fbpx
Wikipedia

Poisson limit theorem

In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions.[1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem.

Theorem edit

Let   be a sequence of real numbers in   such that the sequence   converges to a finite limit  . Then:

 

First proof edit

Assume   (the case   is easier). Then

 

Since

 

this leaves

 

Alternative proof edit

Using Stirling's approximation, it can be written:

 

Letting   and  :

 

As  ,   so:

 

Ordinary generating functions edit

It is also possible to demonstrate the theorem through the use of ordinary generating functions of the binomial distribution:

 

by virtue of the binomial theorem. Taking the limit   while keeping the product   constant, it can be seen:

 

which is the OGF for the Poisson distribution. (The second equality holds due to the definition of the exponential function.)

See also edit

References edit

  1. ^ Papoulis, Athanasios; Pillai, S. Unnikrishna. Probability, Random Variables, and Stochastic Processes (4th ed.).

poisson, limit, theorem, poisson, theorem, redirects, here, poisson, theorem, hamiltonian, mechanics, poisson, bracket, constants, motion, probability, theory, rare, events, states, that, poisson, distribution, used, approximation, binomial, distribution, unde. Poisson theorem redirects here For the Poisson s theorem in Hamiltonian mechanics see Poisson bracket Constants of motion In probability theory the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution under certain conditions 1 The theorem was named after Simeon Denis Poisson 1781 1840 A generalization of this theorem is Le Cam s theorem For broader coverage of this topic see Poisson distribution Law of rare events Contents 1 Theorem 2 First proof 2 1 Alternative proof 2 2 Ordinary generating functions 3 See also 4 ReferencesTheorem editLet pn displaystyle p n nbsp be a sequence of real numbers in 0 1 displaystyle 0 1 nbsp such that the sequence npn displaystyle np n nbsp converges to a finite limit l displaystyle lambda nbsp Then limn nk pnk 1 pn n k e llkk displaystyle lim n to infty n choose k p n k 1 p n n k e lambda frac lambda k k nbsp First proof editAssume l gt 0 displaystyle lambda gt 0 nbsp the case l 0 displaystyle lambda 0 nbsp is easier Then limn nk pnk 1 pn n k limn n n 1 n 2 n k 1 k ln 1 o 1 k 1 ln 1 o 1 n k limn nk O nk 1 k lknk 1 ln 1 o 1 n 1 ln 1 o 1 k limn lkk 1 ln 1 o 1 n displaystyle begin aligned lim limits n rightarrow infty n choose k p n k 1 p n n k amp lim n to infty frac n n 1 n 2 dots n k 1 k left frac lambda n 1 o 1 right k left 1 frac lambda n 1 o 1 right n k amp lim n to infty frac n k O left n k 1 right k frac lambda k n k left 1 frac lambda n 1 o 1 right n left 1 frac lambda n 1 o 1 right k amp lim n to infty frac lambda k k left 1 frac lambda n 1 o 1 right n end aligned nbsp Since limn 1 ln 1 o 1 n e l displaystyle lim n to infty left 1 frac lambda n 1 o 1 right n e lambda nbsp this leaves nk pk 1 p n k lke lk displaystyle n choose k p k 1 p n k simeq frac lambda k e lambda k nbsp Alternative proof edit Using Stirling s approximation it can be written nk pk 1 p n k n n k k pk 1 p n k 2pn ne n2p n k n ke n kk pk 1 p n k nn knne k n k n kk pk 1 p n k displaystyle begin aligned n choose k p k 1 p n k amp frac n n k k p k 1 p n k amp simeq frac sqrt 2 pi n left frac n e right n sqrt 2 pi left n k right left frac n k e right n k k p k 1 p n k amp sqrt frac n n k frac n n e k left n k right n k k p k 1 p n k end aligned nbsp Letting n displaystyle n to infty nbsp and np l displaystyle np lambda nbsp nk pk 1 p n k nnpk 1 p n ke k n k n kk nn ln k 1 ln n ke knn k 1 kn n kk lk 1 ln n ke k 1 kn n kk lk 1 ln ne k 1 kn nk displaystyle begin aligned n choose k p k 1 p n k amp simeq frac n n p k 1 p n k e k left n k right n k k amp frac n n left frac lambda n right k left 1 frac lambda n right n k e k n n k left 1 frac k n right n k k amp frac lambda k left 1 frac lambda n right n k e k left 1 frac k n right n k k amp simeq frac lambda k left 1 frac lambda n right n e k left 1 frac k n right n k end aligned nbsp As n displaystyle n to infty nbsp 1 xn n e x displaystyle left 1 frac x n right n to e x nbsp so nk pk 1 p n k lke le ke kk lke lk displaystyle begin aligned n choose k p k 1 p n k amp simeq frac lambda k e lambda e k e k k amp frac lambda k e lambda k end aligned nbsp Ordinary generating functions edit It is also possible to demonstrate the theorem through the use of ordinary generating functions of the binomial distribution Gbin x p N k 0N Nk pk 1 p N k xk 1 x 1 p N displaystyle G operatorname bin x p N equiv sum k 0 N left binom N k p k 1 p N k right x k Big 1 x 1 p Big N nbsp by virtue of the binomial theorem Taking the limit N displaystyle N rightarrow infty nbsp while keeping the product pN l displaystyle pN equiv lambda nbsp constant it can be seen limN Gbin x p N limN 1 l x 1 N N el x 1 k 0 e llkk xk displaystyle lim N rightarrow infty G operatorname bin x p N lim N rightarrow infty left 1 frac lambda x 1 N right N mathrm e lambda x 1 sum k 0 infty left frac mathrm e lambda lambda k k right x k nbsp which is the OGF for the Poisson distribution The second equality holds due to the definition of the exponential function See also editDe Moivre Laplace theorem Le Cam s theoremReferences edit Papoulis Athanasios Pillai S Unnikrishna Probability Random Variables and Stochastic Processes 4th ed Retrieved from https en wikipedia org w index php title Poisson limit theorem amp oldid 1184585296, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.