fbpx
Wikipedia

Planar algebra

In mathematics, planar algebras first appeared in the work of Vaughan Jones on the standard invariant of a II1 subfactor.[1] They also provide an appropriate algebraic framework for many knot invariants (in particular the Jones polynomial), and have been used in describing the properties of Khovanov homology with respect to tangle composition.[2][3] Any subfactor planar algebra provides a family of unitary representations of Thompson groups.[4] Any finite group (and quantum generalization) can be encoded as a planar algebra.[1]

Definition edit

The idea of the planar algebra is to be a diagrammatic axiomatization of the standard invariant.[1][5][6]

Planar tangle edit

A (shaded) planar tangle is the data of finitely many input disks, one output disk, non-intersecting strings giving an even number, say  , intervals per disk and one  -marked interval per disk.

 

Here, the mark is shown as a  -shape. On each input disk it is placed between two adjacent outgoing strings, and on the output disk it is placed between two adjacent incoming strings. A planar tangle is defined up to isotopy.

Composition edit

To compose two planar tangles, put the output disk of one into an input of the other, having as many intervals, same shading of marked intervals and such that the  -marked intervals coincide. Finally we remove the coinciding circles. Note that two planar tangles can have zero, one or several possible compositions.

 

Planar operad edit

The planar operad is the set of all the planar tangles (up to isomorphism) with such compositions.

Planar algebra edit

A planar algebra is a representation of the planar operad; more precisely, it is a family of vector spaces  , called  -box spaces, on which acts the planar operad, i.e. for any tangle   (with one output disk and   input disks with   and   intervals respectively) there is a multilinear map

 

with   according to the shading of the  -marked intervals, and these maps (also called partition functions) respect the composition of tangle in such a way that all the diagrams as below commute.

 

Examples edit

Planar tangles edit

The family of vector spaces   generated by the planar tangles having   intervals on their output disk and a white (or black)  -marked interval, admits a planar algebra structure.

Temperley–Lieb edit

The Temperley-Lieb planar algebra   is generated by the planar tangles without input disk; its  -box space   is generated by

 

Moreover, a closed string is replaced by a multiplication by  .

 

Note that the dimension of   is the Catalan number  . This planar algebra encodes the notion of Temperley–Lieb algebra.

Hopf algebra edit

A semisimple and cosemisimple Hopf algebra over an algebraically closed field is encoded in a planar algebra defined by generators and relations, and "corresponds" (up to isomorphism) to a connected, irreducible, spherical, non degenerate planar algebra with non zero modulus   and of depth two.[7]

Note that connected means   (as for evaluable below), irreducible means  , spherical is defined below, and non-degenerate means that the traces (defined below) are non-degenerate.

Subfactor planar algebra edit

Definition edit

A subfactor planar algebra is a planar  -algebra   which is:

(1) Finite-dimensional:  
(2) Evaluable:  
(3) Spherical:  
(4) Positive:   defines an inner product.

Note that by (2) and (3), any closed string (shaded or not) counts for the same constant  .

 

The tangle action deals with the adjoint by:

 

with   the mirror image of   and   the adjoint of   in  .

Examples and results edit

No-ghost theorem: The planar algebra   has no ghost (i.e. element   with  ) if and only if

 

For   as above, let   be the null ideal (generated by elements   with  ). Then the quotient   is a subfactor planar algebra, called the Temperley–Lieb-Jones subfactor planar algebra  . Any subfactor planar algebra with constant   admits   as planar subalgebra.

A planar algebra   is a subfactor planar algebra if and only if it is the standard invariant of an extremal subfactor   of index  , with   and  .[8][9][10] A finite depth or irreducible subfactor is extremal (  on  ).

There is a subfactor planar algebra encoding any finite group (and more generally, any finite dimensional Hopf  -algebra, called Kac algebra), defined by generators and relations. A (finite dimensional) Kac algebra "corresponds" (up to isomorphism) to an irreducible subfactor planar algebra of depth two.[11][12]

The subfactor planar algebra associated to an inclusion of finite groups,[13] does not always remember the (core-free) inclusion.[14][15]

A Bisch-Jones subfactor planar algebra   (sometimes called Fuss-Catalan) is defined as for   but by allowing two colors of string with their own constant   and  , with   as above. It is a planar subalgebra of any subfactor planar algebra with an intermediate such that   and  .[16][17]

The first finite depth subfactor planar algebra of index   is called the Haagerup subfactor planar algebra.[18] It has index  .

The subfactor planar algebras are completely classified for index at most  [19] and a bit beyond.[20] This classification was initiated by Uffe Haagerup.[21] It uses (among other things) a listing of possible principal graphs, together with the embedding theorem[22] and the jellyfish algorithm.[23]

A subfactor planar algebra remembers the subfactor (i.e. its standard invariant is complete) if it is amenable.[24] A finite depth hyperfinite subfactor is amenable.

About the non-amenable case: there are unclassifiably many irreducible hyperfinite subfactors of index 6 that all have the same standard invariant.[25]

Fourier transform and biprojections edit

Let   be a finite index subfactor, and   the corresponding subfactor planar algebra. Assume that   is irreducible (i.e.  ). Let   be an intermediate subfactor. Let the Jones projection  . Note that  . Let   and  .

 

Note that   and  .

Let the bijective linear map   be the Fourier transform, also called  -click (of the outer star) or   rotation; and let   be the coproduct of   and  .

 

Note that the word coproduct is a diminutive of convolution product. It is a binary operation.

The coproduct satisfies the equality  

For any positive operators  , the coproduct   is also positive; this can be seen diagrammatically:[26]

 

Let   be the contragredient   (also called   rotation). The map   corresponds to four  -clicks of the outer star, so it's the identity map, and then  .

In the Kac algebra case, the contragredient is exactly the antipode,[12] which, for a finite group, correspond to the inverse.

A biprojection is a projection   with   a multiple of a projection. Note that   and   are biprojections; this can be seen as follows:

 

A projection   is a biprojection iff it is the Jones projection   of an intermediate subfactor  ,[27] iff  .[28][26]

Galois correspondence:[29] in the Kac algebra case, the biprojections are 1-1 with the left coideal subalgebras, which, for a finite group, correspond to the subgroups.

For any irreducible subfactor planar algebra, the set of biprojections is a finite lattice,[30] of the form  , as for an interval of finite groups  .

Using the biprojections, we can make the intermediate subfactor planar algebras.[31][32]

The uncertainty principle extends to any irreducible subfactor planar algebra  :

Let   with   the range projection of   and   the unnormalized trace (i.e.   on  ).

Noncommutative uncertainty principle:[33] Let  , nonzero. Then

 

Assuming   and   positive, the equality holds if and only if   is a biprojection. More generally, the equality holds if and only if   is the bi-shift of a biprojection.

References edit

  1. ^ a b c Vaughan F. R. Jones (1999), "Planar algebras, I", arXiv:math/9909027
  2. ^ "Dror Bar-Natan: Publications: Cobordisms". Math.toronto.edu. arXiv:math/0410495. doi:10.2140/gt.2005.9.1443. Retrieved 2016-11-20.
  3. ^ Bar-Natan, Dror (2005). "Khovanov's homology for tangles and cobordisms". Geometry & Topology. 9 (3): 1443–1499. arXiv:math/0410495. doi:10.2140/gt.2005.9.1443. S2CID 1247623.
  4. ^ Vaughan F. R. Jones (2017), "Some unitary representations of Thompson's groups F and T", J. Comb. Algebra, 1 (1): 1–44, arXiv:1412.7740, doi:10.4171/JCA/1-1-1, MR 3589908, S2CID 119631229
  5. ^ Vijay Kodiyalam; V.S. Sunder (2004), "On Jones' planar algebras", J. Knot Theory Ramifications, 13 (2): 219–247, doi:10.1142/S021821650400310X, MR 2047470
  6. ^ "Vijay Kodiyalam - Planar algebras - IMSc 2015". youtube.com. 2015-11-14.
  7. ^ Vijay Kodiyalam; V.S. Sunder (2006), "The planar algebra of a semisimple and cosemisimple Hopf algebra", Proc. Indian Acad. Sci. Math. Sci., 116 (4): 1–16, arXiv:math/0506153, Bibcode:2005math......6153K
  8. ^ Sorin Popa (1995), "An axiomatization of the lattice of higher relative commutants of a subfactor", Inventiones Mathematicae, 120 (3): 427–445, Bibcode:1995InMat.120..427P, doi:10.1007/BF01241137, MR 1334479, S2CID 1740471
  9. ^ Alice Guionnet; Vaughan F. R. Jones; Dimitri Shlyakhtenko (2010), "Random matrices, free probability, planar algebras and subfactors", Clay Math. Proc., {11}: 201–239, MR 2732052
  10. ^ Vijay Kodiyalam; V.S. Sunder (2009), "From subfactor planar algebras to subfactors", Internat. J. Math., 20 (10): 1207–1231, arXiv:0807.3704, doi:10.1142/S0129167X0900573X, MR 2574313, S2CID 115161031
  11. ^ Paramita Das; Vijay Kodiyalam (2005), "Planar algebras and the Ocneanu-Szymanski theorem", Proc. Amer. Math. Soc., 133 (9): 2751–2759, doi:10.1090/S0002-9939-05-07789-0, ISSN 0002-9939, MR 2146224
  12. ^ a b Vijay Kodiyalam; Zeph Landau; V.S. Sunder (2003), "The planar algebra associated to a Kac algebra", Proc. Indian Acad. Sci. Math. Sci., 113 (1): 15–51, doi:10.1007/BF02829677, ISSN 0253-4142, MR 1971553, S2CID 56571515
  13. ^ Ved Prakash Gupta (2008), "Planar algebra of the subgroup-subfactor", Proceedings Mathematical Sciences, 118 (4): 583–612, arXiv:0806.1791, Bibcode:2008arXiv0806.1791G, doi:10.1007/s12044-008-0046-0, S2CID 5589336
  14. ^ Vijay Kodiyalam; V.S. Sunder (2000), "The subgroup-subfactor", Math. Scand., 86 (1): 45–74, doi:10.7146/math.scand.a-14281, ISSN 0025-5521, MR 1738515
  15. ^ Masaki Izumi (2002), "Characterization of isomorphic group-subgroup subfactors", Int. Math. Res. Not., 2002 (34): 1791–1803, doi:10.1155/S107379280220402X, ISSN 1073-7928, MR 1920326
  16. ^ Dietmar Bisch; Vaughan Jones (1997), "Algebras associated to intermediate subfactors", Inventiones Mathematicae, 128 (1): 89–157, Bibcode:1997InMat.128...89J, doi:10.1007/s002220050137, S2CID 119372640
  17. ^ Pinhas Grossman; Vaughan Jones (2007), "Intermediate subfactors with no extra structure", J. Amer. Math. Soc., 20 (1): 219–265, Bibcode:2007JAMS...20..219G, doi:10.1090/S0894-0347-06-00531-5, MR 2257402
  18. ^ Emily Peters (2010), "A planar algebra construction of the Haagerup subfactor", Internat. J. Math., 21 (8): 987–1045, arXiv:0902.1294, doi:10.1142/S0129167X10006380, MR 2679382, S2CID 951475
  19. ^ Vaughan F. R. Jones; Scott Morrison; Noah Snyder (2014), "The classification of subfactors of index at most  ", Bull. Amer. Math. Soc. (N.S.), 51 (2): 277–327, arXiv:1304.6141, doi:10.1090/S0273-0979-2013-01442-3, MR 3166042, S2CID 29962597
  20. ^ Narjess Afzaly; Scott Morrison; David Penneys (2015), The classification of subfactors with index at most  , pp. 70pp, arXiv:1509.00038, Bibcode:2015arXiv150900038A
  21. ^ Uffe Haagerup (1994), "Principal graphs of subfactors in the index range  ", Subfactors (Kyuzeso, 1993): 1–38, MR 1317352
  22. ^ Vaughan Jones; David Penneys (2011), "The embedding theorem for finite depth subfactor planar algebras.", Quantum Topol., 2 (3): 301–337, arXiv:1007.3173, doi:10.4171/QT/23, MR 2812459, S2CID 59578009
  23. ^ Stephen Bigelow; David Penneys (2014), "Principal graph stability and the jellyfish algorithm.", Math. Ann., 358 (1–2): 1–24, arXiv:1208.1564, doi:10.1007/s00208-013-0941-2, MR 3157990, S2CID 3549669
  24. ^ Popa, Sorin (1994), "Classification of amenable subfactors of type II", Acta Mathematica, 172 (2): 163–255, doi:10.1007/BF02392646, MR 1278111
  25. ^ Arnaud Brothier; Stefaan Vaes (2015), "Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group.", J. Noncommut. Geom., 9 (3): 775–796, arXiv:1309.5354, doi:10.4171/JNCG/207, MR 3420531, S2CID 117853753
  26. ^ a b Zhengwei Liu (2016), "Exchange relation planar algebras of small rank", Trans. Amer. Math. Soc., 368 (12): 8303–8348, arXiv:1308.5656, doi:10.1090/tran/6582, ISSN 0002-9947, MR 3551573, S2CID 117030298
  27. ^ Dietmar Bisch (1994), "A note on intermediate subfactors", Pacific J. Math., 163 (2): 201–216, doi:10.2140/pjm.1994.163.201, ISSN 0030-8730, MR 1262294
  28. ^ Zeph A. Landau (2002), "Exchange relation planar algebras", Geom. Dedicata, 95: 183–214, doi:10.1023/A:1021296230310, ISSN 0046-5755, MR 1950890, S2CID 119036175
  29. ^ Masaki Izumi; Roberto Longo; Sorin Popa (1998), "A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras", J. Funct. Anal., 155 (1): 25–63, arXiv:funct-an/9604004, doi:10.1006/jfan.1997.3228, ISSN 0022-1236, MR 1622812, S2CID 12990106
  30. ^ Yasuo Watatani (1996), "Lattices of intermediate subfactors", J. Funct. Anal., 140 (2): 312–334, doi:10.1006/jfan.1996.0110, hdl:2115/68899, ISSN 0022-1236, MR 1409040
  31. ^ Zeph A. Landau (1998), "Intermediate subfactors", Thesis - University of California at Berkeley: 132pp
  32. ^ Keshab Chandra Bakshi (2016), "Intermediate planar algebra revisited", International Journal of Mathematics, 29 (12): 31pp, arXiv:1611.05811, Bibcode:2016arXiv161105811B, doi:10.1142/S0129167X18500775, S2CID 119305436
  33. ^ Chunlan Jiang; Zhengwei Liu; Jinsong Wu (2016), "Noncommutative uncertainty principles", J. Funct. Anal., 270 (1): 264–311, arXiv:1408.1165, doi:10.1016/j.jfa.2015.08.007, S2CID 16295570

planar, algebra, this, article, technical, most, readers, understand, please, help, improve, make, understandable, experts, without, removing, technical, details, june, 2022, learn, when, remove, this, message, mathematics, planar, algebras, first, appeared, w. This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details June 2022 Learn how and when to remove this message In mathematics planar algebras first appeared in the work of Vaughan Jones on the standard invariant of a II1 subfactor 1 They also provide an appropriate algebraic framework for many knot invariants in particular the Jones polynomial and have been used in describing the properties of Khovanov homology with respect to tangle composition 2 3 Any subfactor planar algebra provides a family of unitary representations of Thompson groups 4 Any finite group and quantum generalization can be encoded as a planar algebra 1 Contents 1 Definition 1 1 Planar tangle 1 2 Composition 1 3 Planar operad 1 4 Planar algebra 2 Examples 2 1 Planar tangles 2 2 Temperley Lieb 2 3 Hopf algebra 3 Subfactor planar algebra 3 1 Definition 3 2 Examples and results 3 3 Fourier transform and biprojections 4 ReferencesDefinition editThe idea of the planar algebra is to be a diagrammatic axiomatization of the standard invariant 1 5 6 Planar tangle edit A shaded planar tangle is the data of finitely many input disks one output disk non intersecting strings giving an even number say 2 n displaystyle 2n nbsp intervals per disk and one displaystyle star nbsp marked interval per disk nbsp Here the mark is shown as a displaystyle star nbsp shape On each input disk it is placed between two adjacent outgoing strings and on the output disk it is placed between two adjacent incoming strings A planar tangle is defined up to isotopy Composition edit To compose two planar tangles put the output disk of one into an input of the other having as many intervals same shading of marked intervals and such that the displaystyle star nbsp marked intervals coincide Finally we remove the coinciding circles Note that two planar tangles can have zero one or several possible compositions nbsp Planar operad edit The planar operad is the set of all the planar tangles up to isomorphism with such compositions Planar algebra edit A planar algebra is a representation of the planar operad more precisely it is a family of vector spaces P n n N displaystyle mathcal P n pm n in mathbb N nbsp called n displaystyle n nbsp box spaces on which acts the planar operad i e for any tangle T displaystyle T nbsp with one output disk and r displaystyle r nbsp input disks with 2 n 0 displaystyle 2n 0 nbsp and 2 n 1 2 n r displaystyle 2n 1 dots 2n r nbsp intervals respectively there is a multilinear map Z T P n 1 ϵ 1 P n r ϵ r P n 0 ϵ 0 displaystyle Z T mathcal P n 1 epsilon 1 otimes cdots otimes mathcal P n r epsilon r to mathcal P n 0 epsilon 0 nbsp with ϵ i displaystyle epsilon i in nbsp according to the shading of the displaystyle star nbsp marked intervals and these maps also called partition functions respect the composition of tangle in such a way that all the diagrams as below commute nbsp Examples editPlanar tangles edit The family of vector spaces T n n N displaystyle mathcal T n pm n in mathbb N nbsp generated by the planar tangles having 2 n displaystyle 2n nbsp intervals on their output disk and a white or black displaystyle star nbsp marked interval admits a planar algebra structure Temperley Lieb edit The Temperley Lieb planar algebra T L d displaystyle mathcal TL delta nbsp is generated by the planar tangles without input disk its 3 displaystyle 3 nbsp box space T L 3 d displaystyle mathcal TL 3 delta nbsp is generated by nbsp Moreover a closed string is replaced by a multiplication by d displaystyle delta nbsp nbsp Note that the dimension of T L n d displaystyle mathcal TL n pm delta nbsp is the Catalan number 1 n 1 2 n n displaystyle frac 1 n 1 binom 2n n nbsp This planar algebra encodes the notion of Temperley Lieb algebra Hopf algebra edit A semisimple and cosemisimple Hopf algebra over an algebraically closed field is encoded in a planar algebra defined by generators and relations and corresponds up to isomorphism to a connected irreducible spherical non degenerate planar algebra with non zero modulus d displaystyle delta nbsp and of depth two 7 Note that connected means dim P 0 1 displaystyle dim mathcal P 0 pm 1 nbsp as for evaluable below irreducible means dim P 1 1 displaystyle dim mathcal P 1 1 nbsp spherical is defined below and non degenerate means that the traces defined below are non degenerate Subfactor planar algebra editDefinition edit A subfactor planar algebra is a planar displaystyle star nbsp algebra P n n N displaystyle mathcal P n pm n in mathbb N nbsp which is 1 Finite dimensional dim P n lt displaystyle dim mathcal P n pm lt infty nbsp 2 Evaluable P 0 C displaystyle mathcal P 0 pm mathbb C nbsp 3 Spherical t r t r r t r l displaystyle tr tr r tr l nbsp 4 Positive a b t r b a displaystyle langle a vert b rangle tr b star a nbsp defines an inner product Note that by 2 and 3 any closed string shaded or not counts for the same constant d displaystyle delta nbsp nbsp The tangle action deals with the adjoint by Z T a 1 a 2 a r Z T a 1 a 2 a r displaystyle Z T a 1 otimes a 2 otimes cdots otimes a r star Z T star a 1 star otimes a 2 star otimes cdots otimes a r star nbsp with T displaystyle T star nbsp the mirror image of T displaystyle T nbsp and a i displaystyle a i star nbsp the adjoint of a i displaystyle a i nbsp in P n i ϵ i displaystyle mathcal P n i epsilon i nbsp Examples and results edit No ghost theorem The planar algebra T L d displaystyle mathcal TL delta nbsp has no ghost i e element a displaystyle a nbsp with a a lt 0 displaystyle langle a vert a rangle lt 0 nbsp if and only if d 2 cos p n n 3 4 5 2 displaystyle delta in 2 cos pi n n 3 4 5 cup 2 infty nbsp For d displaystyle delta nbsp as above let I displaystyle mathcal I nbsp be the null ideal generated by elements a displaystyle a nbsp with a a 0 displaystyle langle a vert a rangle 0 nbsp Then the quotient T L d I displaystyle mathcal TL delta mathcal I nbsp is a subfactor planar algebra called the Temperley Lieb Jones subfactor planar algebra T L J d displaystyle mathcal TLJ delta nbsp Any subfactor planar algebra with constant d displaystyle delta nbsp admits T L J d displaystyle mathcal TLJ delta nbsp as planar subalgebra A planar algebra P n displaystyle mathcal P n pm nbsp is a subfactor planar algebra if and only if it is the standard invariant of an extremal subfactor N M displaystyle N subseteq M nbsp of index M N d 2 displaystyle M N delta 2 nbsp with P n N M n 1 displaystyle mathcal P n N cap M n 1 nbsp and P n M M n displaystyle mathcal P n M cap M n nbsp 8 9 10 A finite depth or irreducible subfactor is extremal t r N t r M displaystyle tr N tr M nbsp on N M displaystyle N cap M nbsp There is a subfactor planar algebra encoding any finite group and more generally any finite dimensional Hopf C displaystyle rm C star nbsp algebra called Kac algebra defined by generators and relations A finite dimensional Kac algebra corresponds up to isomorphism to an irreducible subfactor planar algebra of depth two 11 12 The subfactor planar algebra associated to an inclusion of finite groups 13 does not always remember the core free inclusion 14 15 A Bisch Jones subfactor planar algebra B J d 1 d 2 displaystyle mathcal BJ delta 1 delta 2 nbsp sometimes called Fuss Catalan is defined as for T L J d displaystyle mathcal TLJ delta nbsp but by allowing two colors of string with their own constant d 1 displaystyle delta 1 nbsp and d 2 displaystyle delta 2 nbsp with d i displaystyle delta i nbsp as above It is a planar subalgebra of any subfactor planar algebra with an intermediate such that K N d 1 2 displaystyle K N delta 1 2 nbsp and M K d 2 2 displaystyle M K delta 2 2 nbsp 16 17 The first finite depth subfactor planar algebra of index d 2 gt 4 displaystyle delta 2 gt 4 nbsp is called the Haagerup subfactor planar algebra 18 It has index 5 13 2 4 303 displaystyle 5 sqrt 13 2 sim 4 303 nbsp The subfactor planar algebras are completely classified for index at most 5 displaystyle 5 nbsp 19 and a bit beyond 20 This classification was initiated by Uffe Haagerup 21 It uses among other things a listing of possible principal graphs together with the embedding theorem 22 and the jellyfish algorithm 23 A subfactor planar algebra remembers the subfactor i e its standard invariant is complete if it is amenable 24 A finite depth hyperfinite subfactor is amenable About the non amenable case there are unclassifiably many irreducible hyperfinite subfactors of index 6 that all have the same standard invariant 25 Fourier transform and biprojections edit Let N M displaystyle N subset M nbsp be a finite index subfactor and P displaystyle mathcal P nbsp the corresponding subfactor planar algebra Assume that P displaystyle mathcal P nbsp is irreducible i e P 1 N M 1 C displaystyle mathcal P 1 N cap M 1 mathbb C nbsp Let N K M displaystyle N subset K subset M nbsp be an intermediate subfactor Let the Jones projection e K M L 2 M L 2 K displaystyle e K M L 2 M to L 2 K nbsp Note that e K M P 2 displaystyle e K M in mathcal P 2 nbsp Let i d e M M displaystyle id e M M nbsp and e 1 e N M displaystyle e 1 e N M nbsp nbsp Note that t r e 1 d 2 M N 1 displaystyle tr e 1 delta 2 M N 1 nbsp and t r i d 1 displaystyle tr id 1 nbsp Let the bijective linear map F P 2 P 2 displaystyle mathcal F mathcal P 2 pm to mathcal P 2 mp nbsp be the Fourier transform also called 1 displaystyle 1 nbsp click of the outer star or 90 displaystyle 90 circ nbsp rotation and let a b displaystyle a b nbsp be the coproduct of a displaystyle a nbsp and b displaystyle b nbsp nbsp Note that the word coproduct is a diminutive of convolution product It is a binary operation The coproduct satisfies the equality a b F F 1 a F 1 b displaystyle a b mathcal F mathcal F 1 a mathcal F 1 b nbsp For any positive operators a b displaystyle a b nbsp the coproduct a b displaystyle a b nbsp is also positive this can be seen diagrammatically 26 nbsp Let a F F a displaystyle overline a mathcal F mathcal F a nbsp be the contragredient a displaystyle a nbsp also called 180 displaystyle 180 circ nbsp rotation The map F 4 displaystyle mathcal F 4 nbsp corresponds to four 1 displaystyle 1 nbsp clicks of the outer star so it s the identity map and then a a displaystyle overline overline a a nbsp In the Kac algebra case the contragredient is exactly the antipode 12 which for a finite group correspond to the inverse A biprojection is a projection b P 2 0 displaystyle b in mathcal P 2 setminus 0 nbsp with F b displaystyle mathcal F b nbsp a multiple of a projection Note that e 1 e N M displaystyle e 1 e N M nbsp and i d e M M displaystyle id e M M nbsp are biprojections this can be seen as follows nbsp A projection b displaystyle b nbsp is a biprojection iff it is the Jones projection e K M displaystyle e K M nbsp of an intermediate subfactor N K M displaystyle N subset K subset M nbsp 27 iff e 1 b b l b b with l 1 d t r b displaystyle e 1 leq b overline b lambda b b text with lambda 1 delta tr b nbsp 28 26 Galois correspondence 29 in the Kac algebra case the biprojections are 1 1 with the left coideal subalgebras which for a finite group correspond to the subgroups For any irreducible subfactor planar algebra the set of biprojections is a finite lattice 30 of the form e 1 i d displaystyle e 1 id nbsp as for an interval of finite groups H G displaystyle H G nbsp Using the biprojections we can make the intermediate subfactor planar algebras 31 32 The uncertainty principle extends to any irreducible subfactor planar algebra P displaystyle mathcal P nbsp Let S x T r R x displaystyle mathcal S x Tr R x nbsp with R x displaystyle R x nbsp the range projection of x displaystyle x nbsp and T r displaystyle Tr nbsp the unnormalized trace i e T r d n t r displaystyle Tr delta n tr nbsp on P n displaystyle mathcal P n pm nbsp Noncommutative uncertainty principle 33 Let x P 2 displaystyle x in mathcal P 2 pm nbsp nonzero Then S x S F x d 2 displaystyle mathcal S x mathcal S mathcal F x geq delta 2 nbsp Assuming x displaystyle x nbsp and F x displaystyle mathcal F x nbsp positive the equality holds if and only if x displaystyle x nbsp is a biprojection More generally the equality holds if and only if x displaystyle x nbsp is the bi shift of a biprojection References edit a b c Vaughan F R Jones 1999 Planar algebras I arXiv math 9909027 Dror Bar Natan Publications Cobordisms Math toronto edu arXiv math 0410495 doi 10 2140 gt 2005 9 1443 Retrieved 2016 11 20 Bar Natan Dror 2005 Khovanov s homology for tangles and cobordisms Geometry amp Topology 9 3 1443 1499 arXiv math 0410495 doi 10 2140 gt 2005 9 1443 S2CID 1247623 Vaughan F R Jones 2017 Some unitary representations of Thompson s groups F and T J Comb Algebra 1 1 1 44 arXiv 1412 7740 doi 10 4171 JCA 1 1 1 MR 3589908 S2CID 119631229 Vijay Kodiyalam V S Sunder 2004 On Jones planar algebras J Knot Theory Ramifications 13 2 219 247 doi 10 1142 S021821650400310X MR 2047470 Vijay Kodiyalam Planar algebras IMSc 2015 youtube com 2015 11 14 Vijay Kodiyalam V S Sunder 2006 The planar algebra of a semisimple and cosemisimple Hopf algebra Proc Indian Acad Sci Math Sci 116 4 1 16 arXiv math 0506153 Bibcode 2005math 6153K Sorin Popa 1995 An axiomatization of the lattice of higher relative commutants of a subfactor Inventiones Mathematicae 120 3 427 445 Bibcode 1995InMat 120 427P doi 10 1007 BF01241137 MR 1334479 S2CID 1740471 Alice Guionnet Vaughan F R Jones Dimitri Shlyakhtenko 2010 Random matrices free probability planar algebras and subfactors Clay Math Proc 11 201 239 MR 2732052 Vijay Kodiyalam V S Sunder 2009 From subfactor planar algebras to subfactors Internat J Math 20 10 1207 1231 arXiv 0807 3704 doi 10 1142 S0129167X0900573X MR 2574313 S2CID 115161031 Paramita Das Vijay Kodiyalam 2005 Planar algebras and the Ocneanu Szymanski theorem Proc Amer Math Soc 133 9 2751 2759 doi 10 1090 S0002 9939 05 07789 0 ISSN 0002 9939 MR 2146224 a b Vijay Kodiyalam Zeph Landau V S Sunder 2003 The planar algebra associated to a Kac algebra Proc Indian Acad Sci Math Sci 113 1 15 51 doi 10 1007 BF02829677 ISSN 0253 4142 MR 1971553 S2CID 56571515 Ved Prakash Gupta 2008 Planar algebra of the subgroup subfactor Proceedings Mathematical Sciences 118 4 583 612 arXiv 0806 1791 Bibcode 2008arXiv0806 1791G doi 10 1007 s12044 008 0046 0 S2CID 5589336 Vijay Kodiyalam V S Sunder 2000 The subgroup subfactor Math Scand 86 1 45 74 doi 10 7146 math scand a 14281 ISSN 0025 5521 MR 1738515 Masaki Izumi 2002 Characterization of isomorphic group subgroup subfactors Int Math Res Not 2002 34 1791 1803 doi 10 1155 S107379280220402X ISSN 1073 7928 MR 1920326 Dietmar Bisch Vaughan Jones 1997 Algebras associated to intermediate subfactors Inventiones Mathematicae 128 1 89 157 Bibcode 1997InMat 128 89J doi 10 1007 s002220050137 S2CID 119372640 Pinhas Grossman Vaughan Jones 2007 Intermediate subfactors with no extra structure J Amer Math Soc 20 1 219 265 Bibcode 2007JAMS 20 219G doi 10 1090 S0894 0347 06 00531 5 MR 2257402 Emily Peters 2010 A planar algebra construction of the Haagerup subfactor Internat J Math 21 8 987 1045 arXiv 0902 1294 doi 10 1142 S0129167X10006380 MR 2679382 S2CID 951475 Vaughan F R Jones Scott Morrison Noah Snyder 2014 The classification of subfactors of index at most 5 displaystyle 5 nbsp Bull Amer Math Soc N S 51 2 277 327 arXiv 1304 6141 doi 10 1090 S0273 0979 2013 01442 3 MR 3166042 S2CID 29962597 Narjess Afzaly Scott Morrison David Penneys 2015 The classification of subfactors with index at most 5 1 4 displaystyle 5 1 4 nbsp pp 70pp arXiv 1509 00038 Bibcode 2015arXiv150900038A Uffe Haagerup 1994 Principal graphs of subfactors in the index range 4 lt M N lt 3 2 displaystyle 4 lt M N lt 3 sqrt 2 nbsp Subfactors Kyuzeso 1993 1 38 MR 1317352 Vaughan Jones David Penneys 2011 The embedding theorem for finite depth subfactor planar algebras Quantum Topol 2 3 301 337 arXiv 1007 3173 doi 10 4171 QT 23 MR 2812459 S2CID 59578009 Stephen Bigelow David Penneys 2014 Principal graph stability and the jellyfish algorithm Math Ann 358 1 2 1 24 arXiv 1208 1564 doi 10 1007 s00208 013 0941 2 MR 3157990 S2CID 3549669 Popa Sorin 1994 Classification of amenable subfactors of type II Acta Mathematica 172 2 163 255 doi 10 1007 BF02392646 MR 1278111 Arnaud Brothier Stefaan Vaes 2015 Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group J Noncommut Geom 9 3 775 796 arXiv 1309 5354 doi 10 4171 JNCG 207 MR 3420531 S2CID 117853753 a b Zhengwei Liu 2016 Exchange relation planar algebras of small rank Trans Amer Math Soc 368 12 8303 8348 arXiv 1308 5656 doi 10 1090 tran 6582 ISSN 0002 9947 MR 3551573 S2CID 117030298 Dietmar Bisch 1994 A note on intermediate subfactors Pacific J Math 163 2 201 216 doi 10 2140 pjm 1994 163 201 ISSN 0030 8730 MR 1262294 Zeph A Landau 2002 Exchange relation planar algebras Geom Dedicata 95 183 214 doi 10 1023 A 1021296230310 ISSN 0046 5755 MR 1950890 S2CID 119036175 Masaki Izumi Roberto Longo Sorin Popa 1998 A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras J Funct Anal 155 1 25 63 arXiv funct an 9604004 doi 10 1006 jfan 1997 3228 ISSN 0022 1236 MR 1622812 S2CID 12990106 Yasuo Watatani 1996 Lattices of intermediate subfactors J Funct Anal 140 2 312 334 doi 10 1006 jfan 1996 0110 hdl 2115 68899 ISSN 0022 1236 MR 1409040 Zeph A Landau 1998 Intermediate subfactors Thesis University of California at Berkeley 132pp Keshab Chandra Bakshi 2016 Intermediate planar algebra revisited International Journal of Mathematics 29 12 31pp arXiv 1611 05811 Bibcode 2016arXiv161105811B doi 10 1142 S0129167X18500775 S2CID 119305436 Chunlan Jiang Zhengwei Liu Jinsong Wu 2016 Noncommutative uncertainty principles J Funct Anal 270 1 264 311 arXiv 1408 1165 doi 10 1016 j jfa 2015 08 007 S2CID 16295570 Retrieved from https en wikipedia org w index php title Planar algebra amp oldid 1193609744, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.