fbpx
Wikipedia

Relaxor ferroelectric

Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. As of 2015, although they have been studied for over fifty years,[1] the mechanism for this effect is still not completely understood, and is the subject of continuing research.[2][3][4]

Examples of relaxor ferroelectrics include:

  • lead magnesium niobate (PMN) [5][6][7]
  • lead magnesium niobate-lead titanate (PMN-PT) [8]
  • lead lanthanum zirconate titanate (PLZT)[9]
  • lead scandium niobate (PSN) [10]
  • Barium Titanium-Bismuth Zinc Niobium Tantalum (BT-BZNT)[11]
  • Barium Titanium-Barium Strontium Titanium (BT-BST) [12]

Applications edit

Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage.[9] Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range.[11]

References edit

  1. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31. Bibcode:2006JMatS..41...31B. doi:10.1007/s10853-005-5915-7. S2CID 189842194.
  2. ^ Takenaka, H.; Grinberg, I.; Rappe, A. M. (2013). "Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric". Physical Review Letters. 110 (14): 147602. arXiv:1212.0867. Bibcode:2013PhRvL.110n7602T. doi:10.1103/PhysRevLett.110.147602. PMID 25167037. S2CID 9758988.
  3. ^ Ganesh, P.; Cockayne, E.; Ahart, M.; Cohen, R. E.; Burton, B.; Hemley, Russell J.; Ren, Yang; Yang, Wenge; Ye, Z.-G. (2010-04-05). "Origin of diffuse scattering in relaxor ferroelectrics". Physical Review B. 81 (14): 144102. arXiv:0908.2373. Bibcode:2010PhRvB..81n4102G. doi:10.1103/PhysRevB.81.144102. S2CID 119279021.
  4. ^ Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang (2014). "Role of random electric fields in relaxors". Proceedings of the National Academy of Sciences. 111 (5): 1754–1759. arXiv:1405.2306. Bibcode:2014PNAS..111.1754P. doi:10.1073/pnas.1314780111. ISSN 0027-8424. PMC 3918832. PMID 24449912.
  5. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31–52. Bibcode:2006JMatS..41...31B. doi:10.1007/s10853-005-5915-7. S2CID 189842194.
  6. ^ Shipman, Matt (20 February 2018). "Atomic Structure of Ultrasound Material Not What Anyone Expected". NC State News.
  7. ^ Cabral, Matthew J.; Zhang, Shujun; Dickey, Elizabeth C.; LeBeau, James M. (19 February 2018). "Gradient chemical order in the relaxor Pb(MgNb)O". Applied Physics Letters. 112 (8): 082901. Bibcode:2018ApPhL.112h2901C. doi:10.1063/1.5016561.
  8. ^ and, and (September 1988). "Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors". Proceedings., Second International Conference on Properties and Applications of Dielectric Materials. pp. 125–128 vol.1. doi:10.1109/ICPADM.1988.38349. S2CID 137495812.
  9. ^ a b Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun (2014-12-24). "Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness". ACS Applied Materials & Interfaces. 6 (24): 22417–22422. doi:10.1021/am506247w. ISSN 1944-8244. OSTI 1392947. PMID 25405727.
  10. ^ Drnovšek, Silvo; Casar, Goran; Uršič, Hana; Bobnar, Vid (2013-10-01). "Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system". Physica Status Solidi B. 250 (10): 2232–2236. Bibcode:2013PSSBR.250.2232B. doi:10.1002/pssb.201349259. ISSN 1521-3951. S2CID 119554924.
  11. ^ a b Zhao, Peiyao; Wang, Hongxian; Wu, Longwen; Chen, Lingling; Cai, Ziming; Li, Longtu; Wang, Xiaohui (2019). "High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications". Advanced Energy Materials. 9 (17): 1803048. doi:10.1002/aenm.201803048. ISSN 1614-6840. S2CID 107988812.
  12. ^ Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S (2012-10-10). "Relaxor-ferroelectric superlattices: high energy density capacitors". Journal of Physics: Condensed Matter. 24 (44): 445901. Bibcode:2012JPCM...24R5901O. doi:10.1088/0953-8984/24/44/445901. ISSN 0953-8984. PMID 23053172. S2CID 25298142.


relaxor, ferroelectric, relaxor, redirects, here, hair, treatment, relaxer, ferroelectric, materials, that, exhibit, high, electrostriction, 2015, update, although, they, have, been, studied, over, fifty, years, mechanism, this, effect, still, completely, unde. Relaxor redirects here For the hair treatment see Relaxer Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction As of 2015 update although they have been studied for over fifty years 1 the mechanism for this effect is still not completely understood and is the subject of continuing research 2 3 4 Examples of relaxor ferroelectrics include lead magnesium niobate PMN 5 6 7 lead magnesium niobate lead titanate PMN PT 8 lead lanthanum zirconate titanate PLZT 9 lead scandium niobate PSN 10 Barium Titanium Bismuth Zinc Niobium Tantalum BT BZNT 11 Barium Titanium Barium Strontium Titanium BT BST 12 Applications editRelaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants orders of magnitude higher than those of conventional ferroelectric materials Like conventional ferroelectrics Relaxor Ferroelectrics show permanent dipole moment in domains However these domains are on the nano length scale unlike conventional ferroelectrics domains that are generally on the micro length scale and take less energy to align Consequently Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage 9 Furthermore due to their slim hysteresis curve with high saturated polarization and low remnant polarization Relaxor ferroelectrics have high discharge energy density and high discharge rates BT BZNT Multilayer Energy Storage Ceramic Capacitors MLESCC were experimentally determined to have very high efficiency gt 80 and stable thermal properties over a wide temperature range 11 References edit Bokov A A Ye Z G 2006 Recent progress in relaxor ferroelectrics with perovskite structure Journal of Materials Science 41 1 31 Bibcode 2006JMatS 41 31B doi 10 1007 s10853 005 5915 7 S2CID 189842194 Takenaka H Grinberg I Rappe A M 2013 Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric Physical Review Letters 110 14 147602 arXiv 1212 0867 Bibcode 2013PhRvL 110n7602T doi 10 1103 PhysRevLett 110 147602 PMID 25167037 S2CID 9758988 Ganesh P Cockayne E Ahart M Cohen R E Burton B Hemley Russell J Ren Yang Yang Wenge Ye Z G 2010 04 05 Origin of diffuse scattering in relaxor ferroelectrics Physical Review B 81 14 144102 arXiv 0908 2373 Bibcode 2010PhRvB 81n4102G doi 10 1103 PhysRevB 81 144102 S2CID 119279021 Phelan Daniel Stock Christopher Rodriguez Rivera Jose A Chi Songxue Leao Juscelino Long Xifa Xie Yujuan Bokov Alexei A Ye Zuo Guang 2014 Role of random electric fields in relaxors Proceedings of the National Academy of Sciences 111 5 1754 1759 arXiv 1405 2306 Bibcode 2014PNAS 111 1754P doi 10 1073 pnas 1314780111 ISSN 0027 8424 PMC 3918832 PMID 24449912 Bokov A A Ye Z G 2006 Recent progress in relaxor ferroelectrics with perovskite structure Journal of Materials Science 41 1 31 52 Bibcode 2006JMatS 41 31B doi 10 1007 s10853 005 5915 7 S2CID 189842194 Shipman Matt 20 February 2018 Atomic Structure of Ultrasound Material Not What Anyone Expected NC State News Cabral Matthew J Zhang Shujun Dickey Elizabeth C LeBeau James M 19 February 2018 Gradient chemical order in the relaxor Pb MgNb O Applied Physics Letters 112 8 082901 Bibcode 2018ApPhL 112h2901C doi 10 1063 1 5016561 and and September 1988 Lead magnesium niobate relaxor ferroelectric ceramics of low firing for multilayer capacitors Proceedings Second International Conference on Properties and Applications of Dielectric Materials pp 125 128 vol 1 doi 10 1109 ICPADM 1988 38349 S2CID 137495812 a b Brown Emery Ma Chunrui Acharya Jagaran Ma Beihai Wu Judy Li Jun 2014 12 24 Controlling Dielectric and Relaxor Ferroelectric Properties for Energy Storage by Tuning Pb0 92La0 08Zr0 52Ti0 48O3 Film Thickness ACS Applied Materials amp Interfaces 6 24 22417 22422 doi 10 1021 am506247w ISSN 1944 8244 OSTI 1392947 PMID 25405727 Drnovsek Silvo Casar Goran Ursic Hana Bobnar Vid 2013 10 01 Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system Physica Status Solidi B 250 10 2232 2236 Bibcode 2013PSSBR 250 2232B doi 10 1002 pssb 201349259 ISSN 1521 3951 S2CID 119554924 a b Zhao Peiyao Wang Hongxian Wu Longwen Chen Lingling Cai Ziming Li Longtu Wang Xiaohui 2019 High Performance Relaxor Ferroelectric Materials for Energy Storage Applications Advanced Energy Materials 9 17 1803048 doi 10 1002 aenm 201803048 ISSN 1614 6840 S2CID 107988812 Ortega N Kumar A Scott J F Chrisey Douglas B Tomazawa M Kumari Shalini Diestra D G B Katiyar R S 2012 10 10 Relaxor ferroelectric superlattices high energy density capacitors Journal of Physics Condensed Matter 24 44 445901 Bibcode 2012JPCM 24R5901O doi 10 1088 0953 8984 24 44 445901 ISSN 0953 8984 PMID 23053172 S2CID 25298142 nbsp This condensed matter physics related article is a stub You can help Wikipedia by expanding it vte nbsp This electromagnetism related article is a stub You can help Wikipedia by expanding it vte Retrieved from https en wikipedia org w index php title Relaxor ferroelectric amp oldid 1214263596, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.