fbpx
Wikipedia

Polignac's conjecture

In number theory, Polignac's conjecture was made by Alphonse de Polignac in 1849 and states:[1]

For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.[2]

Although the conjecture has not yet been proven or disproven for any given value of n, in 2013 an important breakthrough was made by Yitang Zhang who proved that there are infinitely many prime gaps of size n for some value of n < 70,000,000.[3][4] Later that year, James Maynard announced a related breakthrough which proved that there are infinitely many prime gaps of some size less than or equal to 600.[5] As of April 14, 2014, one year after Zhang's announcement, according to the Polymath project wiki, n has been reduced to 246.[6] Further, assuming the Elliott–Halberstam conjecture and its generalized form, the Polymath project wiki states that n has been reduced to 12 and 6, respectively.[7]

For n = 2, it is the twin prime conjecture. For n = 4, it says there are infinitely many cousin primes (pp + 4). For n = 6, it says there are infinitely many sexy primes (pp + 6) with no prime between p and p + 6.

Dickson's conjecture generalizes Polignac's conjecture to cover all prime constellations.

Conjectured density edit

Let   for even n be the number of prime gaps of size n below x.

The first Hardy–Littlewood conjecture says the asymptotic density is of form

 

where Cn is a function of n, and   means that the quotient of two expressions tends to 1 as x approaches infinity.[8]

C2 is the twin prime constant

 

where the product extends over all prime numbers p ≥ 3.

Cn is C2 multiplied by a number which depends on the odd prime factors q of n:

 

For example, C4 = C2 and C6 = 2C2. Twin primes have the same conjectured density as cousin primes, and half that of sexy primes.

Note that each odd prime factor q of n increases the conjectured density compared to twin primes by a factor of  . A heuristic argument follows. It relies on some unproven assumptions so the conclusion remains a conjecture. The chance of a random odd prime q dividing either a or a + 2 in a random "potential" twin prime pair is  , since q divides one of the q numbers from a to a + q − 1. Now assume q divides n and consider a potential prime pair (aa + n). q divides a + n if and only if q divides a, and the chance of that is  . The chance of (aa + n) being free from the factor q, divided by the chance that (a, a + 2) is free from q, then becomes   divided by  . This equals   which transfers to the conjectured prime density. In the case of n = 6, the argument simplifies to: If a is a random number then 3 has chance 2/3 of dividing a or a + 2, but only chance 1/3 of dividing a and a + 6, so the latter pair is conjectured twice as likely to both be prime.

Notes edit

  1. ^ de Polignac, A. (1849). "Recherches nouvelles sur les nombres premiers" [New research on prime numbers]. Comptes rendus (in French). 29: 397–401. From p. 400: "1er Théorème. Tout nombre pair est égal à la différence de deux nombres premiers consécutifs d'une infinité de manières … " (1st Theorem. Every even number is equal to the difference of two consecutive prime numbers in an infinite number of ways … )
  2. ^ Tattersall, J.J. (2005), Elementary number theory in nine chapters, Cambridge University Press, ISBN 978-0-521-85014-8, p. 112
  3. ^ Zhang, Yitang (2014). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121–1174. doi:10.4007/annals.2014.179.3.7. MR 3171761. Zbl 1290.11128. (subscription required)
  4. ^ Klarreich, Erica (19 May 2013). "Unheralded Mathematician Bridges the Prime Gap". Simons Science News. Retrieved 21 May 2013.
  5. ^ Augereau, Benjamin (15 January 2014). "An old mathematical puzzle soon to be unraveled?". Phys.org. Retrieved 10 February 2014.
  6. ^ "Bounded gaps between primes". Polymath. Retrieved 2014-03-27.
  7. ^ "Bounded gaps between primes". Polymath. Retrieved 2014-02-21.
  8. ^ Bateman, Paul T.; Diamond, Harold G. (2004), Analytic Number Theory, World Scientific, p. 313, ISBN 981-256-080-7, Zbl 1074.11001.

References edit

polignac, conjecture, number, theory, made, alphonse, polignac, 1849, states, positive, even, number, there, infinitely, many, prime, gaps, size, other, words, there, infinitely, many, cases, consecutive, prime, numbers, with, difference, although, conjecture,. In number theory Polignac s conjecture was made by Alphonse de Polignac in 1849 and states 1 For any positive even number n there are infinitely many prime gaps of size n In other words There are infinitely many cases of two consecutive prime numbers with difference n 2 Although the conjecture has not yet been proven or disproven for any given value of n in 2013 an important breakthrough was made by Yitang Zhang who proved that there are infinitely many prime gaps of size n for some value of n lt 70 000 000 3 4 Later that year James Maynard announced a related breakthrough which proved that there are infinitely many prime gaps of some size less than or equal to 600 5 As of April 14 2014 one year after Zhang s announcement according to the Polymath project wiki n has been reduced to 246 6 Further assuming the Elliott Halberstam conjecture and its generalized form the Polymath project wiki states that n has been reduced to 12 and 6 respectively 7 For n 2 it is the twin prime conjecture For n 4 it says there are infinitely many cousin primes p p 4 For n 6 it says there are infinitely many sexy primes p p 6 with no prime between p and p 6 Dickson s conjecture generalizes Polignac s conjecture to cover all prime constellations Conjectured density editLet p n x displaystyle pi n x nbsp for even n be the number of prime gaps of size n below x The first Hardy Littlewood conjecture says the asymptotic density is of form p n x 2 C n x ln x 2 2 C n 2 x d t ln t 2 displaystyle pi n x sim 2C n frac x ln x 2 sim 2C n int 2 x dt over ln t 2 nbsp where Cn is a function of n and displaystyle sim nbsp means that the quotient of two expressions tends to 1 as x approaches infinity 8 C2 is the twin prime constant C 2 p 3 p p 2 p 1 2 0 660161815846869573927812110014 displaystyle C 2 prod p geq 3 frac p p 2 p 1 2 approx 0 660161815846869573927812110014 dots nbsp where the product extends over all prime numbers p 3 Cn is C2 multiplied by a number which depends on the odd prime factors q of n C n C 2 q n q 1 q 2 displaystyle C n C 2 prod q n frac q 1 q 2 nbsp For example C4 C2 and C6 2C2 Twin primes have the same conjectured density as cousin primes and half that of sexy primes Note that each odd prime factor q of n increases the conjectured density compared to twin primes by a factor of q 1 q 2 displaystyle tfrac q 1 q 2 nbsp A heuristic argument follows It relies on some unproven assumptions so the conclusion remains a conjecture The chance of a random odd prime q dividing either a or a 2 in a random potential twin prime pair is 2 q displaystyle tfrac 2 q nbsp since q divides one of the q numbers from a to a q 1 Now assume q divides n and consider a potential prime pair a a n q divides a n if and only if q divides a and the chance of that is 1 q displaystyle tfrac 1 q nbsp The chance of a a n being free from the factor q divided by the chance that a a 2 is free from q then becomes q 1 q displaystyle tfrac q 1 q nbsp divided by q 2 q displaystyle tfrac q 2 q nbsp This equals q 1 q 2 displaystyle tfrac q 1 q 2 nbsp which transfers to the conjectured prime density In the case of n 6 the argument simplifies to If a is a random number then 3 has chance 2 3 of dividing a or a 2 but only chance 1 3 of dividing a and a 6 so the latter pair is conjectured twice as likely to both be prime Notes edit de Polignac A 1849 Recherches nouvelles sur les nombres premiers New research on prime numbers Comptes rendus in French 29 397 401 From p 400 1erTheoreme Tout nombre pair est egal a la difference de deux nombres premiers consecutifs d une infinite de manieres 1st Theorem Every even number is equal to the difference of two consecutive prime numbers in an infinite number of ways Tattersall J J 2005 Elementary number theory in nine chapters Cambridge University Press ISBN 978 0 521 85014 8 p 112 Zhang Yitang 2014 Bounded gaps between primes Annals of Mathematics 179 3 1121 1174 doi 10 4007 annals 2014 179 3 7 MR 3171761 Zbl 1290 11128 subscription required Klarreich Erica 19 May 2013 Unheralded Mathematician Bridges the Prime Gap Simons Science News Retrieved 21 May 2013 Augereau Benjamin 15 January 2014 An old mathematical puzzle soon to be unraveled Phys org Retrieved 10 February 2014 Bounded gaps between primes Polymath Retrieved 2014 03 27 Bounded gaps between primes Polymath Retrieved 2014 02 21 Bateman Paul T Diamond Harold G 2004 Analytic Number Theory World Scientific p 313 ISBN 981 256 080 7 Zbl 1074 11001 References editAlphonse de Polignac Recherches nouvelles sur les nombres premiers Comptes Rendus des Seances de l Academie des Sciences 1849 Weisstein Eric W de Polignac s Conjecture MathWorld Weisstein Eric W k Tuple Conjecture MathWorld Retrieved from https en wikipedia org w index php title Polignac 27s conjecture amp oldid 1192538145, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.