fbpx
Wikipedia

Polygene

A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance[1]), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance. The term "monozygous" is usually used to refer to a hypothetical gene as it is often difficult to distinguish the effect of an individual gene from the effects of other genes and the environment on a particular phenotype. Advances in statistical methodology and high throughput sequencing are, however, allowing researchers to locate candidate genes for the trait. In the case that such a gene is identified, it is referred to as a quantitative trait locus (QTL). These genes are generally pleiotropic as well. The genes that contribute to type 2 diabetes are thought to be mostly polygenes.[2] In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all organisms living on Earth.[3]

Traits with polygenic determinism correspond to the classical quantitative characters, as opposed to the qualitative characters with monogenic or oligogenic determinism. In essence instead of two options, such as freckles or no freckles, there are many variations, like the color of skin, hair, or even eyes.

Overview Edit

Polygenic locus is any individual locus which is included in the system of genes responsible for the genetic component of variation in a quantitative (polygenic) character. Allelic substitutions contribute to the variance in a specified quantitative character. Polygenic locus may be either a single or complex genetic locus in the conventional sense, i.e., either a single gene or closely linked block of functionally related genes.[4]

In modern sense, the inheritance mode of polygenic patterns is called polygenic inheritance, whose main properties may be summarized as follows:

  1. Most metric and meristic traits are controlled by a number of genetic loci.
  2. Main mode of nonallelic genes interaction in corresponding gene series is addition of mainly small particular allele contributions.
  3. The effects of allelic substitution at each of the segregating genes are usually relatively small and interchangeable which results that identical phenotype may be displayed by a great variety of genotypes.
  4. The phenotypic expression of the polygenic characters is undergoing considerable modification by environmental influence.
  5. Polygenic characters show a continuous rather than discontinuous distribution.
  6. Balanced systems of polygenic inheritance in a population contain a great deal of potential genetic variability in the heterozygous condition and released by small increments through genetic recombination between linked polygenes.[5][6][7][8]

Inheritance Edit

Polygenic inheritance occurs when one characteristic is controlled by two or more genes. Often the genes are large in quantity but small in effect.[9] Examples of human polygenic inheritance are height, skin color, eye color and weight. Polygenes exist in other organisms, as well. Drosophila, for instance, display polygeny with traits such as wing morphology,[10] bristle count[11] and many others.

Trait distribution Edit

The frequency of the phenotypes of these traits generally follows a normal continuous variation distribution pattern. This results from the many possible allelic combinations. When the values are plotted, a bell-shaped "normal" curve is obtained. The mode of the distribution represents the optimal, or fittest, phenotype. The more genes are involved, the smoother the estimated curve, which follows from the Central Limit Theorem. This implies that traits such as height that are both highly heritable and normally distributed are necessarily polygenic. In other words, the fact that human height follows a smooth bell curve implies that there can be no single gene (or even small cluster of genes) that control height under ordinary circumstances. However, in this model all genes must code for alleles with additive effects. This assumption is often unrealistic as many genes display epistasis effects which can have unpredictable effects on the distribution of outcomes, especially when looking at the distribution on a fine scale.[12]

Mapping polygenes Edit

 
Example of a genome-wide scan for QTL of osteoporosis

Traditionally, mapping polygenes requires statistical tools available to help measure the effects of polygenes as well as narrow in on single genes. One of these tools is QTL-mapping. QTL-mapping utilizes a phenomenon known as linkage disequilibrium by comparing known marker genes with correlated phenotypes. Often, researchers will find a large region of DNA, called a locus, that accounts for a significant amount of the variation observed in the measured trait. This locus will usually contain a large number of genes that are responsible. A new form of QTL has been described as expression QTL (eQTL). eQTLs regulate the amount of expressed mRNA, which in turn regulates the amount of protein within the organism.[13]

Another interest of statistical geneticists using QTL mapping is to determine the complexity of the genetic architecture underlying a phenotypic trait. For example, they may be interested in knowing whether a phenotype is shaped by many independent loci, or by a few loci, and do those loci interact. This can provide information on how the phenotype may be evolving.

References Edit

  1. ^ "Polygenic Inheritance, qualitative and quantitative inheritance". The Fact Factor. 2020-03-13. Retrieved 2021-05-03.
  2. ^ Rosenbloom, A L; Joe, J R; Young, R S; Winter, W E (1 February 1999). "Emerging epidemic of type 2 diabetes in youth". Diabetes Care. 22 (2): 345–354. doi:10.2337/diacare.22.2.345. PMID 10333956.
  3. ^ Wade, Nicholas (25 July 2016). "Meet Luca, the Ancestor of All Living Things". New York Times. Retrieved 25 July 2016.
  4. ^ Lerner j. M. (1968). Heredity, evolution and society. San Francisco: Freeman and Comp.
  5. ^ Rieger R. Michaelis A., Green M. M. (1976). Glossary of genetics and cytogenetics: Classical and molecular. Heidelberg - New York: Springer-Verlag. ISBN 978-0-387-07668-3.
  6. ^ Dobzhansky T. (1970). Mankind evolving: The evolution of the human species. New York: Bantam Books. ISBN 978-05526-5390-9.
  7. ^ Hadžiselimović R. (2005). Bioantropologija – Biodiverzitet recentnog čovjeka/Bioanthropology – biodiversity of recent man. Sarajevo: Institut za genetičko inženjerstvo i biotehnologiju (INGEB)/Institute for genetic engineering and biotechnology. ISBN 978-9958-9344-2-1.
  8. ^ Dobzhansky T. (1970). Genetics of the evolutionary process. New York: Columbia. ISBN 978-0-231-02837-0.
  9. ^ Falconer, D. S. & Mackay TFC (1996). Introduction to Genetics. Fourth edition. Addison Wesley Longman, Harlow, Essex, UK.
  10. ^ Zimmerman, Erika; Palsson, Arnar; Gibson, Greg (1 June 2000). "Quantitative Trait Loci Affecting Components of Wing Shape in Drosophila melanogaster". Genetics. 155 (2): 671–683. doi:10.1093/genetics/155.2.671. PMC 1461095. PMID 10835390.
  11. ^ Mackay, Trudy F.C. (December 1995). "The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system". Trends in Genetics. 11 (12): 464–470. doi:10.1016/s0168-9525(00)89154-4. PMID 8533161.
  12. ^ Ricki Lewis (2003), Multifactorial Traits, McGraw-Hill Higher Education
  13. ^ Consoli L, Lefèvre A, Zivy M, de Vienne D, Damerval C (Apr 2002). "QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize". Plant Mol Biol. 48 (5–6): 575–581. doi:10.1023/A:1014840810203. PMID 11999835. S2CID 37085089.

External links Edit

  • (de)Polygenie

polygene, inheritance, polygenes, polygenic, inheritance, diseases, involving, polygenes, polygenic, disease, this, article, technical, most, readers, understand, please, help, improve, make, understandable, experts, without, removing, technical, details, 2022. For inheritance via polygenes see Polygenic inheritance For diseases involving polygenes see Polygenic disease This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details May 2022 Learn how and when to remove this template message A polygene is a member of a group of non epistatic genes that interact additively to influence a phenotypic trait thus contributing to multiple gene inheritance polygenic inheritance multigenic inheritance quantitative inheritance 1 a type of non Mendelian inheritance as opposed to single gene inheritance which is the core notion of Mendelian inheritance The term monozygous is usually used to refer to a hypothetical gene as it is often difficult to distinguish the effect of an individual gene from the effects of other genes and the environment on a particular phenotype Advances in statistical methodology and high throughput sequencing are however allowing researchers to locate candidate genes for the trait In the case that such a gene is identified it is referred to as a quantitative trait locus QTL These genes are generally pleiotropic as well The genes that contribute to type 2 diabetes are thought to be mostly polygenes 2 In July 2016 scientists reported identifying a set of 355 genes from the last universal common ancestor LUCA of all organisms living on Earth 3 Traits with polygenic determinism correspond to the classical quantitative characters as opposed to the qualitative characters with monogenic or oligogenic determinism In essence instead of two options such as freckles or no freckles there are many variations like the color of skin hair or even eyes Contents 1 Overview 2 Inheritance 3 Trait distribution 4 Mapping polygenes 5 References 6 External linksOverview EditPolygenic locus is any individual locus which is included in the system of genes responsible for the genetic component of variation in a quantitative polygenic character Allelic substitutions contribute to the variance in a specified quantitative character Polygenic locus may be either a single or complex genetic locus in the conventional sense i e either a single gene or closely linked block of functionally related genes 4 In modern sense the inheritance mode of polygenic patterns is called polygenic inheritance whose main properties may be summarized as follows Most metric and meristic traits are controlled by a number of genetic loci Main mode of nonallelic genes interaction in corresponding gene series is addition of mainly small particular allele contributions The effects of allelic substitution at each of the segregating genes are usually relatively small and interchangeable which results that identical phenotype may be displayed by a great variety of genotypes The phenotypic expression of the polygenic characters is undergoing considerable modification by environmental influence Polygenic characters show a continuous rather than discontinuous distribution Balanced systems of polygenic inheritance in a population contain a great deal of potential genetic variability in the heterozygous condition and released by small increments through genetic recombination between linked polygenes 5 6 7 8 Inheritance EditPolygenic inheritance occurs when one characteristic is controlled by two or more genes Often the genes are large in quantity but small in effect 9 Examples of human polygenic inheritance are height skin color eye color and weight Polygenes exist in other organisms as well Drosophila for instance display polygeny with traits such as wing morphology 10 bristle count 11 and many others Trait distribution EditThe frequency of the phenotypes of these traits generally follows a normal continuous variation distribution pattern This results from the many possible allelic combinations When the values are plotted a bell shaped normal curve is obtained The mode of the distribution represents the optimal or fittest phenotype The more genes are involved the smoother the estimated curve which follows from the Central Limit Theorem This implies that traits such as height that are both highly heritable and normally distributed are necessarily polygenic In other words the fact that human height follows a smooth bell curve implies that there can be no single gene or even small cluster of genes that control height under ordinary circumstances However in this model all genes must code for alleles with additive effects This assumption is often unrealistic as many genes display epistasis effects which can have unpredictable effects on the distribution of outcomes especially when looking at the distribution on a fine scale 12 Mapping polygenes Edit nbsp Example of a genome wide scan for QTL of osteoporosisTraditionally mapping polygenes requires statistical tools available to help measure the effects of polygenes as well as narrow in on single genes One of these tools is QTL mapping QTL mapping utilizes a phenomenon known as linkage disequilibrium by comparing known marker genes with correlated phenotypes Often researchers will find a large region of DNA called a locus that accounts for a significant amount of the variation observed in the measured trait This locus will usually contain a large number of genes that are responsible A new form of QTL has been described as expression QTL eQTL eQTLs regulate the amount of expressed mRNA which in turn regulates the amount of protein within the organism 13 Another interest of statistical geneticists using QTL mapping is to determine the complexity of the genetic architecture underlying a phenotypic trait For example they may be interested in knowing whether a phenotype is shaped by many independent loci or by a few loci and do those loci interact This can provide information on how the phenotype may be evolving References Edit Polygenic Inheritance qualitative and quantitative inheritance The Fact Factor 2020 03 13 Retrieved 2021 05 03 Rosenbloom A L Joe J R Young R S Winter W E 1 February 1999 Emerging epidemic of type 2 diabetes in youth Diabetes Care 22 2 345 354 doi 10 2337 diacare 22 2 345 PMID 10333956 Wade Nicholas 25 July 2016 Meet Luca the Ancestor of All Living Things New York Times Retrieved 25 July 2016 Lerner j M 1968 Heredity evolution and society San Francisco Freeman and Comp Rieger R Michaelis A Green M M 1976 Glossary of genetics and cytogenetics Classical and molecular Heidelberg New York Springer Verlag ISBN 978 0 387 07668 3 Dobzhansky T 1970 Mankind evolving The evolution of the human species New York Bantam Books ISBN 978 05526 5390 9 Hadziselimovic R 2005 Bioantropologija Biodiverzitet recentnog covjeka Bioanthropology biodiversity of recent man Sarajevo Institut za geneticko inzenjerstvo i biotehnologiju INGEB Institute for genetic engineering and biotechnology ISBN 978 9958 9344 2 1 Dobzhansky T 1970 Genetics of the evolutionary process New York Columbia ISBN 978 0 231 02837 0 Falconer D S amp Mackay TFC 1996 Introduction to Genetics Fourth edition Addison Wesley Longman Harlow Essex UK Zimmerman Erika Palsson Arnar Gibson Greg 1 June 2000 Quantitative Trait Loci Affecting Components of Wing Shape in Drosophila melanogaster Genetics 155 2 671 683 doi 10 1093 genetics 155 2 671 PMC 1461095 PMID 10835390 Mackay Trudy F C December 1995 The genetic basis of quantitative variation numbers of sensory bristles of Drosophila melanogaster as a model system Trends in Genetics 11 12 464 470 doi 10 1016 s0168 9525 00 89154 4 PMID 8533161 Ricki Lewis 2003 Multifactorial Traits McGraw Hill Higher Education Consoli L Lefevre A Zivy M de Vienne D Damerval C Apr 2002 QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize Plant Mol Biol 48 5 6 575 581 doi 10 1023 A 1014840810203 PMID 11999835 S2CID 37085089 External links Edit de Polygenie Retrieved from https en wikipedia org w index php title Polygene amp oldid 1176881100, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.