taking another Hodge dual gives D h d d h exp 2 p h x x h y y displaystyle Delta h star d star dh exp 2p left h xx h yy right which gives the desired expression for the Laplace Beltrami operator D exp 2 p x y D x 2 D y 2 displaystyle Delta exp 2 p x y left D x 2 D y 2 right To compute the curvature tensor we take the exterior derivative of the covector fields making up our coframe d s 1 p y exp p d y d x p y d x s 2 w 1 2 s 2 displaystyle d sigma 1 p y exp p dy wedge dx left p y dx right wedge sigma 2 omega 1 2 wedge sigma 2 d s 2 p x exp p d x d y p x d y s 1 w 2 1 s 1 displaystyle d sigma 2 p x exp p dx wedge dy left p x dy right wedge sigma 1 omega 2 1 wedge sigma 1 From these expressions we can read off the only independent Spin connection one form w 1 2 p y d x p x d y displaystyle omega 1 2 p y dx p x dy where we have taken advantage of the anti symmetric property of the connection w 2 1 w 1 2 displaystyle omega 2 1 omega 1 2 Take another exterior derivative d w 1 2 p y y d y d x p x x d x d y p x x p y y d x d y displaystyle d omega 1 2 p yy dy wedge dx p xx dx wedge dy left p xx p yy right dx wedge dy This gives the curvature two form W 1 2 exp 2 p p x x p y y s 1 s 2 D p s 1 s 2 displaystyle Omega 1 2 exp 2p left p xx p yy right sigma 1 wedge sigma 2 Delta p sigma 1 wedge sigma 2 from which we can read off the only linearly independent component of the Riemann tensor using W 1 2 R 1 212 s 1 s 2 displaystyle Omega 1 2 R 1 212 sigma 1 wedge sigma 2 Namely R 1 212 D p displaystyle R 1 212 Delta p from which the only nonzero components of the Ricci tensor are R 22 R 11 D p displaystyle R 22 R 11 Delta p From this we find components with respect to the coordinate cobasis namely R x x R y y p x x p y y displaystyle R xx R yy left p xx p yy right But the metric tensor is also diagonal with g x x g y y exp 2 p displaystyle g xx g yy exp 2p and after some elementary manipulation we obtain an elegant expression for the Ricci flow p t D p displaystyle frac partial p partial t Delta p This is manifestly analogous to the best known of all diffusion equations the heat equation u t D u displaystyle frac partial u partial t Delta u where now D D x 2 D y 2 displaystyle Delta D x 2 D y 2 is the usual Laplacian on the Euclidean plane The reader may object that the heat equation is of course a linear partial differential equation where is the promised nonlinearity in the p d e defining the Ricci flow The answer is that nonlinearity enters because the Laplace Beltrami operator depends upon the same function p which we used to define the metric But notice that the flat Euclidean plane is given by taking p x y 0 displaystyle p x y 0 So if p displaystyle p is small in magnitude we can consider it to define small deviations from the geometry of a flat plane and if we retain only first order terms in computing the exponential the Ricci flow on our two dimensional almost flat Riemannian manifold becomes the usual two dimensional heat equation This computation suggests that just as according to the heat equation an irregular temperature distribution in a hot plate tends to become more homogeneous over time so too according to the Ricci flow an almost flat Riemannian manifold will tend to flatten out the same way that heat can be carried off to infinity in an infinite flat plate But if our hot plate is finite in size and has no boundary where heat can be carried off we can expect to homogenize the temperature but clearly we cannot expect to reduce it to zero In the same way we expect that the Ricci flow applied to a distorted round sphere will tend to round out the geometry over time but not to turn it into a flat Euclidean geometry Recent developments EditThe Ricci flow has been intensively studied since 1981 Some recent work has focused on the question of precisely how higher dimensional Riemannian manifolds evolve under the Ricci flow and in particular what types of parametric singularities may form For instance a certain class of solutions to the Ricci flow demonstrates that neckpinch singularities will form on an evolving n dimensional metric Riemannian manifold having a certain topological property positive Euler characteristic as the flow approaches some characteristic time t 0 displaystyle t 0 In certain cases such neckpinches will produce manifolds called Ricci solitons For a 3 dimensional manifold Perelman showed how to continue past the singularities using surgery on the manifold Kahler metrics remain Kahler under Ricci flow and so Ricci flow has also been studied in this setting where it is called Kahler Ricci flow Notes Edit Friedan D 1980 Nonlinear models in 2 e dimensions Physical Review Letters Submitted manuscript 45 13 1057 1060 Bibcode 1980PhRvL 45 1057F doi 10 1103 PhysRevLett 45 1057 DeTurck Dennis M 1983 Deforming metrics in the direction of their Ricci tensors J Differential Geom 18 1 157 162 doi 10 4310 jdg 1214509286 Eells James Jr Sampson J H 1964 Harmonic mappings of Riemannian manifolds Amer J Math 86 1 109 160 doi 10 2307 2373037 JSTOR 2373037 Gromov M Thurston W 1987 Pinching constants for hyperbolic manifolds Invent Math 89 1 1 12 doi 10 1007 BF01404671 S2CID 119850633 Li Peter Yau Shing Tung 1986 On the parabolic kernel of the Schrodinger operator Acta Math 156 3 4 153 201 doi 10 1007 BF02399203 S2CID 120354778 Weeks Jeffrey R 1985 The Shape of Space how to visualize surfaces and three dimensional manifolds New York Marcel Dekker ISBN 978 0 8247 7437 0 A popular book that explains the background for the Thurston classification program Shi W X 1989 Deforming the metric on complete Riemannian manifolds Journal of Differential Geometry 30 223 301 doi 10 4310 jdg 1214443292 Enders J Mueller R Topping P 2011 On Type I Singularities in Ricci flow Communications in Analysis and Geometry 19 5 905 922 arXiv 1005 1624 doi 10 4310 CAG 2011 v19 n5 a4 S2CID 968534 Maximo D 2014 On the blow up of four dimensional Ricci flow singularities J Reine Angew Math 2014 692 153171 arXiv 1204 5967 doi 10 1515 crelle 2012 0080 S2CID 17651053 Bamler R Cifarelli C Conlon R Deruelle A 2022 A new complete two dimensional shrinking gradient Kahler Ricci soliton arXiv 2206 10785 math DG References EditArticles for a popular mathematical audience Anderson Michael T 2004 Geometrization of 3 manifolds via the Ricci flow PDF Notices Amer Math Soc 51 2 184 193 MR 2026939 Milnor John 2003 Towards the Poincare Conjecture and the classification of 3 manifolds PDF Notices Amer Math Soc 50 10 1226 1233 MR 2009455 Morgan John W 2005 Recent progress on the Poincare conjecture and the classification of 3 manifolds Bull Amer Math Soc N S 42 1 57 78 doi 10 1090 S0273 0979 04 01045 6 MR 2115067 Tao T 2008 Ricci flow PDF In Gowers Timothy Barrow Green June Leader Imre eds The Princeton Companion to Mathematics Princeton University Press pp 279 281 ISBN 978 0 691 11880 2 Research articles Bohm Christoph Wilking Burkhard 2008 Manifolds with positive curvature operators are space forms Ann of Math 2 167 3 1079 1097 arXiv math 0606187 doi 10 4007 annals 2008 167 1079 JSTOR 40345372 MR 2415394 S2CID 15521923 Brendle Simon 2008 A general convergence result for the Ricci flow in higher dimensions Duke Math J 145 3 585 601 arXiv 0706 1218 doi 10 1215 00127094 2008 059 MR 2462114 S2CID 438716 Zbl 1161 53052 Brendle Simon Schoen Richard 2009 Manifolds with 1 4 pinched curvature are space forms J Amer Math Soc 22 1 287 307 arXiv 0705 0766 Bibcode 2009JAMS 22 287B doi 10 1090 S0894 0347 08 00613 9 JSTOR 40587231 MR 2449060 S2CID 2901565 Cao Huai Dong Xi Ping Zhu June 2006 A Complete Proof of the Poincare and Geometrization Conjectures application of the Hamilton Perelman theory of the Ricci flow PDF Asian Journal of Mathematics 10 2 MR 2488948 Erratum Revised version Huai Dong Cao Xi Ping Zhu 2006 Hamilton Perelman s Proof of the Poincare Conjecture and the Geometrization Conjecture arXiv math DG 0612069 Chow Bennett 1991 The Ricci flow on the 2 sphere J Differential Geom 33 2 325 334 doi 10 4310 jdg 1214446319 MR 1094458 Zbl 0734 53033 Colding Tobias H Minicozzi William P II 2005 Estimates for the extinction time for the Ricci flow on certain 3 manifolds and a question of Perelman PDF J Amer Math Soc 18 3 561 569 arXiv math 0308090 doi 10 1090 S0894 0347 05 00486 8 JSTOR 20161247 MR 2138137 S2CID 2810043 Hamilton Richard S 1982 Three manifolds with positive Ricci curvature Journal of Differential Geometry 17 2 255 306 doi 10 4310 jdg 1214436922 MR 0664497 Zbl 0504 53034 Hamilton Richard S 1986 Four manifolds with positive curvature operator J Differential Geom 24 2 153 179 doi 10 4310 jdg 1214440433 MR 0862046 Zbl 0628 53042 Hamilton Richard S 1988 The Ricci flow on surfaces Mathematics and general relativity Santa Cruz CA 1986 Contemp Math Vol 71 Amer Math Soc Providence RI pp 237 262 doi 10 1090 conm 071 954419 MR 0954419 Hamilton Richard S 1993a The Harnack estimate for the Ricci flow J Differential Geom 37 1 225 243 doi 10 4310 jdg 1214453430 MR 1198607 Zbl 0804 53023 Hamilton Richard S 1993b Eternal solutions to the Ricci flow J Differential Geom 38 1 1 11 doi 10 4310 jdg 1214454093 MR 1231700 Zbl 0792 53041 Hamilton Richard S 1995a A compactness property for solutions of the Ricci flow Amer J Math 117 3 545 572 doi 10 2307 2375080 JSTOR 2375080 MR 1333936 Hamilton Richard S 1995b The formation of singularities in the Ricci flow Surveys in differential geometry Vol II Cambridge MA 1993 Int Press Cambridge MA pp 7 136 doi 10 4310 SDG 1993 v2 n1 a2 MR 1375255 Hamilton Richard S 1997 Four manifolds with positive isotropic curvature Comm Anal Geom 5 1 1 92 doi 10 4310 CAG 1997 v5 n1 a1 MR 1456308 Zbl 0892 53018 Hamilton Richard S 1999 Non singular solutions of the Ricci flow on three manifolds Comm Anal Geom 7 4 695 729 doi 10 4310 CAG 1999 v7 n4 a2 MR 1714939 Bruce Kleiner John Lott 2008 Notes on Perelman s papers Geometry amp Topology 12 5 2587 2855 arXiv math DG 0605667 doi 10 2140 gt 2008 12 2587 MR 2460872 S2CID 119133773 Perelman Grisha 2002 The entropy formula for the Ricci flow and its geometric applications arXiv math 0211159 Perelman Grisha 2003a Ricci flow with surgery on three manifolds arXiv math 0303109 Perelman Grisha 2003b Finite extinction time for the solutions to the Ricci flow on certain three manifolds arXiv math 0307245 Textbooks EditAndrews Ben Hopper Christopher 2011 The Ricci Flow in Riemannian Geometry A Complete Proof of the Differentiable 1 4 Pinching Sphere Theorem Lecture Notes in Mathematics Vol 2011 Heidelberg Springer doi 10 1007 978 3 642 16286 2 ISBN 978 3 642 16285 5 Brendle Simon 2010 Ricci Flow and the Sphere Theorem Graduate Studies in Mathematics Vol 111 Providence RI American Mathematical Society doi 10 1090 gsm 111 ISBN 978 0 8218 4938 5 Cao H D Chow B Chu S C Yau S T eds 2003 Collected Papers on Ricci Flow Series in Geometry and Topology Vol 37 Somerville MA International Press ISBN 1 57146 110 8 Chow Bennett Chu Sun Chin Glickenstein David Guenther Christine Isenberg James Ivey Tom Knopf Dan Lu Peng Luo Feng Ni Lei 2007 The Ricci Flow Techniques and Applications Part I Geometric Aspects Mathematical Surveys and Monographs Vol 135 Providence RI American Mathematical Society doi 10 1090 surv 135 ISBN 978 0 8218 3946 1 Chow Bennett Chu Sun Chin Glickenstein David Guenther Christine Isenberg James Ivey Tom Knopf Dan Lu Peng Luo Feng Ni Lei 2008 The Ricci Flow Techniques and Applications Part II Analytic Aspects Mathematical Surveys and Monographs Vol 144 Providence RI American Mathematical Society doi 10 1090 surv 144 ISBN 978 0 8218 4429 8 Chow Bennett Chu Sun Chin Glickenstein David Guenther Christine Isenberg James Ivey Tom Knopf Dan Lu Peng Luo Feng Ni Lei 2010 The Ricci Flow Techniques and Applications Part III Geometric Analytic Aspects Mathematical Surveys and Monographs Vol 163 Providence RI American Mathematical Society doi 10 1090 surv 163 ISBN 978 0 8218 4661 2 Chow Bennett Chu Sun Chin Glickenstein David Guenther Christine Isenberg James Ivey Tom Knopf Dan Lu Peng Luo Feng Ni Lei 2015 The Ricci Flow Techniques and Applications Part IV Long Time Solutions and Related Topics Mathematical Surveys and Monographs Vol 206 Providence RI American Mathematical Society doi 10 1090 surv 206 ISBN 978 0 8218 4991 0 Chow Bennett Knopf Dan 2004 The Ricci Flow An Introduction Mathematical Surveys and Monographs Vol 110 Providence RI American Mathematical Society doi 10 1090 surv 110 ISBN 0 8218 3515 7 Chow Bennett Lu Peng Ni Lei 2006 Hamilton s Ricci Flow Graduate Studies in Mathematics Vol 77 Beijing New York American Mathematical Society Providence RI Science Press doi 10 1090 gsm 077 ISBN 978 0 8218 4231 7 Morgan John W Fong Frederick Tsz Ho 2010 Ricci Flow and Geometrization of 3 Manifolds University Lecture Series Vol 53 Providence RI American Mathematical Society doi 10 1090 ulect 053 ISBN 978 0 8218 4963 7 Morgan John Tian Gang 2007 Ricci Flow and the Poincare Conjecture Clay Mathematics Monographs Vol 3 Providence RI and Cambridge MA American Mathematical Society and Clay Mathematics Institute ISBN 978 0 8218 4328 4 Muller Reto 2006 Differential Harnack inequalities and the Ricci flow EMS Series of Lectures in Mathematics Zurich European Mathematical Society EMS doi 10 4171 030 hdl 2318 1701023 ISBN 978 3 03719 030 2 Topping Peter 2006 Lectures on the Ricci Flow London Mathematical Society Lecture Note Series Vol 325 Cambridge Cambridge University Press doi 10 1017 CBO9780511721465 ISBN 0 521 68947 3 Zhang Qi S 2011 Sobolev Inequalities Heat Kernels under Ricci Flow and the Poincare Conjecture Boca Raton FL CRC Press ISBN 978 1 4398 3459 6 External links EditIsenberg James A Ricci Flow video Brady Haran Archived from the original on 2021 12 12 Retrieved 23 April 2014 Retrieved from https en wikipedia org w index php title Ricci flow amp oldid 1134675259, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.