fbpx
Wikipedia

Percolation threshold

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.[1]

Percolation models edit

The most common percolation model is to take a regular lattice, like a square lattice, and make it into a random network by randomly "occupying" sites (vertices) or bonds (edges) with a statistically independent probability p. At a critical threshold pc, large clusters and long-range connectivity first appear, and this is called the percolation threshold. Depending on the method for obtaining the random network, one distinguishes between the site percolation threshold and the bond percolation threshold. More general systems have several probabilities p1, p2, etc., and the transition is characterized by a critical surface or manifold. One can also consider continuum systems, such as overlapping disks and spheres placed randomly, or the negative space (Swiss-cheese models).

To understand the threshold, you can consider a quantity such as the probability that there is a continuous path from one boundary to another along occupied sites or bonds—that is, within a single cluster. For example, one can consider a square system, and ask for the probability P that there is a path from the top boundary to the bottom boundary. As a function of the occupation probability p, one finds a sigmoidal plot that goes from P=0 at p=0 to P=1 at p=1. The larger the square is compared to the lattice spacing, the sharper the transition will be. When the system size goes to infinity, P(p) will be a step function at the threshold value pc. For finite large systems, P(pc) is a constant whose value depends upon the shape of the system; for the square system discussed above, P(pc)=12 exactly for any lattice by a simple symmetry argument.

There are other signatures of the critical threshold. For example, the size distribution (number of clusters of size s) drops off as a power-law for large s at the threshold, ns(pc) ~ s−τ, where τ is a dimension-dependent percolation critical exponents. For an infinite system, the critical threshold corresponds to the first point (as p increases) where the size of the clusters become infinite.

In the systems described so far, it has been assumed that the occupation of a site or bond is completely random—this is the so-called Bernoulli percolation. For a continuum system, random occupancy corresponds to the points being placed by a Poisson process. Further variations involve correlated percolation, such as percolation clusters related to Ising and Potts models of ferromagnets, in which the bonds are put down by the Fortuin–Kasteleyn method.[2] In bootstrap or k-sat percolation, sites and/or bonds are first occupied and then successively culled from a system if a site does not have at least k neighbors. Another important model of percolation, in a different universality class altogether, is directed percolation, where connectivity along a bond depends upon the direction of the flow.

Over the last several decades, a tremendous amount of work has gone into finding exact and approximate values of the percolation thresholds for a variety of these systems. Exact thresholds are only known for certain two-dimensional lattices that can be broken up into a self-dual array, such that under a triangle-triangle transformation, the system remains the same. Studies using numerical methods have led to numerous improvements in algorithms and several theoretical discoveries.

Simple duality in two dimensions implies that all fully triangulated lattices (e.g., the triangular, union jack, cross dual, martini dual and asanoha or 3-12 dual, and the Delaunay triangulation) all have site thresholds of 12, and self-dual lattices (square, martini-B) have bond thresholds of 12.

The notation such as (4,82) comes from Grünbaum and Shephard,[3] and indicates that around a given vertex, going in the clockwise direction, one encounters first a square and then two octagons. Besides the eleven Archimedean lattices composed of regular polygons with every site equivalent, many other more complicated lattices with sites of different classes have been studied.

Error bars in the last digit or digits are shown by numbers in parentheses. Thus, 0.729724(3) signifies 0.729724 ± 0.000003, and 0.74042195(80) signifies 0.74042195 ± 0.00000080. The error bars variously represent one or two standard deviations in net error (including statistical and expected systematic error), or an empirical confidence interval, depending upon the source.

Percolation on networks edit

For a random tree-like network (i.e., a connected network with no cycle) without degree-degree correlation, it can be shown that such network can have a giant component, and the percolation threshold (transmission probability) is given by

 .

Where   is the generating function corresponding to the excess degree distribution,   is the average degree of the network and   is the second moment of the degree distribution. So, for example, for an ER network, since the degree distribution is a Poisson distribution, the threshold is at  .

In networks with low clustering,  , the critical point gets scaled by   such that:[4]

 

This indicates that for a given degree distribution, the clustering leads to a larger percolation threshold, mainly because for a fixed number of links, the clustering structure reinforces the core of the network with the price of diluting the global connections. For networks with high clustering, strong clustering could induce the core–periphery structure, in which the core and periphery might percolate at different critical points, and the above approximate treatment is not applicable.[5]

Percolation in 2D edit

Thresholds on Archimedean lattices edit

 
This is a picture[6] of the 11 Archimedean Lattices or Uniform tilings, in which all polygons are regular and each vertex is surrounded by the same sequence of polygons. The notation "(34, 6)", for example, means that every vertex is surrounded by four triangles and one hexagon. Some common names that have been given to these lattices are listed in the table below.
Lattice z   Site percolation threshold Bond percolation threshold
3-12 or super-kagome, (3, 122 ) 3 3 0.807900764... = (1 − 2 sin (π/18))12[7] 0.74042195(80),[8] 0.74042077(2),[9] 0.740420800(2),[10] 0.7404207988509(8),[11][12] 0.740420798850811610(2),[13]
cross, truncated trihexagonal (4, 6, 12) 3 3 0.746,[14] 0.750,[15] 0.747806(4),[7] 0.7478008(2)[11] 0.6937314(1),[11] 0.69373383(72),[8] 0.693733124922(2)[13]
square octagon, bathroom tile, 4-8, truncated square

(4, 82)

3 - 0.729,[14] 0.729724(3),[7] 0.7297232(5)[11] 0.6768,[16] 0.67680232(63),[8] 0.6768031269(6),[11] 0.6768031243900113(3),[13]
honeycomb (63) 3 3 0.6962(6),[17] 0.697040230(5),[11] 0.6970402(1),[18] 0.6970413(10),[19] 0.697043(3),[7] 0.652703645... = 1-2 sin (π/18), 1+ p3-3p2=0[20]
kagome (3, 6, 3, 6) 4 4 0.652703645... = 1 − 2 sin(π/18)[20] 0.5244053(3),[21] 0.52440516(10),[19] 0.52440499(2),[18] 0.524404978(5),[9] 0.52440572...,[22] 0.52440500(1),[10] 0.524404999173(3),[11][12] 0.524404999167439(4)[23] 0.52440499916744820(1)[13]
ruby,[24] rhombitrihexagonal (3, 4, 6, 4) 4 4 0.620,[14] 0.621819(3),[7] 0.62181207(7)[11] 0.52483258(53),[8] 0.5248311(1),[11] 0.524831461573(1)[13]
square (44) 4 4 0.59274(10),[25] 0.59274605079210(2),[23] 0.59274601(2),[11] 0.59274605095(15),[26] 0.59274621(13),[27] 0.592746050786(3),[28] 0.59274621(33),[29] 0.59274598(4),[30][31] 0.59274605(3),[18] 0.593(1),[32] 0.591(1),[33] 0.569(13),[34] 0.59274(5)[35] 12
snub hexagonal, maple leaf[36] (34,6) 5 5 0.579[15] 0.579498(3)[7] 0.43430621(50),[8] 0.43432764(3),[11] 0.4343283172240(6),[13]
snub square, puzzle (32, 4, 3, 4 ) 5 5 0.550,[14][37] 0.550806(3)[7] 0.41413743(46),[8] 0.4141378476(7),[11] 0.4141378565917(1),[13]
frieze, elongated triangular(33, 42) 5 5 0.549,[14] 0.550213(3),[7] 0.5502(8)[38] 0.4196(6),[38] 0.41964191(43),[8] 0.41964044(1),[11] 0.41964035886369(2) [13]
triangular (36) 6 6 12 0.347296355... = 2 sin (π/18), 1 + p3 − 3p = 0[20]

Note: sometimes "hexagonal" is used in place of honeycomb, although in some contexts a triangular lattice is also called a hexagonal lattice. z = bulk coordination number.

2D lattices with extended and complex neighborhoods edit

In this section, sq-1,2,3 corresponds to square (NN+2NN+3NN),[39] etc. Equivalent to square-2N+3N+4N,[40] sq(1,2,3).[41] tri = triangular, hc = honeycomb.

Lattice z Site percolation threshold Bond percolation threshold
sq-1, sq-2, sq-3, sq-5 4 0.5927...[39][40] (square site)
sq-1,2, sq-2,3, sq-3,5 8 0.407...[39][40][42] (square matching) 0.25036834(6),[18] 0.2503685,[43] 0.25036840(4)[44]
sq-1,3 8 0.337[39][40] 0.2214995[43]
sq-2,5: 2NN+5NN 8 0.337[40]
hc-1,2,3: honeycomb-NN+2NN+3NN 12 0.300,[41] 0.300,[15] 0.302960... = 1-pc(site, hc) [45]
tri-1,2: triangular-NN+2NN 12 0.295,[41] 0.289,[15] 0.290258(19)[46]
tri-2,3: triangular-2NN+3NN 12 0.232020(36),[47] 0.232020(20)[46]
sq-4: square-4NN 8 0.270...[40]
sq-1,5: square-NN+5NN (r ≤ 2) 8 0.277[40]
sq-1,2,3: square-NN+2NN+3NN 12 0.292,[48] 0.290(5) [49] 0.289,[15] 0.288,[39][40] 0.1522203[43]
sq-2,3,5: square-2NN+3NN+5NN 12 0.288[40]
sq-1,4: square-NN+4NN 12 0.236[40]
sq-2,4: square-2NN+4NN 12 0.225[40]
tri-4: triangular-4NN 12 0.192450(36),[47] 0.1924428(50)[46]
hc-2,4: honeycomb-2NN+4NN 12 0.2374[50]
tri-1,3: triangular-NN+3NN 12 0.264539(21)[46]
tri-1,2,3: triangular-NN+2NN+3NN 18 0.225,[48] 0.215,[15] 0.215459(36)[47] 0.2154657(17)[46]
sq-3,4: 3NN+4NN 12 0.221[40]
sq-1,2,5: NN+2NN+5NN 12 0.240[40] 0.13805374[43]
sq-1,3,5: NN+3NN+5NN 12 0.233[40]
sq-4,5: 4NN+5NN 12 0.199[40]
sq-1,2,4: NN+2NN+4NN 16 0.219[40]
sq-1,3,4: NN+3NN+4NN 16 0.208[40]
sq-2,3,4: 2NN+3NN+4NN 16 0.202[40]
sq-1,4,5: NN+4NN+5NN 16 0.187[40]
sq-2,4,5: 2NN+4NN+5NN 16 0.182[40]
sq-3,4,5: 3NN+4NN+5NN 16 0.179[40]
sq-1,2,3,5: NN+2NN+3NN+5NN 16 0.208[40] 0.1032177[43]
tri-4,5: 4NN+5NN 18 0.140250(36),[47]
sq-1,2,3,4: NN+2NN+3NN+4NN ( ) 20 0.19671(9),[51] 0.196,[40] 0.196724(10)[52] 0.0841509[43]
sq-1,2,4,5: NN+2NN+4NN+5NN 20 0.177[40]
sq-1,3,4,5: NN+3NN+4NN+5NN 20 0.172[40]
sq-2,3,4,5: 2NN+3NN+4NN+5NN 20 0.167[40]
sq-1,2,3,5,6: NN+2NN+3NN+5NN+6NN 20 0.0783110[43]
sq-1,2,3,4,5: NN+2NN+3NN+4NN+5NN ( ) 24 0.164[40]
tri-1,4,5: NN+4NN+5NN 24 0.131660(36)[47]
sq-1,...,6: NN+...+6NN (r≤3) 28 0.142[15] 0.0558493[43]
tri-2,3,4,5: 2NN+3NN+4NN+5NN 30 0.117460(36)[47] 0.135823(27)[46]
tri-1,2,3,4,5: NN+2NN+3NN+4NN+5NN
36 0.115,[15] 0.115740(36),[47] 0.1157399(58) [46]
sq-1,...,7: NN+...+7NN ( ) 36 0.113[15] 0.04169608[43]
square: square distance ≤ 4 40 0.105(5)[49]
sq-(1,...,8: NN+..+8NN ( ) 44 0.095,[37] 0.095765(5),[52] 0.09580(2)[51]
sq-1,...,9: NN+..+9NN (r≤4) 48 0.086[15] 0.02974268[43]
sq-1,...,11: NN+...+11NN ( ) 60 0.02301190(3)[43]
sq-1,...,23 (r ≤ 7) 148 0.008342595[44]
sq-1,...,32: NN+...+32NN ( ) 224 0.0053050415(33)[43]
sq-1,...,86: NN+...+86NN (r≤15) 708 0.001557644(4)[53]
sq-1,...,141: NN+...+141NN ( ) 1224 0.000880188(90)[43]
sq-1,...,185: NN+...+185NN (r≤23) 1652 0.000645458(4)[53]
sq-1,...,317: NN+...+317NN (r≤31) 3000 0.000349601(3)[53]
sq-1,...,413: NN+...+413NN ( ) 4016 0.0002594722(11)[43]
square: square distance ≤ 6 84 0.049(5)[49]
square: square distance ≤ 8 144 0.028(5)[49]
square: square distance ≤ 10 220 0.019(5)[49]
2x2 lattice squares* (also above) 20 φc = 0.58365(2),[52] pc = 0.196724(10),[52] 0.19671(9),[51]
3x3 lattice squares* (also above) 44 φc = 0.59586(2),[52] pc = 0.095765(5),[52] 0.09580(2) [51]
4x4 lattice squares* 76 φc = 0.60648(1),[52] pc = 0.0566227(15),[52] 0.05665(3),[51]
5x5 lattice squares* 116 φc = 0.61467(2),[52] pc = 0.037428(2),[52] 0.03745(2),[51]
6x6 lattice squares* 220 pc = 0.02663(1),[51]
10x10 lattice squares* 436 φc = 0.36391(2),[52] pc = 0.0100576(5) [52]

Here NN = nearest neighbor, 2NN = second nearest neighbor (or next nearest neighbor), 3NN = third nearest neighbor (or next-next nearest neighbor), etc. These are also called 2N, 3N, 4N respectively in some papers.[39]

  • For overlapping or touching squares,  (site) given here is the net fraction of sites occupied   similar to the   in continuum percolation. The case of a 2×2 square is equivalent to percolation of a square lattice NN+2NN+3NN+4NN or sq-1,2,3,4 with threshold   with  .[52] The 3×3 square corresponds to sq-1,2,3,4,5,6,7,8 with z=44 and  . The value of z for a k x k square is (2k+1)2-5. For larger overlapping squares, see.[52]

2D distorted lattices edit

Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the box  , and considers percolation when sites are within Euclidean distance   of each other.

Lattice       Site percolation threshold Bond percolation threshold
square 0.2 1.1 0.8025(2)[54]
0.2 1.2 0.6667(5)[54]
0.1 1.1 0.6619(1)[54]

Overlapping shapes on 2D lattices edit

Site threshold is number of overlapping objects per lattice site. k is the length (net area). Overlapping squares are shown in the complex neighborhood section. Here z is the coordination number to k-mers of either orientation, with   for   sticks.

System k z Site coverage φc Site percolation threshold pc
1 x 2 dimer, square lattice 2 22 0.54691[51]

0.5483(2)[55]

0.17956(3)[51]

0.18019(9)[55]

1 x 2 aligned dimer, square lattice 2 14 0.5715(18)[55] 0.3454(13) [55]
1 x 3 trimer, square lattice 3 37 0.49898[51]

0.50004(64)[55]

0.10880(2)[51]

0.1093(2)[55]

1 x 4 stick, square lattice 4 54 0.45761[51] 0.07362(2)[51]
1 x 5 stick, square lattice 5 73 0.42241[51] 0.05341(1)[51]
1 x 6 stick, square lattice 6 94 0.39219[51] 0.04063(2)[51]

The coverage is calculated from   by   for   sticks, because there are   sites where a stick will cause an overlap with a given site.

For aligned   sticks:  

Approximate formulas for thresholds of Archimedean lattices edit

Lattice z Site percolation threshold Bond percolation threshold
(3, 122 ) 3
(4, 6, 12) 3
(4, 82) 3 0.676835..., 4p3 + 3p4 − 6 p5 − 2 p6 = 1[56]
honeycomb (63) 3
kagome (3, 6, 3, 6) 4 0.524430..., 3p2 + 6p3 − 12 p4+ 6 p5p6 = 1[57]
(3, 4, 6, 4) 4
square (44) 4 12 (exact)
(34,6 ) 5 0.434371..., 12p3 + 36p4 − 21p5 − 327 p6 + 69p7 + 2532p8 − 6533 p9 + 8256 p10 − 6255p11 + 2951p12 − 837 p13 + 126 p14 − 7p15 = 1 [citation needed]
snub square, puzzle (32, 4, 3, 4 ) 5
(33, 42) 5
triangular (36) 6 12 (exact)

AB percolation and colored percolation in 2D edit

In AB percolation, a   is the proportion of A sites among B sites, and bonds are drawn between sites of opposite species.[58] It is also called antipercolation.

In colored percolation, occupied sites are assigned one of   colors with equal probability, and connection is made along bonds between neighbors of different colors.[59]

Lattice z   Site percolation threshold
triangular AB 6 6 0.2145,[58] 0.21524(34),[60] 0.21564(3)[61]
AB on square-covering lattice 6 6  [62]
square three-color 4 4 0.80745(5)[59]
square four-color 4 4 0.73415(4)[59]
square five-color 4 4 0.69864(7)[59]
square six-color 4 4 0.67751(5)[59]
triangular two-color 6 6 0.72890(4)[59]
triangular three-color 6 6 0.63005(4)[59]
triangular four-color 6 6 0.59092(3)[59]
triangular five-color 6 6 0.56991(5)[59]
triangular six-color 6 6 0.55679(5)[59]

Site-bond percolation in 2D edit

Site bond percolation. Here   is the site occupation probability and   is the bond occupation probability, and connectivity is made only if both the sites and bonds along a path are occupied. The criticality condition becomes a curve   = 0, and some specific critical pairs   are listed below.

Square lattice:

Lattice z   Site percolation threshold Bond percolation threshold
square 4 4 0.615185(15)[63] 0.95
0.667280(15)[63] 0.85
0.732100(15)[63] 0.75
0.75 0.726195(15)[63]
0.815560(15)[63] 0.65
0.85 0.615810(30)[63]
0.95 0.533620(15)[63]

Honeycomb (hexagonal) lattice:

Lattice z   Site percolation threshold Bond percolation threshold
honeycomb 3 3 0.7275(5)[64] 0.95
0. 0.7610(5)[64] 0.90
0.7986(5)[64] 0.85
0.80 0.8481(5)[64]
0.8401(5)[64] 0.80
0.85 0.7890(5)[64]
0.90 0.7377(5)[64]
0.95 0.6926(5)[64]

Kagome lattice:

Lattice z   Site percolation threshold Bond percolation threshold
kagome 4 4 0.6711(4),[64] 0.67097(3)[65] 0.95
0.6914(5),[64] 0.69210(2)[65] 0.90
0.7162(5),[64] 0.71626(3)[65] 0.85
0.7428(5),[64] 0.74339(3)[65] 0.80
0.75 0.7894(9)[64]
0.7757(8),[64] 0.77556(3)[65] 0.75
0.80 0.7152(7)[64]
0.81206(3)[65] 0.70
0.85 0.6556(6)[64]
0.85519(3)[65] 0.65
0.90 0.6046(5)[64]
0.90546(3)[65] 0.60
0.95 0.5615(4)[64]
0.96604(4)[65] 0.55
0.9854(3)[65] 0.53

* For values on different lattices, see "An investigation of site-bond percolation on many lattices".[64]

Approximate formula for site-bond percolation on a honeycomb lattice

Lattice z   Threshold Notes
(63) honeycomb 3 3  , When equal: ps = pb = 0.82199 approximate formula, ps = site prob., pb = bond prob., pbc = 1 − 2 sin (π/18),[19] exact at ps=1, pb=pbc.

Archimedean duals (Laves lattices) edit

 
Example image caption

Laves lattices are the duals to the Archimedean lattices. Drawings from.[6] See also Uniform tilings.

Lattice z   Site percolation threshold Bond percolation threshold
Cairo pentagonal

D(32,4,3,4)=(23)(53)+(13)(54)

3,4 3 13 0.6501834(2),[11] 0.650184(5)[6] 0.585863... = 1 − pcbond(32,4,3,4)
Pentagonal D(33,42)=(13)(54)+(23)(53) 3,4 3 13 0.6470471(2),[11] 0.647084(5),[6] 0.6471(6)[38] 0.580358... = 1 − pcbond(33,42), 0.5800(6)[38]
D(34,6)=(15)(46)+(45)(43) 3,6 3 35 0.639447[6] 0.565694... = 1 − pcbond(34,6 )
dice, rhombille tiling

D(3,6,3,6) = (13)(46) + (23)(43)

3,6 4 0.5851(4),[66] 0.585040(5)[6] 0.475595... = 1 − pcbond(3,6,3,6 )
ruby dual

D(3,4,6,4) = (16)(46) + (26)(43) + (36)(44)

3,4,6 4 0.582410(5)[6] 0.475167... = 1 − pcbond(3,4,6,4 )
union jack, tetrakis square tiling

D(4,82) = (12)(34) + (12)(38)

4,8 6 12 0.323197... = 1 − pcbond(4,82 )
bisected hexagon,[67] cross dual

D(4,6,12)= (16)(312)+(26)(36)+(12)(34)

4,6,12 6 12 0.306266... = 1 − pcbond(4,6,12)
asanoha (hemp leaf)[68]

D(3, 122)=(23)(33)+(13)(312)

3,12 6 12 0.259579... = 1 − pcbond(3, 122)

2-uniform lattices edit

Top 3 lattices: #13 #12 #36
Bottom 3 lattices: #34 #37 #11

 
20 2 uniform lattices

[3]

Top 2 lattices: #35 #30
Bottom 2 lattices: #41 #42

 
20 2 uniform lattices

[3]

Top 4 lattices: #22 #23 #21 #20
Bottom 3 lattices: #16 #17 #15

 
20 2 uniform lattices

[3]

Top 2 lattices: #31 #32
Bottom lattice: #33

 
20 2 uniform lattices

[3]

# Lattice z   Site percolation threshold Bond percolation threshold
41 (12)(3,4,3,12) + (12)(3, 122) 4,3 3.5 0.7680(2)[69] 0.67493252(36)[citation needed]
42 (13)(3,4,6,4) + (23)(4,6,12) 4,3 313 0.7157(2)[69] 0.64536587(40)[citation needed]
36 (17)(36) + (67)(32,4,12) 6,4 4 27 0.6808(2)[69] 0.55778329(40)[citation needed]
15 (23)(32,62) + (13)(3,6,3,6) 4,4 4 0.6499(2)[69] 0.53632487(40)[citation needed]
34 (17)(36) + (67)(32,62) 6,4 4 27 0.6329(2)[69] 0.51707873(70)[citation needed]
16 (45)(3,42,6) + (15)(3,6,3,6) 4,4 4 0.6286(2)[69] 0.51891529(35)[citation needed]
17 (45)(3,42,6) + (15)(3,6,3,6)* 4,4 4 0.6279(2)[69] 0.51769462(35)[citation needed]
35 (23)(3,42,6) + (13)(3,4,6,4) 4,4 4 0.6221(2)[69] 0.51973831(40)[citation needed]
11 (12)(34,6) + (12)(32,62) 5,4 4.5 0.6171(2)[69] 0.48921280(37)[citation needed]
37 (12)(33,42) + (12)(3,4,6,4) 5,4 4.5 0.5885(2)[69] 0.47229486(38)[citation needed]
30 (12)(32,4,3,4) + (12)(3,4,6,4) 5,4 4.5 0.5883(2)[69] 0.46573078(72)[citation needed]
23 (12)(33,42) + (12)(44) 5,4 4.5 0.5720(2)[69] 0.45844622(40)[citation needed]
22 (23)(33,42) + (13)(44) 5,4 4 23 0.5648(2)[69] 0.44528611(40)[citation needed]
12 (14)(36) + (34)(34,6) 6,5 5 14 0.5607(2)[69] 0.41109890(37)[citation needed]
33 (12)(33,42) + (12)(32,4,3,4) 5,5 5 0.5505(2)[69] 0.41628021(35)[citation needed]
32 (13)(33,42) + (23)(32,4,3,4) 5,5 5 0.5504(2)[69] 0.41549285(36)[citation needed]
31 (17)(36) + (67)(32,4,3,4) 6,5 5 17 0.5440(2)[69] 0.40379585(40)[citation needed]
13 (12)(36) + (12)(34,6) 6,5 5.5 0.5407(2)[69] 0.38914898(35)[citation needed]
21 (13)(36) + (23)(33,42) 6,5 5 13 0.5342(2)[69] 0.39491996(40)[citation needed]
20 (12)(36) + (12)(33,42) 6,5 5.5 0.5258(2)[69] 0.38285085(38)[citation needed]

Inhomogeneous 2-uniform lattice edit

 
2-uniform lattice #37

This figure shows something similar to the 2-uniform lattice #37, except the polygons are not all regular—there is a rectangle in the place of the two squares—and the size of the polygons is changed. This lattice is in the isoradial representation in which each polygon is inscribed in a circle of unit radius. The two squares in the 2-uniform lattice must now be represented as a single rectangle in order to satisfy the isoradial condition. The lattice is shown by black edges, and the dual lattice by red dashed lines. The green circles show the isoradial constraint on both the original and dual lattices. The yellow polygons highlight the three types of polygons on the lattice, and the pink polygons highlight the two types of polygons on the dual lattice. The lattice has vertex types (12)(33,42) + (12)(3,4,6,4), while the dual lattice has vertex types (115)(46)+(615)(42,52)+(215)(53)+(615)(52,4). The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice. These results follow from the isoradial condition[70] but also follow from applying the star-triangle transformation to certain stars on the honeycomb lattice. Finally, it can be generalized to having three different probabilities in the three different directions, p1, p2 and p3 for the long bonds, and 1 − p1, 1 − p2, and 1 − p3 for the short bonds, where p1, p2 and p3 satisfy the critical surface for the inhomogeneous triangular lattice.

Thresholds on 2D bow-tie and martini lattices edit

To the left, center, and right are: the martini lattice, the martini-A lattice, the martini-B lattice. Below: the martini covering/medial lattice, same as the 2×2, 1×1 subnet for kagome-type lattices (removed).

 
Example image caption

Some other examples of generalized bow-tie lattices (a-d) and the duals of the lattices (e-h):

 
Example image caption
Lattice z   Site percolation threshold Bond percolation threshold
martini (34)(3,92)+(14)(93) 3 3 0.764826..., 1 + p4 − 3p3 = 0[71] 0.707107... = 1/2[72]
bow-tie (c) 3,4 3 17 0.672929..., 1 − 2p3 − 2p4 − 2p5 − 7p6 + 18p7 + 11p8 − 35p9 + 21p10 − 4p11 = 0[73]
bow-tie (d) 3,4 3 13 0.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0[73]
martini-A (23)(3,72)+(13)(3,73) 3,4 3 13 1/2[73] 0.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0[73]
bow-tie dual (e) 3,4 3 23 0.595482..., 1-pcbond (bow-tie (a))[73]
bow-tie (b) 3,4,6 3 23 0.533213..., 1 − p − 2p3 -4p4-4p5+156+ 13p7-36p8+19p9+ p10 + p11=0[73]
martini covering/medial (12)(33,9) + (12)(3,9,3,9) 4 4 0.707107... = 1/2[72] 0.57086651(33)[citation needed]
martini-B (12)(3,5,3,52) + (12)(3,52) 3, 5 4 0.618034... = 2/(1 + 5), 1- p2p = 0[71][73] 12[72][73]
bow-tie dual (f) 3,4,8 4 25 0.466787..., 1 − pcbond (bow-tie (b))[73]
bow-tie (a) (12)(32,4,32,4) + (12)(3,4,3) 4,6 5 0.5472(2),[38] 0.5479148(7)[74] 0.404518..., 1 − p − 6p2 + 6p3p5 = 0[73][75]
bow-tie dual (h) 3,6,8 5 0.374543..., 1 − pcbond(bow-tie (d))[73]
bow-tie dual (g) 3,6,10 5 12 0.547... = pcsite(bow-tie(a)) 0.327071..., 1 − pcbond(bow-tie (c))[73]
martini dual (12)(33) + (12)(39) 3,9 6 12 0.292893... = 1 − 1/2[72]

Thresholds on 2D covering, medial, and matching lattices edit

Lattice z   Site percolation threshold Bond percolation threshold
(4, 6, 12) covering/medial 4 4 pcbond(4, 6, 12) = 0.693731... 0.5593140(2),[11] 0.559315(1)[citation needed]
(4, 82) covering/medial, square kagome 4 4 pcbond(4,82) = 0.676803... 0.544798017(4),[11] 0.54479793(34)[citation needed]
(34, 6) medial 4 4 0.5247495(5)[11]
(3,4,6,4) medial 4 4 0.51276[11]
(32, 4, 3, 4) medial 4 4 0.512682929(8)[11]
(33, 42) medial 4 4 0.5125245984(9)[11]
square covering (non-planar) 6 6 12 0.3371(1)[56]
square matching lattice (non-planar) 8 8 1 − pcsite(square) = 0.407253... 0.25036834(6)[18]
 
(4, 6, 12) covering/medial lattice
 
(4, 82) covering/medial lattice
 
(3,122) covering/medial lattice (in light grey), equivalent to the kagome (2 × 2) subnet, and in black, the dual of these lattices.
 
(3,4,6,4) covering/medial lattice, equivalent to the 2-uniform lattice #30, but with facing triangles made into a diamond. This pattern appears in Iranian tilework.[76] such as Western tomb tower, Kharraqan.[77]
 
(3,4,6,4) medial dual, shown in red, with medial lattice in light gray behind it

Thresholds on 2D chimera non-planar lattices edit

Lattice z   Site percolation threshold Bond percolation threshold
K(2,2) 4 4 0.51253(14)[78] 0.44778(15)[78]
K(3,3) 6 6 0.43760(15)[78] 0.35502(15)[78]
K(4,4) 8 8 0.38675(7)[78] 0.29427(12)[78]
K(5,5) 10 10 0.35115(13)[78] 0.25159(13)[78]
K(6,6) 12 12 0.32232(13)[78] 0.21942(11)[78]
K(7,7) 14 14 0.30052(14)[78] 0.19475(9)[78]
K(8,8) 16 16 0.28103(11)[78] 0.17496(10)[78]

Thresholds on subnet lattices edit

 
Example image caption

The 2 x 2, 3 x 3, and 4 x 4 subnet kagome lattices. The 2 × 2 subnet is also known as the "triangular kagome" lattice.[79]

Lattice z   Site percolation threshold Bond percolation threshold
checkerboard – 2 × 2 subnet 4,3 0.596303(1)[80]
checkerboard – 4 × 4 subnet 4,3 0.633685(9)[80]
checkerboard – 8 × 8 subnet 4,3 0.642318(5)[80]
checkerboard – 16 × 16 subnet 4,3 0.64237(1)[80]
checkerboard – 32 × 32 subnet 4,3 0.64219(2)[80]
checkerboard –   subnet 4,3 0.642216(10)[80]
kagome – 2 × 2 subnet = (3, 122) covering/medial 4 pcbond (3, 122) = 0.74042077... 0.600861966960(2),[11] 0.6008624(10),[19] 0.60086193(3)[9]
kagome – 3 × 3 subnet 4 0.6193296(10),[19] 0.61933176(5),[9] 0.61933044(32)[citation needed]
kagome – 4 × 4 subnet 4 0.625365(3),[19] 0.62536424(7)[9]
kagome –   subnet 4 0.628961(2)[19]
kagome – (1 × 1):(2 × 2) subnet = martini covering/medial 4 pcbond(martini) = 1/2 = 0.707107... 0.57086648(36)[citation needed]
kagome – (1 × 1):(3 × 3) subnet 4,3 0.728355596425196...[9] 0.58609776(37)[citation needed]
kagome – (1 × 1):(4 × 4) subnet 0.738348473943256...[9]
kagome – (1 × 1):(5 × 5) subnet 0.743548682503071...[9]
kagome – (1 × 1):(6 × 6) subnet 0.746418147634282...[9]
kagome – (2 × 2):(3 × 3) subnet 0.61091770(30)[citation needed]
triangular – 2 × 2 subnet 6,4 0.471628788[80]
triangular – 3 × 3 subnet 6,4 0.509077793[80]
triangular – 4 × 4 subnet 6,4 0.524364822[80]
triangular – 5 × 5 subnet 6,4 0.5315976(10)[80]
triangular –   subnet 6,4 0.53993(1)[80]

Thresholds of random sequentially adsorbed objects edit

(For more results and comparison to the jamming density, see Random sequential adsorption)

system z Site threshold
dimers on a honeycomb lattice 3 0.69,[81] 0.6653 [82]
dimers on a triangular lattice 6 0.4872(8),[81] 0.4873,[82]
aligned linear dimers on a triangular lattice 6 0.5157(2) [83]
aligned linear 4-mers on a triangular lattice 6 0.5220(2)[83]
aligned linear 8-mers on a triangular lattice 6 0.5281(5)[83]
aligned linear 12-mers on a triangular lattice 6 0.5298(8)[83]
linear 16-mers on a triangular lattice 6 aligned 0.5328(7)[83]
linear 32-mers on a triangular lattice 6 aligned 0.5407(6)[83]
linear 64-mers on a triangular lattice 6 aligned 0.5455(4)[83]
aligned linear 80-mers on a triangular lattice 6 0.5500(6)[83]
aligned linear k   on a triangular lattice 6 0.582(9)[83]
dimers and 5% impurities, triangular lattice 6 0.4832(7)[84]
parallel dimers on a square lattice 4 0.5863[85]
dimers on a square lattice 4 0.5617,[85] 0.5618(1),[86] 0.562,[87] 0.5713[82]
linear 3-mers on a square lattice 4 0.528[87]
3-site 120° angle, 5% impurities, triangular lattice 6 0.4574(9)[84]
3-site triangles, 5% impurities, triangular lattice 6 0.5222(9)[84]
linear trimers and 5% impurities, triangular lattice 6 0.4603(8)[84]
linear 4-mers on a square lattice 4 0.504[87]
linear 5-mers on a square lattice 4 0.490[87]
linear 6-mers on a square lattice 4 0.479[87]
linear 8-mers on a square lattice 4 0.474,[87] 0.4697(1)[86]
linear 10-mers on a square lattice 4 0.469[87]
linear 16-mers on a square lattice 4 0.4639(1)[86]
linear 32-mers on a square lattice 4 0.4747(2)[86]

The threshold gives the fraction of sites occupied by the objects when site percolation first takes place (not at full jamming). For longer k-mers see Ref.[88]

Thresholds of full dimer coverings of two dimensional lattices edit

Here, we are dealing with networks that are obtained by covering a lattice with dimers, and then consider bond percolation on the remaining bonds. In discrete mathematics, this problem is known as the 'perfect matching' or the 'dimer covering' problem.

system z Bond threshold
Parallel covering, square lattice 6 0.381966...[89]
Shifted covering, square lattice 6 0.347296...[89]
Staggered covering, square lattice 6 0.376825(2)[89]
Random covering, square lattice 6 0.367713(2)[89]
Parallel covering, triangular lattice 10 0.237418...[89]
Staggered covering, triangular lattice 10 0.237497(2)[89]
Random covering, triangular lattice 10 0.235340(1)[89]

Thresholds of polymers (random walks) on a square lattice edit

System is composed of ordinary (non-avoiding) random walks of length l on the square lattice.[90]

l (polymer length) z Bond percolation
1 4 0.5(exact)[91]
2 4 0.47697(4)[91]
4 4 0.44892(6)[91]
8 4 0.41880(4)[91]

Thresholds of self-avoiding walks of length k added by random sequential adsorption edit

k z Site thresholds Bond thresholds
1 4 0.593(2)[92] 0.5009(2)[92]
2 4 0.564(2)[92] 0.4859(2)[92]
3 4 0.552(2)[92] 0.4732(2)[92]
4 4 0.542(2)[92] 0.4630(2)[92]
5 4 0.531(2)[92] 0.4565(2)[92]
6 4 0.522(2)[92] 0.4497(2)[92]
7 4 0.511(2)[92] 0.4423(2)[92]
8 4 0.502(2)[92] 0.4348(2)[92]
9 4 0.493(2)[92] 0.4291(2)[92]
10 4 0.488(2)[92] 0.4232(2)[92]
11 4 0.482(2)[92] 0.4159(2)[92]
12 4 0.476(2)[92] 0.4114(2)[92]
13 4 0.471(2)[92] 0.4061(2)[92]
14 4 0.467(2)[92] 0.4011(2)[92]
15 4 0.4011(2)[92] 0.3979(2)[92]

Thresholds on 2D inhomogeneous lattices edit

Lattice z Site percolation threshold Bond percolation threshold
bow-tie with p = 12 on one non-diagonal bond 3 0.3819654(5),[93]  [56]

Thresholds for 2D continuum models edit

System Φc ηc nc
Disks of radius r 0.67634831(2),[94] 0.6763475(6),[95] 0.676339(4),[96] 0.6764(4),[97] 0.6766(5),[98] 0.676(2),[99] 0.679,[100] 0.674[101] 0.676,[102] 0.680[103] 1.1280867(5),[104] 1.1276(9),[105] 1.12808737(6),[94] 1.128085(2),[95] 1.128059(12),[96] 1.13,[citation needed] 0.8[106] 1.43632505(10),[107] 1.43632545(8),[94] 1.436322(2),[95] 1.436289(16),[96] 1.436320(4),[108] 1.436323(3),[109] 1.438(2),[110] 1.216 (48)[111]
Ellipses, ε = 1.5 0.0043[100] 0.00431 2.059081(7)[109]
Ellipses, ε = 53 0.65[112] 1.05[112] 2.28[112]
Ellipses, ε = 2 0.6287945(12),[109] 0.63[112] 0.991000(3),[109] 0.99[112] 2.523560(8),[109] 2.5[112]
Ellipses, ε = 3 0.56[112] 0.82[112] 3.157339(8),[109] 3.14[112]
Ellipses, ε = 4 0.5[112] 0.69[112] 3.569706(8),[109] 3.5[112]
Ellipses, ε = 5 0.455,[100] 0.455,[102] 0.46[112] 0.607[100] 3.861262(12),[109] 3.86[100]
Ellipses, ε = 6 4.079365(17)[109]
Ellipses, ε = 7 4.249132(16)[109]
Ellipses, ε = 8 4.385302(15)[109]
Ellipses, ε = 9 4.497000(8)[109]
Ellipses, ε = 10 0.301,[100] 0.303,[102] 0.30[112] 0.358[100] 0.36[112] 4.590416(23)[109] 4.56,[100] 4.5[112]
Ellipses, ε = 15 4.894752(30)[109]
Ellipses, ε = 20 0.178,[100] 0.17[112] 0.196[100] 5.062313(39),[109] 4.99[100]
Ellipses, ε = 50 0.081[100] 0.084[100] 5.393863(28),[109] 5.38[100]
Ellipses, ε = 100 0.0417[100] 0.0426[100] 5.513464(40),[109] 5.42[100]
Ellipses, ε = 200 0.021[112] 0.0212[112] 5.40[112]
Ellipses, ε = 1000 0.0043[100] 0.00431 5.624756(22),[109] 5.5
Superellipses, ε = 1, m = 1.5 0.671[102]
Superellipses, ε = 2.5, m = 1.5 0.599[102]
Superellipses, ε = 5, m = 1.5 0.469[102]
Superellipses, ε = 10, m = 1.5 0.322[102]
disco-rectangles, ε = 1.5 1.894 [108]
disco-rectangles, ε = 2 2.245 [108]
Aligned squares of side   0.66675(2),[52] 0.66674349(3),[94] 0.66653(1),[113] 0.6666(4),[114] 0.668[101] 1.09884280(9),[94] 1.0982(3),[113] 1.098(1)[114] 1.09884280(9),[94] 1.0982(3),[113] 1.098(1)[114]
Randomly oriented squares 0.62554075(4),[94] 0.6254(2)[114] 0.625,[102] 0.9822723(1),[94] 0.9819(6)[114] 0.982278(14)[115] 0.9822723(1),[94] 0.9819(6)[114] 0.982278(14)[115]
Randomly oriented squares within angle   0.6255(1)[114] 0.98216(15)[114]
Rectangles, ε = 1.1 0.624870(7) 0.980484(19) 1.078532(21)[115]
Rectangles, ε = 2 0.590635(5) 0.893147(13) 1.786294(26)[115]
Rectangles, ε = 3 0.5405983(34) 0.777830(7) 2.333491(22)[115]
Rectangles, ε = 4 0.4948145(38) 0.682830(8) 2.731318(30)[115]
Rectangles, ε = 5 0.4551398(31), 0.451[102] 0.607226(6) 3.036130(28)[115]
Rectangles, ε = 10 0.3233507(25), 0.319[102] 0.3906022(37) 3.906022(37)[115]
Rectangles, ε = 20 0.2048518(22) 0.2292268(27) 4.584535(54)[115]
Rectangles, ε = 50 0.09785513(36) 0.1029802(4) 5.149008(20)[115]
Rectangles, ε = 100 0.0523676(6) 0.0537886(6) 5.378856(60)[115]
Rectangles, ε = 200 0.02714526(34) 0.02752050(35) 5.504099(69)[115]
Rectangles, ε = 1000 0.00559424(6) 0.00560995(6) 5.609947(60)[115]
Sticks (needles) of length   5.63726(2),[116] 5.6372858(6),[94] 5.637263(11),[115] 5.63724(18) [117]
sticks with log-normal length dist. STD=0.5 4.756(3) [117]
sticks with correlated angle dist. s=0.5 6.6076(4) [117]
Power-law disks, x = 2.05 0.993(1)[118] 4.90(1) 0.0380(6)
Power-law disks, x = 2.25 0.8591(5)[118] 1.959(5) 0.06930(12)
Power-law disks, x = 2.5 0.7836(4)[118] 1.5307(17) 0.09745(11)
Power-law disks, x = 4 0.69543(6)[118] 1.18853(19) 0.18916(3)
Power-law disks, x = 5 0.68643(13)[118] 1.1597(3) 0.22149(8)
Power-law disks, x = 6 0.68241(8)[118] 1.1470(1) 0.24340(5)
Power-law disks, x = 7 0.6803(8)[118] 1.140(6) 0.25933(16)
Power-law disks, x = 8 0.67917(9)[118] 1.1368(5) 0.27140(7)
Power-law disks, x = 9 0.67856(12)[118] 1.1349(4) 0.28098(9)
Voids around disks of radius r 1 − Φc(disk) = 0.32355169(2),[94] 0.318(2),[119] 0.3261(6)[120]
 
2D continuum percolation with disks
 
2D continuum percolation with ellipses of aspect ratio 2

For disks,   equals the critical number of disks per unit area, measured in units of the diameter  , where   is the number of objects and   is the system size

For disks,   equals critical total disk area.

  gives the number of disk centers within the circle of influence (radius 2 r).

  is the critical disk radius.

  for ellipses of semi-major and semi-minor axes of a and b, respectively. Aspect ratio   with  .

  for rectangles of dimensions   and  . Aspect ratio   with  .

  for power-law distributed disks with  ,  .

  equals critical area fraction.

For disks, Ref.[99] use   where   is the density of disks of radius  .

  equals number of objects of maximum length   per unit area.

For ellipses,  

For void percolation,   is the critical void fraction.

For more ellipse values, see [109][112]

For more rectangle values, see [115]

Both ellipses and rectangles belong to the superellipses, with  . For more percolation values of superellipses, see.[102]

For the monodisperse particle systems, the percolation thresholds of concave-shaped superdisks are obtained as seen in [121]

For binary dispersions of disks, see [95][122][123]

Thresholds on 2D random and quasi-lattices edit

 
Voronoi diagram (solid lines) and its dual, the Delaunay triangulation (dotted lines), for a Poisson distribution of points
 
Delaunay triangulation
 
The Voronoi covering or line graph (dotted red lines) and the Voronoi diagram (black lines)
 
The Relative Neighborhood Graph (black lines)[124] superimposed on the Delaunay triangulation (black plus grey lines).
 
The Gabriel Graph, a subgraph of the Delaunay triangulation in which the circle surrounding each edge does not enclose any other points of the graph
 
Uniform Infinite Planar Triangulation, showing bond clusters. From[125]
Lattice z   Site percolation threshold Bond percolation threshold
Relative neighborhood graph 2.5576 0.796(2)[124] 0.771(2)[124]
Voronoi tessellation 3 0.71410(2),[126] 0.7151*[69] 0.68,[127] 0.6670(1),[128] 0.6680(5),[129] 0.666931(5)[126]
Voronoi covering/medial 4 0.666931(2)[126][128] 0.53618(2)[126]
Randomized kagome/square-octagon, fraction r=12 4 0.6599[16]
Penrose rhomb dual 4 0.6381(3)[66] 0.5233(2)[66]
Gabriel graph 4 0.6348(8),[130] 0.62[131] 0.5167(6),[130] 0.52[131]
Random-line tessellation, dual 4 0.586(2)[132]
Penrose rhomb 4 0.5837(3),[66] 0.0.5610(6) (weighted bonds)[133] 0.58391(1)[134] 0.483(5),[135] 0.4770(2)[66]
Octagonal lattice, "chemical" links (Ammann–Beenker tiling) 4 0.585[136] 0.48[136]
Octagonal lattice, "ferromagnetic" links 5.17 0.543[136] 0.40[136]
Dodecagonal lattice, "chemical" links 3.63 0.628[136] 0.54[136]
Dodecagonal lattice, "ferromagnetic" links 4.27 0.617[136] 0.495[136]
Delaunay triangulation 6 12[137] 0.3333(1)[128] 0.3326(5),[129] 0.333069(2)[126]
Uniform Infinite Planar Triangulation[138] 6 12 (23 – 1)/11 ≈ 0.2240[125][139]

*Theoretical estimate

Thresholds on 2D correlated systems edit

Assuming power-law correlations  

lattice α Site percolation threshold Bond percolation threshold
square 3 0.561406(4)[140]
square 2 0.550143(5)[140]
square 0.1 0.508(4)[140]

Thresholds on slabs edit

h is the thickness of the slab, h × ∞ × ∞. Boundary conditions (b.c.) refer to the top and bottom planes of the slab.

Lattice h z   Site percolation threshold Bond percolation threshold
simple cubic (open b.c.) 2 5 5 0.47424,[141] 0.4756[142]
bcc (open b.c.) 2 0.4155[142]
hcp (open b.c.) 2 0.2828[142]
diamond (open b.c.) 2 0.5451[142]
simple cubic (open b.c.) 3 0.4264[142]
bcc (open b.c.) 3 0.3531[142]
bcc (periodic b.c.) 3 0.21113018(38)[143]
hcp (open b.c.) 3 0.2548[142]
diamond (open b.c.) 3 0.5044[142]
simple cubic (open b.c.) 4 0.3997,[141] 0.3998[142]
bcc (open b.c.) 4 0.3232[142]
bcc (periodic b.c.) 4 0.20235168(59)[143]
hcp (open b.c.) 4 0.2405[142]
diamond (open b.c.) 4 0.4842[142]
simple cubic (periodic b.c.) 5 6 6 0.278102(5)[143]
simple cubic (open b.c.) 6 0.3708[142]
simple cubic (periodic b.c.) 6 6 6 0.272380(2)[143]
bcc (open b.c.) 6 0.2948[142]
hcp (open b.c.) 6 0.2261[142]
diamond (open b.c.) 6 0.4642[142]
simple cubic (periodic b.c.) 7 6 6 0.3459514(12)[143] 0.268459(1)[143]
simple cubic (open b.c.) 8 0.3557,[141] 0.3565[142]
simple cubic (periodic b.c.) 8 6 6 0.265615(5)[143]
bcc (open b.c.) 8 0.2811[142]
hcp (open b.c.) 8 0.2190[142]
diamond (open b.c.) 8 0.4549[142]
simple cubic (open b.c.) 12 0.3411[142]
bcc (open b.c.) 12 0.2688[142]
hcp (open b.c.) 12 0.2117[142]
diamond (open b.c.) 12 0.4456[142]
simple cubic (open b.c.) 16 0.3219,[141] 0.3339[142]
bcc (open b.c.) 16 0.2622[142]
hcp (open b.c.) 16 0.2086[142]
diamond (open b.c.) 16 0.4415[142]
simple cubic (open b.c.) 32 0.3219,[141]
simple cubic (open b.c.) 64 0.3165,[141]
simple cubic (open b.c.) 128 0.31398,[141]

Percolation in 3D edit

Lattice z   filling factor* filling fraction* Site percolation threshold Bond percolation threshold
(10,3)-a oxide (or site-bond)[144] 23 32 2.4 0.748713(22)[144] = (pc,bond(10,3) – a)12 = 0.742334(25)[145]
(10,3)-b oxide (or site-bond)[144] 23 32 2.4 0.233[146] 0.174 0.745317(25)[144] = (pc,bond(10,3) – b)12 = 0.739388(22)[145]
silicon dioxide (diamond site-bond)[144] 4,22 2 23 0.638683(35)[144]
Modified (10,3)-b[147] 32,2 2 23 0.627[147]
(8,3)-a[145] 3 3 0.577962(33)[145] 0.555700(22)[145]
(10,3)-a[145] gyroid[148] 3 3 0.571404(40)[145] 0.551060(37)[145]
(10,3)-b[145] 3 3 0.565442(40)[145] 0.546694(33)[145]
cubic oxide (cubic site-bond)[144] 6,23 3.5 0.524652(50)[144]
bcc dual 4 0.4560(6)[149] 0.4031(6)[149]
ice Ih 4 4 π 3 / 16 = 0.340087 0.147 0.433(11)[150] 0.388(10)[151]
diamond (Ice Ic) 4 4 π 3 / 16 = 0.340087 0.1462332 0.4299(8),[152] 0.4299870(4),[153] 0.426+0.08
−0.02
,[154] 0.4297(4) [155] 0.4301(4),[156] 0.428(4),[157] 0.425(15),[158] 0.425,[41][48] 0.436(12)[150]
0.3895892(5),[153] 0.3893(2),[156] 0.3893(3),[155] 0.388(5),[158] 0.3886(5),[152] 0.388(5)[157] 0.390(11)[151]
diamond dual 6 23 0.3904(5)[149] 0.2350(5)[149]
3D kagome (covering graph of the diamond lattice) 6 π 2 / 12 = 0.37024 0.1442 0.3895(2)[159] =pc(site) for diamond dual and pc(bond) for diamond lattice[149] 0.2709(6)[149]
Bow-tie stack dual 5 13 0.3480(4)[38] 0.2853(4)[38]
honeycomb stack 5 5 0.3701(2)[38] 0.3093(2)[38]
octagonal stack dual 5 5 0.3840(4)[38] 0.3168(4)[38]
pentagonal stack 5 13 0.3394(4)[38] 0.2793(4)[38]
kagome stack 6 6 0.453450 0.1517 0.3346(4)[38] 0.2563(2)[38]
fcc dual 42,8 5 13 0.3341(5)[149] 0.2703(3)[149]
simple cubic 6 6 π / 6 = 0.5235988 0.1631574 0.307(10),[158] 0.307,[41] 0.3115(5),[160] 0.3116077(2),[161] 0.311604(6),[162] 0.311605(5),[163] 0.311600(5),[164] 0.3116077(4),[165] 0.3116081(13),[166] 0.3116080(4),[167] 0.3116060(48),[168] 0.3116004(35),[169] 0.31160768(15)[153] 0.247(5),[158] 0.2479(4),[152] 0.2488(2),[170] 0.24881182(10),[161] 0.2488125(25),[171] 0.2488126(5),[172]
hcp dual 44,82 5 13 0.3101(5)[149] 0.2573(3)[149]
dice stack 5,8 6 π 3 / 9 = 0.604600 0.1813 0.2998(4)[38] 0.2378(4)[38]
bow-tie stack 7 7 0.2822(6)[38] 0.2092(4)[38]
Stacked triangular / simple hexagonal 8 8 0.26240(5),[173] 0.2625(2),[174] 0.2623(2)[38] 0.18602(2),[173] 0.1859(2)[38]
octagonal (union-jack) stack 6,10 8 0.2524(6)[38] 0.1752(2)[38]
bcc 8 8 0.243(10),[158] 0.243,[41] 0.2459615(10),[167] 0.2460(3),[175] 0.2464(7),[152] 0.2458(2)[156] 0.178(5),[158] 0.1795(3),[152] 0.18025(15),[170] 0.1802875(10)[172]
simple cubic with 3NN (same as bcc) 8 8 0.2455(1),[176] 0.2457(7)[177]
fcc, D3 12 12 π / (3 2) = 0.740480 0.147530 0.195,[41] 0.198(3),[178] 0.1998(6),[152] 0.1992365(10),[167] 0.19923517(20),[153] 0.1994(2),[156] 0.199236(4)[179] 0.1198(3),[152] 0.1201635(10)[172] 0.120169(2)[179]
hcp 12 12 π / (3 2) = 0.740480 0.147545 0.195(5),[158] 0.1992555(10)[180] 0.1201640(10),[180] 0.119(2)[158]
La2−x Srx Cu O4 12 12 0.19927(2)[181]
simple cubic with 2NN (same as fcc) 12 12 0.1991(1)[176]
simple cubic with NN+4NN 12 12 0.15040(12),[182] 0.1503793(7)[183] 0.1068263(7)[184]
simple cubic with 3NN+4NN 14 14 0.20490(12)[182] 0.1012133(7)[184]
bcc NN+2NN (= sc(3,4) sc-3NN+4NN) 14 14 0.175,[41] 0.1686,(20)[185] 0.1759432(8) 0.0991(5),[185] 0.1012133(7),[45] 0.1759432(8) [45]
Nanotube fibers on FCC 14 14 0.1533(13)[186]
simple cubic with NN+3NN 14 14 0.1420(1)[176] 0.0920213(7)[184]
simple cubic with 2NN+4NN 18 18 0.15950(12)[182] 0.0751589(9)[184]
simple cubic with NN+2NN 18 18 0.137,[48] 0.136,[187] 0.1372(1),[176] 0.13735(5),[citation needed] 0.1373045(5)[45] 0.0752326(6) [184]
fcc with NN+2NN (=sc-2NN+4NN) 18 18 0.136,[41] 0.1361408(8)[45] 0.0751589(9) [45]
simple cubic with short-length correlation 6+ 6+ 0.126(1)[188]
simple cubic with NN+3NN+4NN 20 20 0.11920(12)[182] 0.0624379(9)[184]
simple cubic with 2NN+3NN 20 20 0.1036(1)[176] 0.0629283(7)[184]
simple cubic with NN+2NN+4NN 24 24 0.11440(12)[182] 0.0533056(6)[184]
simple cubic with 2NN+3NN+4NN 26 26 0.11330(12)[182] 0.0474609(9)
simple cubic with NN+2NN+3NN 26 26 0.097,[41] 0.0976(1),[176] 0.0976445(10), 0.0976444(6)[45] 0.0497080(10)[184]
bcc with NN+2NN+3NN 26 26 0.095,[48] 0.0959084(6)[45] 0.0492760(10)[45]
simple cubic with NN+2NN+3NN+4NN 32 32 0.10000(12),[182] 0.0801171(9)[45] 0.0392312(8)[184]
fcc with NN+2NN+3NN 42 42 0.061,[48] 0.0610(5),[187] 0.0618842(8)[45] 0.0290193(7) [45]
fcc with NN+2NN+3NN+4NN 54 54 0.0500(5)[187]
sc-1,2,3,4,5 simple cubic with NN+2NN+3NN+4NN+5NN 56 56 0.0461815(5)[45] 0.0210977(7)[45]
sc-1,...,6 (2x2x2 cube [51]) 80 80 0.0337049(9),[45] 0.03373(13)[51] 0.0143950(10)[45]
sc-1,...,7 92 92 0.0290800(10)[45] 0.0123632(8)[45]
sc-1,...,8 122 122 0.0218686(6)[45] 0.0091337(7)[45]
sc-1,...,9 146 146 0.0184060(10)[45] 0.0075532(8)[45]
sc-1,...,10 170 170 0.0064352(8)[45]
sc-1,...,11 178 178 0.0061312(8)[45]
sc-1,...,12 202 202 0.0053670(10)[45]
sc-1,...,13 250 250 0.0042962(8)[45]
3x3x3 cube 274 274 φc= 0.76564(1),[52] pc = 0.0098417(7),[52] 0.009854(6)[51]
4x4x4 cube 636 636 φc=0.76362(1),[52] pc = 0.0042050(2),[52] 0.004217(3)[51]
5x5x5 cube 1214 1250 φc=0.76044(2),[52] pc = 0.0021885(2),[52] 0.002185(4)[51]
6x6x6 cube 2056 2056 0.001289(2)[51]

Filling factor = fraction of space filled by touching spheres at every lattice site (for systems with uniform bond length only). Also called Atomic Packing Factor.

Filling fraction (or Critical Filling Fraction) = filling factor * pc(site).

NN = nearest neighbor, 2NN = next-nearest neighbor, 3NN = next-next-nearest neighbor, etc.

kxkxk cubes are cubes of occupied sites on a lattice, and are equivalent to extended-range percolation of a cube of length (2k+1), with edges and corners removed, with z = (2k+1)3-12(2k-1)-9 (center site not counted in z).

Question: the bond thresholds for the hcp and fcc lattice agree within the small statistical error. Are they identical, and if not, how far apart are they? Which threshold is expected to be bigger? Similarly for the ice and diamond lattices. See [189]

System polymer Φc
percolating excluded volume of athermal polymer matrix (bond-fluctuation model on cubic lattice) 0.4304(3)[190]

3D distorted lattices edit

Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the cube  , and considers percolation when sites are within Euclidean distance   of each other.

Lattice       Site percolation threshold Bond percolation threshold
cubic 0.05 1.0 0.60254(3)[191]
0.1 1.00625 0.58688(4)[191]
0.15 1.025 0.55075(2)[191]
0.175 1.05 0.50645(5)[191]
0.2 1.1 0.44342(3)[191]

Overlapping shapes on 3D lattices edit

Site threshold is the number of overlapping objects per lattice site. The coverage φc is the net fraction of sites covered, and v is the volume (number of cubes). Overlapping cubes are given in the section on thresholds of 3D lattices. Here z is the coordination number to k-mers of either orientation, with  

System k z Site coverage φc Site percolation threshold pc
1 x 2 dimer, cubic lattice 2 56 0.24542[51] 0.045847(2)[51]
1 x 3 trimer, cubic lattice 3 104 0.19578[51] 0.023919(9)[51]
1 x 4 stick, cubic lattice 4 164 0.16055[51] 0.014478(7)[51]
1 x 5 stick, cubic lattice 5 236 0.13488[51] 0.009613(8)[51]
1 x 6 stick, cubic lattice 6 320 0.11569[51] 0.006807(2)[51]
2 x 2 plaquette, cubic lattice 2 0.22710[51] 0.021238(2)[51]
3 x 3 plaquette, cubic lattice 3 0.18686[51] 0.007632(5)[51]
4 x 4 plaquette, cubic lattice 4 0.16159[51] 0.003665(3)[51]
5 x 5 plaquette, cubic lattice 5 0.14316[51] 0.002058(5)[51]
6 x 6 plaquette, cubic lattice 6 0.12900[51] 0.001278(5)[51]

The coverage is calculated from   by   for sticks, and   for plaquettes.

Dimer percolation in 3D edit

System Site percolation threshold Bond percolation threshold
Simple cubic 0.2555(1)[192]

Thresholds for 3D continuum models edit

All overlapping except for jammed spheres and polymer matrix.

System Φc ηc
Spheres of radius r 0.289,[193] 0.293,[194] 0.286,[195] 0.295.[101] 0.2895(5),[196] 0.28955(7),[197] 0.2896(7),[198] 0.289573(2),[199] 0.2896,[200] 0.2854,[201] 0.290,[202] 0.290[203] 0.3418(7),[196] 0.3438(13),[204] 0.341889(3),[199] 0.3360,[201] 0.34189(2) [113] [corrected], 0.341935(8),[205] 0.335,[206]
Oblate ellipsoids with major radius r and aspect ratio 43 0.2831[201] 0.3328[201]
Prolate ellipsoids with minor radius r and aspect ratio 32 0.2757,[200] 0.2795,[201] 0.2763[202] 0.3278[201]
Oblate ellipsoids with major radius r and aspect ratio 2 0.2537,[200] 0.2629,[201] 0.254[202] 0.3050[201]
Prolate ellipsoids with minor radius r and aspect ratio 2 0.2537,[200] 0.2618,[201] 0.25(2),[207] 0.2507[202] 0.3035,[201] 0.29(3)[207]
Oblate ellipsoids with major radius r and aspect ratio 3 0.2289[201] 0.2599[201]
Prolate ellipsoids with minor radius r and aspect ratio 3 0.2033,[200] 0.2244,[201] 0.20(2)[207] 0.2541,[201] 0.22(3)[207]
Oblate ellipsoids with major radius r and aspect ratio 4 0.2003[201] 0.2235[201]
Prolate ellipsoids with minor radius r and aspect ratio 4 0.1901,[201] 0.16(2)[207] 0.2108,[201] 0.17(3)[207]
Oblate ellipsoids with major radius r and aspect ratio 5 0.1757[201] 0.1932[201]
Prolate ellipsoids with minor radius r and aspect ratio 5 0.1627,[201] 0.13(2)[207] 0.1776,[201] 0.15(2)[207]
Oblate ellipsoids with major radius r and aspect ratio 10 0.0895,[200] 0.1058[201] 0.1118[201]
Prolate ellipsoids with minor radius r and aspect ratio 10 0.0724,[200] 0.08703,[201] 0.07(2)[207] 0.09105,[201] 0.07(2)[207]
Oblate ellipsoids with major radius r and aspect ratio 100 0.01248[201] 0.01256[201]
Prolate ellipsoids with minor radius r and aspect ratio 100 0.006949[201] 0.006973[201]
Oblate ellipsoids with major radius r and aspect ratio 1000 0.001275[201] 0.001276[201]
Oblate ellipsoids with major radius r and aspect ratio 2000 0.000637[201] 0.000637[201]
Spherocylinders with H/D = 1 0.2439(2)[198]
Spherocylinders with H/D = 4 0.1345(1)[198]
Spherocylinders with H/D = 10 0.06418(20)[198]
Spherocylinders with H/D = 50 0.01440(8)[198]
Spherocylinders with H/D = 100 0.007156(50)[198]
Spherocylinders with H/D = 200 0.003724(90)[198]
Aligned cylinders 0.2819(2)[208] 0.3312(1)[208]
Aligned cubes of side   0.2773(2)[114] 0.27727(2),[52] 0.27730261(79)[168] 0.3247(3),[113] 0.3248(3),[114] 0.32476(4)[208] 0.324766(1)[168]
Randomly oriented icosahedra 0.3030(5)[209]
Randomly oriented dodecahedra 0.2949(5)[209]
Randomly oriented octahedra 0.2514(6)[209]
Randomly oriented cubes of side   0.2168(2)[114] 0.2174,[200] 0.2444(3),[114] 0.2443(5)[209]
Randomly oriented tetrahedra 0.1701(7)[209]
Randomly oriented disks of radius r (in 3D) 0.9614(5)[210]
Randomly oriented square plates of side   0.8647(6)[210]
Randomly oriented triangular plates of side   0.7295(6)[210]
Jammed spheres (average z = 6) 0.183(3),[211] 0.1990,[212] see also contact network of jammed spheres below. 0.59(1)[211] (volume fraction of all spheres)

  is the total volume (for spheres), where N is the number of objects and L is the system size.

  is the critical volume fraction, valid for overlapping randomly placed objects.

For disks and plates, these are effective volumes and volume fractions.

For void ("Swiss-Cheese" model),   is the critical void fraction.

For more results on void percolation around ellipsoids and elliptical plates, see.[213]

For more ellipsoid percolation values see.[201]

For spherocylinders, H/D is the ratio of the height to the diameter of the cylinder, which is then capped by hemispheres. Additional values are given in.[198]

For superballs, m is the deformation parameter, the percolation values are given in.,[214][215] In addition, the thresholds of concave-shaped superballs are also determined in [121]

For cuboid-like particles (superellipsoids), m is the deformation parameter, more percolation values are given in.[200]

Void percolation in 3D edit

Void percolation refers to percolation in the space around overlapping objects. Here   refers to the fraction of the space occupied by the voids (not of the particles) at the critical point, and is related to   by  .   is defined as in the continuum percolation section above.

System Φc ηc
Voids around disks of radius r 22.86(2)[213]
Voids around randomly oriented tetrahedra 0.0605(6)[216]
Voids around oblate ellipsoids of major radius r and aspect ratio 32 0.5308(7)[217] 0.6333[217]
Voids around oblate ellipsoids of major radius r and aspect ratio 16 0.3248(5)[217] 1.125[217]
Voids around oblate ellipsoids of major radius r and aspect ratio 10 1.542(1)[213]
Voids around oblate ellipsoids of major radius r and aspect ratio 8 0.1615(4)[217] 1.823[217]
Voids around oblate ellipsoids of major radius r and aspect ratio 4 0.0711(2)[217] 2.643,[217] 2.618(5)[213]
Voids around oblate ellipsoids of major radius r and aspect ratio 2 3.239(4) [213]
Voids around prolate ellipsoids of aspect ratio 8 0.0415(7)[218]
Voids around prolate ellipsoids of aspect ratio 6 0.0397(7)[218]
Voids around prolate ellipsoids of aspect ratio 4 0.0376(7)[218]
Voids around prolate ellipsoids of aspect ratio 3 0.03503(50)[218]
Voids around prolate ellipsoids of aspect ratio 2 0.0323(5)[218]
Voids around aligned square prisms of aspect ratio 2 0.0379(5) [219]
Voids around randomly oriented square prisms of aspect ratio 20 0.0534(4) [219]
Voids around randomly oriented square prisms of aspect ratio 15 0.0535(4) [219]
Voids around randomly oriented square prisms of aspect ratio 10 0.0524(5) [219]
Voids around randomly oriented square prisms of aspect ratio 8 0.0523(6) [219]
Voids around randomly oriented square prisms of aspect ratio 7 0.0519(3) [219]
Voids around randomly oriented square prisms of aspect ratio 6 0.0519(5) [219]
Voids around randomly oriented square prisms of aspect ratio 5 0.0515(7) [219]
Voids around randomly oriented square prisms of aspect ratio 4 0.0505(7) [219]
Voids around randomly oriented square prisms of aspect ratio 3 0.0485(11) [219]
Voids around randomly oriented square prisms of aspect ratio 5/2 0.0483(8) [219]
Voids around randomly oriented square prisms of aspect ratio 2 0.0465(7) [219]
Voids around randomly oriented square prisms of aspect ratio 3/2 0.0461(14) [219]
Voids around hemispheres 0.0455(6)[220]
Voids around aligned tetrahedra 0.0605(6)[216]
Voids around randomly oriented tetrahedra 0.0605(6)[216]
Voids around aligned cubes 0.036(1),[52] 0.0381(3)[216]
Voids around randomly oriented cubes 0.0452(6),[216] 0.0449(5)[219]
Voids around aligned octahedra 0.0407(3)[216]
Voids around randomly oriented octahedra 0.0398(5)[216]
Voids around aligned dodecahedra 0.0356(3)[216]
Voids around randomly oriented dodecahedra 0.0360(3)[216]
Voids around aligned icosahedra 0.0346(3)[216]
Voids around randomly oriented icosahedra 0.0336(7)[216]
Voids around spheres 0.034(7),[221] 0.032(4),[222] 0.030(2),[119] 0.0301(3),[223] 0.0294,[218] 0.0300(3),[224] 0.0317(4),[225] 0.0308(5)[220] 0.0301(1),[217] 0.0301(1)[216] 3.506(8),[224] 3.515(6),[213] 3.510(2)[105]

Thresholds on 3D random and quasi-lattices edit

Lattice z   Site percolation threshold Bond percolation threshold
Contact network of packed spheres 6 0.310(5),[211] 0.287(50),[226] 0.3116(3),[212]
Random-plane tessellation, dual 6 0.290(7)[227]
Icosahedral Penrose 6 0.285[228] 0.225[228]
Penrose w/2 diagonals 6.764 0.271[228] 0.207[228]
Penrose w/8 diagonals 12.764 0.188[228] 0.111[228]
Voronoi network 15.54 0.1453(20)[185] 0.0822(50)[185]

Thresholds for other 3D models edit

Lattice z   Site percolation threshold Critical coverage fraction   Bond percolation threshold
Drilling percolation, simple cubic lattice* 6 6 0.6345(3),[229] 0.6339(5),[230] 0.633965(15)[231] 0.25480
Drill in z direction on cubic lattice, remove single sites 6 6 0.592746 (columns), 0.4695(10) (sites)[232] 0.2784
Random tube model, simple cubic lattice 0.231456(6)[233]
Pac-Man percolation, simple cubic lattice 0.139(6)[234]

  In drilling percolation, the site threshold   represents the fraction of columns in each direction that have not been removed, and  . For the 1d drilling, we have  (columns)  (sites).

In tube percolation, the bond threshold represents the value of the parameter   such that the probability of putting a bond between neighboring vertical tube segments is  , where   is the overlap height of two adjacent tube segments.[233]

Thresholds in different dimensional spaces edit

Continuum models in higher dimensions edit

d System Φc ηc
4 Overlapping hyperspheres 0.1223(4)[113] 0.1300(13),[204] 0.1304(5)[113]
4 Aligned hypercubes 0.1132(5),[113] 0.1132348(17) [168] 0.1201(6)[113]
4 Voids around hyperspheres 0.00211(2)[120] 6.161(10)[120] 6.248(2),[105]
5 Overlapping hyperspheres 0.0544(6),[204] 0.05443(7)[113]
5 Aligned hypercubes 0.04900(7),[113] 0.0481621(13)[168] 0.05024(7)[113]
5 Voids around hyperspheres 1.26(6)x10−4[120] 8.98(4),[120] 9.170(8)[105]
6 Overlapping hyperspheres 0.02391(31),[204] 0.02339(5)[113]
6 Aligned hypercubes 0.02082(8),[113] 0.0213479(10)[168] 0.02104(8)[113]
6 Voids around hyperspheres 8.0(6)x10−6 [120] 11.74(8),[120] 12.24(2),[105]
7 Overlapping hyperspheres 0.01102(16),[204] 0.01051(3)[113]
7 Aligned hypercubes 0.00999(5),[113] 0.0097754(31)[168] 0.01004(5)[113]
7 Voids around hyperspheres 15.46(5)[105]
8 Overlapping hyperspheres 0.00516(8),[204] 0.004904(6)[113]
8 Aligned hypercubes 0.004498(5)[113]
8 Voids around hyperspheres 18.64(8)[105]
9 Overlapping hyperspheres 0.002353(4)[113]
9 Aligned hypercubes 0.002166(4)[113]
9 Voids around hyperspheres 22.1(4)[105]
10 Overlapping hyperspheres 0.001138(3)[113]
10 Aligned hypercubes 0.001058(4)[113]
11 Overlapping hyperspheres 0.0005530(3)[113]
11 Aligned hypercubes 0.0005160(3)[113]

 

In 4d,  .

In 5d,  .

In 6d,  .

  is the critical volume fraction, valid for overlapping objects.

For void models,   is the critical void fraction, and   is the total volume of the overlapping objects

Thresholds on hypercubic lattices edit

d z Site thresholds Bond thresholds
4 8 0.198(1)[235] 0.197(6),[236] 0.1968861(14),[237] 0.196889(3),[238] 0.196901(5),[239] 0.19680(23),[240] 0.1968904(65),[168] 0.19688561(3)[241] 0.1600(1),[242] 0.16005(15),[170] 0.1601314(13),[237] 0.160130(3),[238] 0.1601310(10),[171] 0.1601312(2),[243] 0.16013122(6)[241]
5 10 0.141(1),0.198(1)[235] 0.141(3),[236] 0.1407966(15),[237] 0.1407966(26),[168] 0.14079633(4)[241] 0.1181(1),[242] 0.118(1),[244] 0.11819(4),[170] 0.118172(1),[237] 0.1181718(3)[171] 0.11817145(3)[241]
6 12 0.106(1),[235] 0.108(3),[236] 0.109017(2),[237] 0.1090117(30),[168] 0.109016661(8)[241] 0.0943(1),[242] 0.0942(1),[245] 0.0942019(6),[237] 0.09420165(2)[241]
7 14 0.05950(5),[245] 0.088939(20),[246] 0.0889511(9),[237] 0.0889511(90),[168] 0.088951121(1),[241] 0.0787(1),[242] 0.078685(30),[245] 0.0786752(3),[237] 0.078675230(2)[241]
8 16 0.0752101(5),[237] 0.075210128(1)[241] 0.06770(5),[245] 0.06770839(7),[237] 0.0677084181(3)[241]
9 18 0.0652095(3),[237] 0.0652095348(6)[241] 0.05950(5),[245] 0.05949601(5),[237] 0.0594960034(1)[241]
10 20 0.0575930(1),[237] 0.0575929488(4)[241] 0.05309258(4),[237] 0.0530925842(2)[241]
11 22 0.05158971(8),[237] 0.0515896843(2)[241] 0.04794969(1),[237] 0.04794968373(8)[241]
12 24 0.04673099(6),[237] 0.0467309755(1)[241] 0.04372386(1),[237] 0.04372385825(10)[241]
13 26 0.04271508(8),[237] 0.04271507960(10)[241] 0.04018762(1),[237] 0.04018761703(6)[241]

For thresholds on high dimensional hypercubic lattices, we have the asymptotic series expansions [236] [244] [247]

 

 

where  . For 13-dimensional bond percolation, for example, the error with the measured value is less than 10−6, and these formulas can be useful for higher-dimensional systems.

Thresholds in other higher-dimensional lattices edit

d lattice z Site thresholds Bond thresholds
4 diamond 5 0.2978(2)[156] 0.2715(3)[156]
4 kagome 8 0.2715(3)[159] 0.177(1) [156]
4 bcc 16 0.1037(3)[156] 0.074(1),[156] 0.074212(1)[243]
4 fcc, D4, hypercubic 2NN 24 0.0842(3),[156] 0.08410(23),[240] 0.0842001(11)[179] 0.049(1),[156] 0.049517(1),[243] 0.0495193(8)[179]
4 hypercubic NN+2NN 32 0.06190(23),[240] 0.0617731(19)[248] 0.035827(1),[243] 0.0338047(27)[248]
4 hypercubic 3NN 32 0.04540(23)[240]
4 hypercubic NN+3NN 40 0.04000(23)[240] 0.0271892(22)[248]
4 hypercubic 2NN+3NN 56 0.03310(23)[240] 0.0194075(15)[248]
4 hypercubic NN+2NN+3NN 64 0.03190(23),[240] 0.0319407(13)[248] 0.0171036(11)[248]
4 hypercubic NN+2NN+3NN+4NN 88 0.0231538(12)[248] 0.0122088(8)[248]
4 hypercubic NN+...+5NN 136 0.0147918(12)[248] 0.0077389(9)[248]
4 hypercubic NN+...+6NN 232 0.0088400(10)[248] 0.0044656(11)[248]
4 hypercubic NN+...+7NN 296 0.0070006(6)[248] 0.0034812(7)[248]
4 hypercubic NN+...+8NN 320 0.0064681(9)[248] 0.0032143(8)[248]
4 hypercubic NN+...+9NN 424 0.0048301(9)[248] 0.0024117(7)[248]
5 diamond 6 0.2252(3)[156] 0.2084(4)[159]
5 kagome 10 0.2084(4)[159] 0.130(2)[156]
5 bcc 32 0.0446(4)[156] 0.033(1)[156]
5 fcc, D5, hypercubic 2NN 40 0.0431(3),[156] 0.0435913(6)[179] 0.026(2),[156] 0.0271813(2)[179]
5 hypercubic NN+2NN 50 0.0334(2)[249] 0.0213(1)[249]
6 diamond 7 0.1799(5)[156] 0.1677(7)[159]
6 kagome 12 0.1677(7)[159]
6 fcc, D6 60 0.0252(5),[156] 0.02602674(12)[179] 0.01741556(5)[179]
6 bcc 64 0.0199(5)[156]
6 E6[179] 72 0.02194021(14)[179] 0.01443205(8)[179]
7 fcc, D7 84 0.01716730(5)[179] 0.012217868(13)[179]
7 E7[179] 126 0.01162306(4)[179] 0.00808368(2)[179]
8 fcc, D8 112 0.01215392(4)[179] 0.009081804(6)[179]
8 E8[179] 240 0.00576991(2)[179] 0.004202070(2)[179]
9 fcc, D9 144 0.00905870(2)[179] 0.007028457(3)[179]
9  [179] 272 0.00480839(2)[179] 0.0037006865(11)[179]
10 fcc, D10 180 0.007016353(9)[179] 0.005605579(6)[179]
11 fcc, D11 220 0.005597592(4)[179] 0.004577155(3)[179]
12 fcc, D12 264 0.004571339(4)[179] 0.003808960(2)[179]
13 fcc, D13 312 0.003804565(3)[179] 0.0032197013(14)[179]

Thresholds in one-dimensional long-range percolation edit

 
Long-range bond percolation model. The lines represent the possible bonds with width decreasing as the connection probability decreases (left panel). An instance of the model together with the clusters generated (right panel).

In a one-dimensional chain we establish bonds between distinct sites   and   with probability   decaying as a power-law with an exponent  . Percolation occurs[250][251] at a critical value   for  . The numerically determined percolation thresholds are given by:[252]

    Critical thresholds   as a function of  .[252]
The dotted line is the rigorous lower bound.[250]
0.1 0.047685(8)  
0.2 0.093211(16)
0.3 0.140546(17)
0.4 0.193471(15)
0.5 0.25482(5)
0.6 0.327098(6)
0.7 0.413752(14)
0.8 0.521001(14)
0.9 0.66408(7)

Thresholds on hyperbolic, hierarchical, and tree lattices edit

In these lattices there may be two percolation thresholds: the lower threshold is the probability above which infinite clusters appear, and the upper is the probability above which there is a unique infinite cluster.

 
Visualization of a triangular hyperbolic lattice {3,7} projected on the Poincaré disk (red bonds). Green bonds show dual-clusters on the {7,3} lattice[253]
 
Depiction of the non-planar Hanoi network HN-NP[254]
Lattice z   Site percolation threshold Bond percolation threshold
Lower Upper Lower Upper
{3,7} hyperbolic 7 7 0.26931171(7),[255] 0.20[256] 0.73068829(7),[255] 0.73(2)[256] 0.20,[257] 0.1993505(5)[255] 0.37,[257] 0.4694754(8)[255]
{3,8} hyperbolic 8 8 0.20878618(9)[255] 0.79121382(9)[255] 0.1601555(2)[255] 0.4863559(6)[255]
{3,9} hyperbolic 9 9 0.1715770(1)[255] 0.8284230(1)[255] 0.1355661(4)[255] 0.4932908(1)[255]
{4,5} hyperbolic 5 5 0.29890539(6)[255] 0.8266384(5)[255] 0.27,[257] 0.2689195(3)[255] 0.52,[257] 0.6487772(3) [255]
{4,6} hyperbolic 6 6 0.22330172(3)[255] 0.87290362(7)[255] 0.20714787(9)[255] 0.6610951(2)[255]
{4,7} hyperbolic 7 7 0.17979594(1)[255] 0.89897645(3)[255] 0.17004767(3)[255] 0.66473420(4)[255]
{4,8} hyperbolic 8 8 0.151035321(9)[255] 0.91607962(7)[255] 0.14467876(3)[255] 0.66597370(3)[255]
{4,9} hyperbolic 8 8 0.13045681(3)[255] 0.92820305(3)[255] 0.1260724(1)[255] 0.66641596(2)[255]
{5,5} hyperbolic 5 5 0.26186660(5)[255] 0.89883342(7)[255] 0.263(10),[258] 0.25416087(3)[255] 0.749(10)[258] 0.74583913(3)[255]
{7,3} hyperbolic 3 3 0.54710885(10)[255] 0.8550371(5),[255] 0.86(2)[256] 0.53,[257] 0.551(10),[258] 0.5305246(8)[255] 0.72,[257] 0.810(10),[258] 0.8006495(5)[255]
{∞,3} Cayley tree 3 3 12 12[257] 1[257]
Enhanced binary tree (EBT) 0.304(1),[259] 0.306(10),[258] (13 − 3)/2 = 0.302776[260] 0.48,[257] 0.564(1),[259] 0.564(10),[258] 12[260]
Enhanced binary tree dual 0.436(1),[259] 0.452(10)[258] 0.696(1),[259] 0.699(10)[258]
Non-Planar Hanoi Network (HN-NP) 0.319445[254] 0.381996[254]
Cayley tree with grandparents 8 0.158656326[261]

Note: {m,n} is the Schläfli symbol, signifying a hyperbolic lattice in which n regular m-gons meet at every vertex

For bond percolation on {P,Q}, we have by duality

percolation, threshold, this, article, technical, most, readers, understand, please, help, improve, make, understandable, experts, without, removing, technical, details, march, 2021, learn, when, remove, this, message, percolation, threshold, mathematical, con. This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details March 2021 Learn how and when to remove this message The percolation threshold is a mathematical concept in percolation theory that describes the formation of long range connectivity in random systems Below the threshold a giant connected component does not exist while above it there exists a giant component of the order of system size In engineering and coffee making percolation represents the flow of fluids through porous media but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks graphs and the nature of the connectivity in them The percolation threshold is the critical value of the occupation probability p or more generally a critical surface for a group of parameters p1 p2 such that infinite connectivity percolation first occurs 1 Contents 1 Percolation models 2 Percolation on networks 3 Percolation in 2D 3 1 Thresholds on Archimedean lattices 3 2 2D lattices with extended and complex neighborhoods 3 3 2D distorted lattices 3 4 Overlapping shapes on 2D lattices 3 5 Approximate formulas for thresholds of Archimedean lattices 3 6 AB percolation and colored percolation in 2D 3 7 Site bond percolation in 2D 3 8 Archimedean duals Laves lattices 3 9 2 uniform lattices 3 10 Inhomogeneous 2 uniform lattice 3 11 Thresholds on 2D bow tie and martini lattices 3 12 Thresholds on 2D covering medial and matching lattices 3 13 Thresholds on 2D chimera non planar lattices 3 14 Thresholds on subnet lattices 3 15 Thresholds of random sequentially adsorbed objects 3 16 Thresholds of full dimer coverings of two dimensional lattices 3 17 Thresholds of polymers random walks on a square lattice 3 18 Thresholds of self avoiding walks of length k added by random sequential adsorption 3 19 Thresholds on 2D inhomogeneous lattices 3 20 Thresholds for 2D continuum models 3 21 Thresholds on 2D random and quasi lattices 3 22 Thresholds on 2D correlated systems 3 23 Thresholds on slabs 4 Percolation in 3D 4 1 3D distorted lattices 4 2 Overlapping shapes on 3D lattices 4 3 Dimer percolation in 3D 4 4 Thresholds for 3D continuum models 4 5 Void percolation in 3D 4 6 Thresholds on 3D random and quasi lattices 4 7 Thresholds for other 3D models 5 Thresholds in different dimensional spaces 5 1 Continuum models in higher dimensions 5 2 Thresholds on hypercubic lattices 5 3 Thresholds in other higher dimensional lattices 5 4 Thresholds in one dimensional long range percolation 5 5 Thresholds on hyperbolic hierarchical and tree lattices 5 6 Thresholds for directed percolation 5 7 Directed percolation with multiple neighbors 5 8 Site Bond Directed Percolation 5 9 Exact critical manifolds of inhomogeneous systems 6 See also 7 ReferencesPercolation models editThe most common percolation model is to take a regular lattice like a square lattice and make it into a random network by randomly occupying sites vertices or bonds edges with a statistically independent probability p At a critical threshold pc large clusters and long range connectivity first appear and this is called the percolation threshold Depending on the method for obtaining the random network one distinguishes between the site percolation threshold and the bond percolation threshold More general systems have several probabilities p1 p2 etc and the transition is characterized by a critical surface or manifold One can also consider continuum systems such as overlapping disks and spheres placed randomly or the negative space Swiss cheese models To understand the threshold you can consider a quantity such as the probability that there is a continuous path from one boundary to another along occupied sites or bonds that is within a single cluster For example one can consider a square system and ask for the probability P that there is a path from the top boundary to the bottom boundary As a function of the occupation probability p one finds a sigmoidal plot that goes from P 0 at p 0 to P 1 at p 1 The larger the square is compared to the lattice spacing the sharper the transition will be When the system size goes to infinity P p will be a step function at the threshold value pc For finite large systems P pc is a constant whose value depends upon the shape of the system for the square system discussed above P pc 1 2 exactly for any lattice by a simple symmetry argument There are other signatures of the critical threshold For example the size distribution number of clusters of size s drops off as a power law for large s at the threshold ns pc s t where t is a dimension dependent percolation critical exponents For an infinite system the critical threshold corresponds to the first point as p increases where the size of the clusters become infinite In the systems described so far it has been assumed that the occupation of a site or bond is completely random this is the so called Bernoulli percolation For a continuum system random occupancy corresponds to the points being placed by a Poisson process Further variations involve correlated percolation such as percolation clusters related to Ising and Potts models of ferromagnets in which the bonds are put down by the Fortuin Kasteleyn method 2 In bootstrap or k sat percolation sites and or bonds are first occupied and then successively culled from a system if a site does not have at least k neighbors Another important model of percolation in a different universality class altogether is directed percolation where connectivity along a bond depends upon the direction of the flow Over the last several decades a tremendous amount of work has gone into finding exact and approximate values of the percolation thresholds for a variety of these systems Exact thresholds are only known for certain two dimensional lattices that can be broken up into a self dual array such that under a triangle triangle transformation the system remains the same Studies using numerical methods have led to numerous improvements in algorithms and several theoretical discoveries Simple duality in two dimensions implies that all fully triangulated lattices e g the triangular union jack cross dual martini dual and asanoha or 3 12 dual and the Delaunay triangulation all have site thresholds of 1 2 and self dual lattices square martini B have bond thresholds of 1 2 The notation such as 4 82 comes from Grunbaum and Shephard 3 and indicates that around a given vertex going in the clockwise direction one encounters first a square and then two octagons Besides the eleven Archimedean lattices composed of regular polygons with every site equivalent many other more complicated lattices with sites of different classes have been studied Error bars in the last digit or digits are shown by numbers in parentheses Thus 0 729724 3 signifies 0 729724 0 000003 and 0 74042195 80 signifies 0 74042195 0 00000080 The error bars variously represent one or two standard deviations in net error including statistical and expected systematic error or an empirical confidence interval depending upon the source Percolation on networks editFor a random tree like network i e a connected network with no cycle without degree degree correlation it can be shown that such network can have a giant component and the percolation threshold transmission probability is given byp c 1 g 1 1 k k 2 k displaystyle p c frac 1 g 1 1 frac langle k rangle langle k 2 rangle langle k rangle nbsp Where g 1 z displaystyle g 1 z nbsp is the generating function corresponding to the excess degree distribution k displaystyle langle k rangle nbsp is the average degree of the network and k 2 displaystyle langle k 2 rangle nbsp is the second moment of the degree distribution So for example for an ER network since the degree distribution is a Poisson distribution the threshold is at p c k 1 displaystyle p c langle k rangle 1 nbsp In networks with low clustering 0 lt C 1 displaystyle 0 lt C ll 1 nbsp the critical point gets scaled by 1 C 1 displaystyle 1 C 1 nbsp such that 4 p c 1 1 C 1 g 1 1 displaystyle p c frac 1 1 C frac 1 g 1 1 nbsp This indicates that for a given degree distribution the clustering leads to a larger percolation threshold mainly because for a fixed number of links the clustering structure reinforces the core of the network with the price of diluting the global connections For networks with high clustering strong clustering could induce the core periphery structure in which the core and periphery might percolate at different critical points and the above approximate treatment is not applicable 5 Percolation in 2D editThresholds on Archimedean lattices edit nbsp This is a picture 6 of the 11 Archimedean Lattices or Uniform tilings in which all polygons are regular and each vertex is surrounded by the same sequence of polygons The notation 34 6 for example means that every vertex is surrounded by four triangles and one hexagon Some common names that have been given to these lattices are listed in the table below Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold 3 12 or super kagome 3 122 3 3 0 807900764 1 2 sin p 18 1 2 7 0 74042195 80 8 0 74042077 2 9 0 740420800 2 10 0 7404207988509 8 11 12 0 740420798850811610 2 13 cross truncated trihexagonal 4 6 12 3 3 0 746 14 0 750 15 0 747806 4 7 0 7478008 2 11 0 6937314 1 11 0 69373383 72 8 0 693733124922 2 13 square octagon bathroom tile 4 8 truncated square 4 82 3 0 729 14 0 729724 3 7 0 7297232 5 11 0 6768 16 0 67680232 63 8 0 6768031269 6 11 0 6768031243900113 3 13 honeycomb 63 3 3 0 6962 6 17 0 697040230 5 11 0 6970402 1 18 0 6970413 10 19 0 697043 3 7 0 652703645 1 2 sin p 18 1 p3 3p2 0 20 kagome 3 6 3 6 4 4 0 652703645 1 2 sin p 18 20 0 5244053 3 21 0 52440516 10 19 0 52440499 2 18 0 524404978 5 9 0 52440572 22 0 52440500 1 10 0 524404999173 3 11 12 0 524404999167439 4 23 0 52440499916744820 1 13 ruby 24 rhombitrihexagonal 3 4 6 4 4 4 0 620 14 0 621819 3 7 0 62181207 7 11 0 52483258 53 8 0 5248311 1 11 0 524831461573 1 13 square 44 4 4 0 59274 10 25 0 59274605079210 2 23 0 59274601 2 11 0 59274605095 15 26 0 59274621 13 27 0 592746050786 3 28 0 59274621 33 29 0 59274598 4 30 31 0 59274605 3 18 0 593 1 32 0 591 1 33 0 569 13 34 0 59274 5 35 1 2 snub hexagonal maple leaf 36 34 6 5 5 0 579 15 0 579498 3 7 0 43430621 50 8 0 43432764 3 11 0 4343283172240 6 13 snub square puzzle 32 4 3 4 5 5 0 550 14 37 0 550806 3 7 0 41413743 46 8 0 4141378476 7 11 0 4141378565917 1 13 frieze elongated triangular 33 42 5 5 0 549 14 0 550213 3 7 0 5502 8 38 0 4196 6 38 0 41964191 43 8 0 41964044 1 11 0 41964035886369 2 13 triangular 36 6 6 1 2 0 347296355 2 sin p 18 1 p3 3p 0 20 Note sometimes hexagonal is used in place of honeycomb although in some contexts a triangular lattice is also called a hexagonal lattice z bulk coordination number 2D lattices with extended and complex neighborhoods edit In this section sq 1 2 3 corresponds to square NN 2NN 3NN 39 etc Equivalent to square 2N 3N 4N 40 sq 1 2 3 41 tri triangular hc honeycomb Lattice z Site percolation threshold Bond percolation threshold sq 1 sq 2 sq 3 sq 5 4 0 5927 39 40 square site sq 1 2 sq 2 3 sq 3 5 8 0 407 39 40 42 square matching 0 25036834 6 18 0 2503685 43 0 25036840 4 44 sq 1 3 8 0 337 39 40 0 2214995 43 sq 2 5 2NN 5NN 8 0 337 40 hc 1 2 3 honeycomb NN 2NN 3NN 12 0 300 41 0 300 15 0 302960 1 pc site hc 45 tri 1 2 triangular NN 2NN 12 0 295 41 0 289 15 0 290258 19 46 tri 2 3 triangular 2NN 3NN 12 0 232020 36 47 0 232020 20 46 sq 4 square 4NN 8 0 270 40 sq 1 5 square NN 5NN r 2 8 0 277 40 sq 1 2 3 square NN 2NN 3NN 12 0 292 48 0 290 5 49 0 289 15 0 288 39 40 0 1522203 43 sq 2 3 5 square 2NN 3NN 5NN 12 0 288 40 sq 1 4 square NN 4NN 12 0 236 40 sq 2 4 square 2NN 4NN 12 0 225 40 tri 4 triangular 4NN 12 0 192450 36 47 0 1924428 50 46 hc 2 4 honeycomb 2NN 4NN 12 0 2374 50 tri 1 3 triangular NN 3NN 12 0 264539 21 46 tri 1 2 3 triangular NN 2NN 3NN 18 0 225 48 0 215 15 0 215459 36 47 0 2154657 17 46 sq 3 4 3NN 4NN 12 0 221 40 sq 1 2 5 NN 2NN 5NN 12 0 240 40 0 13805374 43 sq 1 3 5 NN 3NN 5NN 12 0 233 40 sq 4 5 4NN 5NN 12 0 199 40 sq 1 2 4 NN 2NN 4NN 16 0 219 40 sq 1 3 4 NN 3NN 4NN 16 0 208 40 sq 2 3 4 2NN 3NN 4NN 16 0 202 40 sq 1 4 5 NN 4NN 5NN 16 0 187 40 sq 2 4 5 2NN 4NN 5NN 16 0 182 40 sq 3 4 5 3NN 4NN 5NN 16 0 179 40 sq 1 2 3 5 NN 2NN 3NN 5NN 16 0 208 40 0 1032177 43 tri 4 5 4NN 5NN 18 0 140250 36 47 sq 1 2 3 4 NN 2NN 3NN 4NN r 5 displaystyle r leq sqrt 5 nbsp 20 0 19671 9 51 0 196 40 0 196724 10 52 0 0841509 43 sq 1 2 4 5 NN 2NN 4NN 5NN 20 0 177 40 sq 1 3 4 5 NN 3NN 4NN 5NN 20 0 172 40 sq 2 3 4 5 2NN 3NN 4NN 5NN 20 0 167 40 sq 1 2 3 5 6 NN 2NN 3NN 5NN 6NN 20 0 0783110 43 sq 1 2 3 4 5 NN 2NN 3NN 4NN 5NN r 8 displaystyle r leq sqrt 8 nbsp 24 0 164 40 tri 1 4 5 NN 4NN 5NN 24 0 131660 36 47 sq 1 6 NN 6NN r 3 28 0 142 15 0 0558493 43 tri 2 3 4 5 2NN 3NN 4NN 5NN 30 0 117460 36 47 0 135823 27 46 tri 1 2 3 4 5 NN 2NN 3NN 4NN 5NN 36 0 115 15 0 115740 36 47 0 1157399 58 46 sq 1 7 NN 7NN r 10 displaystyle r leq sqrt 10 nbsp 36 0 113 15 0 04169608 43 square square distance 4 40 0 105 5 49 sq 1 8 NN 8NN r 13 displaystyle r leq sqrt 13 nbsp 44 0 095 37 0 095765 5 52 0 09580 2 51 sq 1 9 NN 9NN r 4 48 0 086 15 0 02974268 43 sq 1 11 NN 11NN r 18 displaystyle r leq sqrt 18 nbsp 60 0 02301190 3 43 sq 1 23 r 7 148 0 008342595 44 sq 1 32 NN 32NN r 72 displaystyle r leq sqrt 72 nbsp 224 0 0053050415 33 43 sq 1 86 NN 86NN r 15 708 0 001557644 4 53 sq 1 141 NN 141NN r 389 displaystyle r leq sqrt 389 nbsp 1224 0 000880188 90 43 sq 1 185 NN 185NN r 23 1652 0 000645458 4 53 sq 1 317 NN 317NN r 31 3000 0 000349601 3 53 sq 1 413 NN 413NN r 1280 displaystyle r leq sqrt 1280 nbsp 4016 0 0002594722 11 43 square square distance 6 84 0 049 5 49 square square distance 8 144 0 028 5 49 square square distance 10 220 0 019 5 49 2x2 lattice squares also above 20 fc 0 58365 2 52 pc 0 196724 10 52 0 19671 9 51 3x3 lattice squares also above 44 fc 0 59586 2 52 pc 0 095765 5 52 0 09580 2 51 4x4 lattice squares 76 fc 0 60648 1 52 pc 0 0566227 15 52 0 05665 3 51 5x5 lattice squares 116 fc 0 61467 2 52 pc 0 037428 2 52 0 03745 2 51 6x6 lattice squares 220 pc 0 02663 1 51 10x10 lattice squares 436 fc 0 36391 2 52 pc 0 0100576 5 52 Here NN nearest neighbor 2NN second nearest neighbor or next nearest neighbor 3NN third nearest neighbor or next next nearest neighbor etc These are also called 2N 3N 4N respectively in some papers 39 For overlapping or touching squares p c displaystyle p c nbsp site given here is the net fraction of sites occupied ϕ c displaystyle phi c nbsp similar to the ϕ c displaystyle phi c nbsp in continuum percolation The case of a 2 2 square is equivalent to percolation of a square lattice NN 2NN 3NN 4NN or sq 1 2 3 4 with threshold 1 1 ϕ c 1 4 0 196724 10 displaystyle 1 1 phi c 1 4 0 196724 10 ldots nbsp with ϕ c 0 58365 2 displaystyle phi c 0 58365 2 nbsp 52 The 3 3 square corresponds to sq 1 2 3 4 5 6 7 8 with z 44 and p c 1 1 ϕ c 1 9 0 095765 5 displaystyle p c 1 1 phi c 1 9 0 095765 5 ldots nbsp The value of z for a k x k square is 2k 1 2 5 For larger overlapping squares see 52 2D distorted lattices edit Here one distorts a regular lattice of unit spacing by moving vertices uniformly within the box x a x a y a y a displaystyle x alpha x alpha y alpha y alpha nbsp and considers percolation when sites are within Euclidean distance d displaystyle d nbsp of each other Lattice z displaystyle overline z nbsp a displaystyle alpha nbsp d displaystyle d nbsp Site percolation threshold Bond percolation threshold square 0 2 1 1 0 8025 2 54 0 2 1 2 0 6667 5 54 0 1 1 1 0 6619 1 54 Overlapping shapes on 2D lattices edit Site threshold is number of overlapping objects per lattice site k is the length net area Overlapping squares are shown in the complex neighborhood section Here z is the coordination number to k mers of either orientation with z k 2 10 k 2 displaystyle z k 2 10k 2 nbsp for 1 k displaystyle 1 times k nbsp sticks System k z Site coverage fc Site percolation threshold pc 1 x 2 dimer square lattice 2 22 0 54691 51 0 5483 2 55 0 17956 3 51 0 18019 9 55 1 x 2 aligned dimer square lattice 2 14 0 5715 18 55 0 3454 13 55 1 x 3 trimer square lattice 3 37 0 49898 51 0 50004 64 55 0 10880 2 51 0 1093 2 55 1 x 4 stick square lattice 4 54 0 45761 51 0 07362 2 51 1 x 5 stick square lattice 5 73 0 42241 51 0 05341 1 51 1 x 6 stick square lattice 6 94 0 39219 51 0 04063 2 51 The coverage is calculated from p c displaystyle p c nbsp by ϕ c 1 1 p c 2 k displaystyle phi c 1 1 p c 2k nbsp for 1 k displaystyle 1 times k nbsp sticks because there are 2 k displaystyle 2k nbsp sites where a stick will cause an overlap with a given site For aligned 1 k displaystyle 1 times k nbsp sticks ϕ c 1 1 p c k displaystyle phi c 1 1 p c k nbsp Approximate formulas for thresholds of Archimedean lattices edit Lattice z Site percolation threshold Bond percolation threshold 3 122 3 4 6 12 3 4 82 3 0 676835 4p3 3p4 6 p5 2 p6 1 56 honeycomb 63 3 kagome 3 6 3 6 4 0 524430 3p2 6p3 12 p4 6 p5 p6 1 57 3 4 6 4 4 square 44 4 1 2 exact 34 6 5 0 434371 12p3 36p4 21p5 327 p6 69p7 2532p8 6533 p9 8256 p10 6255p11 2951p12 837 p13 126 p14 7p15 1 citation needed snub square puzzle 32 4 3 4 5 33 42 5 triangular 36 6 1 2 exact AB percolation and colored percolation in 2D edit In AB percolation a p s i t e displaystyle p mathrm site nbsp is the proportion of A sites among B sites and bonds are drawn between sites of opposite species 58 It is also called antipercolation In colored percolation occupied sites are assigned one of n displaystyle n nbsp colors with equal probability and connection is made along bonds between neighbors of different colors 59 Lattice z z displaystyle overline z nbsp Site percolation threshold triangular AB 6 6 0 2145 58 0 21524 34 60 0 21564 3 61 AB on square covering lattice 6 6 1 1 p c s i t e s q 0 361835 displaystyle 1 sqrt 1 p c site sq 0 361835 nbsp 62 square three color 4 4 0 80745 5 59 square four color 4 4 0 73415 4 59 square five color 4 4 0 69864 7 59 square six color 4 4 0 67751 5 59 triangular two color 6 6 0 72890 4 59 triangular three color 6 6 0 63005 4 59 triangular four color 6 6 0 59092 3 59 triangular five color 6 6 0 56991 5 59 triangular six color 6 6 0 55679 5 59 Site bond percolation in 2D edit Site bond percolation Here p s displaystyle p s nbsp is the site occupation probability and p b displaystyle p b nbsp is the bond occupation probability and connectivity is made only if both the sites and bonds along a path are occupied The criticality condition becomes a curve f p s p b displaystyle f p s p b nbsp 0 and some specific critical pairs p s p b displaystyle p s p b nbsp are listed below Square lattice Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold square 4 4 0 615185 15 63 0 95 0 667280 15 63 0 85 0 732100 15 63 0 75 0 75 0 726195 15 63 0 815560 15 63 0 65 0 85 0 615810 30 63 0 95 0 533620 15 63 Honeycomb hexagonal lattice Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold honeycomb 3 3 0 7275 5 64 0 95 0 0 7610 5 64 0 90 0 7986 5 64 0 85 0 80 0 8481 5 64 0 8401 5 64 0 80 0 85 0 7890 5 64 0 90 0 7377 5 64 0 95 0 6926 5 64 Kagome lattice Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold kagome 4 4 0 6711 4 64 0 67097 3 65 0 95 0 6914 5 64 0 69210 2 65 0 90 0 7162 5 64 0 71626 3 65 0 85 0 7428 5 64 0 74339 3 65 0 80 0 75 0 7894 9 64 0 7757 8 64 0 77556 3 65 0 75 0 80 0 7152 7 64 0 81206 3 65 0 70 0 85 0 6556 6 64 0 85519 3 65 0 65 0 90 0 6046 5 64 0 90546 3 65 0 60 0 95 0 5615 4 64 0 96604 4 65 0 55 0 9854 3 65 0 53 For values on different lattices see An investigation of site bond percolation on many lattices 64 Approximate formula for site bond percolation on a honeycomb lattice Lattice z z displaystyle overline z nbsp Threshold Notes 63 honeycomb 3 3 p b p s 1 p b c 3 p b c p b p b c p b c displaystyle p b p s 1 sqrt p bc 3 p bc sqrt p b sqrt p bc p bc nbsp When equal ps pb 0 82199 approximate formula ps site prob pb bond prob pbc 1 2 sin p 18 19 exact at ps 1 pb pbc Archimedean duals Laves lattices edit nbsp Example image caption Laves lattices are the duals to the Archimedean lattices Drawings from 6 See also Uniform tilings Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold Cairo pentagonal D 32 4 3 4 2 3 53 1 3 54 3 4 3 1 3 0 6501834 2 11 0 650184 5 6 0 585863 1 pcbond 32 4 3 4 Pentagonal D 33 42 1 3 54 2 3 53 3 4 3 1 3 0 6470471 2 11 0 647084 5 6 0 6471 6 38 0 580358 1 pcbond 33 42 0 5800 6 38 D 34 6 1 5 46 4 5 43 3 6 3 3 5 0 639447 6 0 565694 1 pcbond 34 6 dice rhombille tiling D 3 6 3 6 1 3 46 2 3 43 3 6 4 0 5851 4 66 0 585040 5 6 0 475595 1 pcbond 3 6 3 6 ruby dual D 3 4 6 4 1 6 46 2 6 43 3 6 44 3 4 6 4 0 582410 5 6 0 475167 1 pcbond 3 4 6 4 union jack tetrakis square tiling D 4 82 1 2 34 1 2 38 4 8 6 1 2 0 323197 1 pcbond 4 82 bisected hexagon 67 cross dual D 4 6 12 1 6 312 2 6 36 1 2 34 4 6 12 6 1 2 0 306266 1 pcbond 4 6 12 asanoha hemp leaf 68 D 3 122 2 3 33 1 3 312 3 12 6 1 2 0 259579 1 pcbond 3 122 2 uniform lattices edit Top 3 lattices 13 12 36 Bottom 3 lattices 34 37 11 nbsp 20 2 uniform lattices 3 Top 2 lattices 35 30 Bottom 2 lattices 41 42 nbsp 20 2 uniform lattices 3 Top 4 lattices 22 23 21 20 Bottom 3 lattices 16 17 15 nbsp 20 2 uniform lattices 3 Top 2 lattices 31 32 Bottom lattice 33 nbsp 20 2 uniform lattices 3 Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold 41 1 2 3 4 3 12 1 2 3 122 4 3 3 5 0 7680 2 69 0 67493252 36 citation needed 42 1 3 3 4 6 4 2 3 4 6 12 4 3 31 3 0 7157 2 69 0 64536587 40 citation needed 36 1 7 36 6 7 32 4 12 6 4 4 2 7 0 6808 2 69 0 55778329 40 citation needed 15 2 3 32 62 1 3 3 6 3 6 4 4 4 0 6499 2 69 0 53632487 40 citation needed 34 1 7 36 6 7 32 62 6 4 4 2 7 0 6329 2 69 0 51707873 70 citation needed 16 4 5 3 42 6 1 5 3 6 3 6 4 4 4 0 6286 2 69 0 51891529 35 citation needed 17 4 5 3 42 6 1 5 3 6 3 6 4 4 4 0 6279 2 69 0 51769462 35 citation needed 35 2 3 3 42 6 1 3 3 4 6 4 4 4 4 0 6221 2 69 0 51973831 40 citation needed 11 1 2 34 6 1 2 32 62 5 4 4 5 0 6171 2 69 0 48921280 37 citation needed 37 1 2 33 42 1 2 3 4 6 4 5 4 4 5 0 5885 2 69 0 47229486 38 citation needed 30 1 2 32 4 3 4 1 2 3 4 6 4 5 4 4 5 0 5883 2 69 0 46573078 72 citation needed 23 1 2 33 42 1 2 44 5 4 4 5 0 5720 2 69 0 45844622 40 citation needed 22 2 3 33 42 1 3 44 5 4 4 2 3 0 5648 2 69 0 44528611 40 citation needed 12 1 4 36 3 4 34 6 6 5 5 1 4 0 5607 2 69 0 41109890 37 citation needed 33 1 2 33 42 1 2 32 4 3 4 5 5 5 0 5505 2 69 0 41628021 35 citation needed 32 1 3 33 42 2 3 32 4 3 4 5 5 5 0 5504 2 69 0 41549285 36 citation needed 31 1 7 36 6 7 32 4 3 4 6 5 5 1 7 0 5440 2 69 0 40379585 40 citation needed 13 1 2 36 1 2 34 6 6 5 5 5 0 5407 2 69 0 38914898 35 citation needed 21 1 3 36 2 3 33 42 6 5 5 1 3 0 5342 2 69 0 39491996 40 citation needed 20 1 2 36 1 2 33 42 6 5 5 5 0 5258 2 69 0 38285085 38 citation needed Inhomogeneous 2 uniform lattice edit nbsp 2 uniform lattice 37 This figure shows something similar to the 2 uniform lattice 37 except the polygons are not all regular there is a rectangle in the place of the two squares and the size of the polygons is changed This lattice is in the isoradial representation in which each polygon is inscribed in a circle of unit radius The two squares in the 2 uniform lattice must now be represented as a single rectangle in order to satisfy the isoradial condition The lattice is shown by black edges and the dual lattice by red dashed lines The green circles show the isoradial constraint on both the original and dual lattices The yellow polygons highlight the three types of polygons on the lattice and the pink polygons highlight the two types of polygons on the dual lattice The lattice has vertex types 1 2 33 42 1 2 3 4 6 4 while the dual lattice has vertex types 1 15 46 6 15 42 52 2 15 53 6 15 52 4 The critical point is where the longer bonds on both the lattice and dual lattice have occupation probability p 2 sin p 18 0 347296 which is the bond percolation threshold on a triangular lattice and the shorter bonds have occupation probability 1 2 sin p 18 0 652703 which is the bond percolation on a hexagonal lattice These results follow from the isoradial condition 70 but also follow from applying the star triangle transformation to certain stars on the honeycomb lattice Finally it can be generalized to having three different probabilities in the three different directions p1 p2 and p3 for the long bonds and 1 p1 1 p2 and 1 p3 for the short bonds where p1 p2 and p3 satisfy the critical surface for the inhomogeneous triangular lattice Thresholds on 2D bow tie and martini lattices edit To the left center and right are the martini lattice the martini A lattice the martini B lattice Below the martini covering medial lattice same as the 2 2 1 1 subnet for kagome type lattices removed nbsp Example image caption Some other examples of generalized bow tie lattices a d and the duals of the lattices e h nbsp Example image caption Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold martini 3 4 3 92 1 4 93 3 3 0 764826 1 p4 3p3 0 71 0 707107 1 2 72 bow tie c 3 4 3 1 7 0 672929 1 2p3 2p4 2p5 7p6 18p7 11p8 35p9 21p10 4p11 0 73 bow tie d 3 4 3 1 3 0 625457 1 2p2 3p3 4p4 p5 0 73 martini A 2 3 3 72 1 3 3 73 3 4 3 1 3 1 2 73 0 625457 1 2p2 3p3 4p4 p5 0 73 bow tie dual e 3 4 3 2 3 0 595482 1 pcbond bow tie a 73 bow tie b 3 4 6 3 2 3 0 533213 1 p 2p3 4p4 4p5 156 13p7 36p8 19p9 p10 p11 0 73 martini covering medial 1 2 33 9 1 2 3 9 3 9 4 4 0 707107 1 2 72 0 57086651 33 citation needed martini B 1 2 3 5 3 52 1 2 3 52 3 5 4 0 618034 2 1 5 1 p2 p 0 71 73 1 2 72 73 bow tie dual f 3 4 8 4 2 5 0 466787 1 pcbond bow tie b 73 bow tie a 1 2 32 4 32 4 1 2 3 4 3 4 6 5 0 5472 2 38 0 5479148 7 74 0 404518 1 p 6p2 6p3 p5 0 73 75 bow tie dual h 3 6 8 5 0 374543 1 pcbond bow tie d 73 bow tie dual g 3 6 10 5 1 2 0 547 pcsite bow tie a 0 327071 1 pcbond bow tie c 73 martini dual 1 2 33 1 2 39 3 9 6 1 2 0 292893 1 1 2 72 Thresholds on 2D covering medial and matching lattices edit Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold 4 6 12 covering medial 4 4 pcbond 4 6 12 0 693731 0 5593140 2 11 0 559315 1 citation needed 4 82 covering medial square kagome 4 4 pcbond 4 82 0 676803 0 544798017 4 11 0 54479793 34 citation needed 34 6 medial 4 4 0 5247495 5 11 3 4 6 4 medial 4 4 0 51276 11 32 4 3 4 medial 4 4 0 512682929 8 11 33 42 medial 4 4 0 5125245984 9 11 square covering non planar 6 6 1 2 0 3371 1 56 square matching lattice non planar 8 8 1 pcsite square 0 407253 0 25036834 6 18 nbsp 4 6 12 covering medial lattice nbsp 4 82 covering medial lattice nbsp 3 122 covering medial lattice in light grey equivalent to the kagome 2 2 subnet and in black the dual of these lattices nbsp 3 4 6 4 covering medial lattice equivalent to the 2 uniform lattice 30 but with facing triangles made into a diamond This pattern appears in Iranian tilework 76 such as Western tomb tower Kharraqan 77 nbsp 3 4 6 4 medial dual shown in red with medial lattice in light gray behind it Thresholds on 2D chimera non planar lattices edit Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold K 2 2 4 4 0 51253 14 78 0 44778 15 78 K 3 3 6 6 0 43760 15 78 0 35502 15 78 K 4 4 8 8 0 38675 7 78 0 29427 12 78 K 5 5 10 10 0 35115 13 78 0 25159 13 78 K 6 6 12 12 0 32232 13 78 0 21942 11 78 K 7 7 14 14 0 30052 14 78 0 19475 9 78 K 8 8 16 16 0 28103 11 78 0 17496 10 78 Thresholds on subnet lattices edit nbsp Example image caption The 2 x 2 3 x 3 and 4 x 4 subnet kagome lattices The 2 2 subnet is also known as the triangular kagome lattice 79 Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold checkerboard 2 2 subnet 4 3 0 596303 1 80 checkerboard 4 4 subnet 4 3 0 633685 9 80 checkerboard 8 8 subnet 4 3 0 642318 5 80 checkerboard 16 16 subnet 4 3 0 64237 1 80 checkerboard 32 32 subnet 4 3 0 64219 2 80 checkerboard displaystyle infty nbsp subnet 4 3 0 642216 10 80 kagome 2 2 subnet 3 122 covering medial 4 pcbond 3 122 0 74042077 0 600861966960 2 11 0 6008624 10 19 0 60086193 3 9 kagome 3 3 subnet 4 0 6193296 10 19 0 61933176 5 9 0 61933044 32 citation needed kagome 4 4 subnet 4 0 625365 3 19 0 62536424 7 9 kagome displaystyle infty nbsp subnet 4 0 628961 2 19 kagome 1 1 2 2 subnet martini covering medial 4 pcbond martini 1 2 0 707107 0 57086648 36 citation needed kagome 1 1 3 3 subnet 4 3 0 728355596425196 9 0 58609776 37 citation needed kagome 1 1 4 4 subnet 0 738348473943256 9 kagome 1 1 5 5 subnet 0 743548682503071 9 kagome 1 1 6 6 subnet 0 746418147634282 9 kagome 2 2 3 3 subnet 0 61091770 30 citation needed triangular 2 2 subnet 6 4 0 471628788 80 triangular 3 3 subnet 6 4 0 509077793 80 triangular 4 4 subnet 6 4 0 524364822 80 triangular 5 5 subnet 6 4 0 5315976 10 80 triangular displaystyle infty nbsp subnet 6 4 0 53993 1 80 Thresholds of random sequentially adsorbed objects edit For more results and comparison to the jamming density see Random sequential adsorption system z Site threshold dimers on a honeycomb lattice 3 0 69 81 0 6653 82 dimers on a triangular lattice 6 0 4872 8 81 0 4873 82 aligned linear dimers on a triangular lattice 6 0 5157 2 83 aligned linear 4 mers on a triangular lattice 6 0 5220 2 83 aligned linear 8 mers on a triangular lattice 6 0 5281 5 83 aligned linear 12 mers on a triangular lattice 6 0 5298 8 83 linear 16 mers on a triangular lattice 6 aligned 0 5328 7 83 linear 32 mers on a triangular lattice 6 aligned 0 5407 6 83 linear 64 mers on a triangular lattice 6 aligned 0 5455 4 83 aligned linear 80 mers on a triangular lattice 6 0 5500 6 83 aligned linear k displaystyle longrightarrow infty nbsp on a triangular lattice 6 0 582 9 83 dimers and 5 impurities triangular lattice 6 0 4832 7 84 parallel dimers on a square lattice 4 0 5863 85 dimers on a square lattice 4 0 5617 85 0 5618 1 86 0 562 87 0 5713 82 linear 3 mers on a square lattice 4 0 528 87 3 site 120 angle 5 impurities triangular lattice 6 0 4574 9 84 3 site triangles 5 impurities triangular lattice 6 0 5222 9 84 linear trimers and 5 impurities triangular lattice 6 0 4603 8 84 linear 4 mers on a square lattice 4 0 504 87 linear 5 mers on a square lattice 4 0 490 87 linear 6 mers on a square lattice 4 0 479 87 linear 8 mers on a square lattice 4 0 474 87 0 4697 1 86 linear 10 mers on a square lattice 4 0 469 87 linear 16 mers on a square lattice 4 0 4639 1 86 linear 32 mers on a square lattice 4 0 4747 2 86 The threshold gives the fraction of sites occupied by the objects when site percolation first takes place not at full jamming For longer k mers see Ref 88 Thresholds of full dimer coverings of two dimensional lattices edit Here we are dealing with networks that are obtained by covering a lattice with dimers and then consider bond percolation on the remaining bonds In discrete mathematics this problem is known as the perfect matching or the dimer covering problem system z Bond threshold Parallel covering square lattice 6 0 381966 89 Shifted covering square lattice 6 0 347296 89 Staggered covering square lattice 6 0 376825 2 89 Random covering square lattice 6 0 367713 2 89 Parallel covering triangular lattice 10 0 237418 89 Staggered covering triangular lattice 10 0 237497 2 89 Random covering triangular lattice 10 0 235340 1 89 Thresholds of polymers random walks on a square lattice edit System is composed of ordinary non avoiding random walks of length l on the square lattice 90 l polymer length z Bond percolation 1 4 0 5 exact 91 2 4 0 47697 4 91 4 4 0 44892 6 91 8 4 0 41880 4 91 Thresholds of self avoiding walks of length k added by random sequential adsorption edit k z Site thresholds Bond thresholds 1 4 0 593 2 92 0 5009 2 92 2 4 0 564 2 92 0 4859 2 92 3 4 0 552 2 92 0 4732 2 92 4 4 0 542 2 92 0 4630 2 92 5 4 0 531 2 92 0 4565 2 92 6 4 0 522 2 92 0 4497 2 92 7 4 0 511 2 92 0 4423 2 92 8 4 0 502 2 92 0 4348 2 92 9 4 0 493 2 92 0 4291 2 92 10 4 0 488 2 92 0 4232 2 92 11 4 0 482 2 92 0 4159 2 92 12 4 0 476 2 92 0 4114 2 92 13 4 0 471 2 92 0 4061 2 92 14 4 0 467 2 92 0 4011 2 92 15 4 0 4011 2 92 0 3979 2 92 Thresholds on 2D inhomogeneous lattices edit Lattice z Site percolation threshold Bond percolation threshold bow tie with p 1 2 on one non diagonal bond 3 0 3819654 5 93 3 5 2 displaystyle 3 sqrt 5 2 nbsp 56 Thresholds for 2D continuum models edit System Fc hc nc Disks of radius r 0 67634831 2 94 0 6763475 6 95 0 676339 4 96 0 6764 4 97 0 6766 5 98 0 676 2 99 0 679 100 0 674 101 0 676 102 0 680 103 1 1280867 5 104 1 1276 9 105 1 12808737 6 94 1 128085 2 95 1 128059 12 96 1 13 citation needed 0 8 106 1 43632505 10 107 1 43632545 8 94 1 436322 2 95 1 436289 16 96 1 436320 4 108 1 436323 3 109 1 438 2 110 1 216 48 111 Ellipses e 1 5 0 0043 100 0 00431 2 059081 7 109 Ellipses e 5 3 0 65 112 1 05 112 2 28 112 Ellipses e 2 0 6287945 12 109 0 63 112 0 991000 3 109 0 99 112 2 523560 8 109 2 5 112 Ellipses e 3 0 56 112 0 82 112 3 157339 8 109 3 14 112 Ellipses e 4 0 5 112 0 69 112 3 569706 8 109 3 5 112 Ellipses e 5 0 455 100 0 455 102 0 46 112 0 607 100 3 861262 12 109 3 86 100 Ellipses e 6 4 079365 17 109 Ellipses e 7 4 249132 16 109 Ellipses e 8 4 385302 15 109 Ellipses e 9 4 497000 8 109 Ellipses e 10 0 301 100 0 303 102 0 30 112 0 358 100 0 36 112 4 590416 23 109 4 56 100 4 5 112 Ellipses e 15 4 894752 30 109 Ellipses e 20 0 178 100 0 17 112 0 196 100 5 062313 39 109 4 99 100 Ellipses e 50 0 081 100 0 084 100 5 393863 28 109 5 38 100 Ellipses e 100 0 0417 100 0 0426 100 5 513464 40 109 5 42 100 Ellipses e 200 0 021 112 0 0212 112 5 40 112 Ellipses e 1000 0 0043 100 0 00431 5 624756 22 109 5 5 Superellipses e 1 m 1 5 0 671 102 Superellipses e 2 5 m 1 5 0 599 102 Superellipses e 5 m 1 5 0 469 102 Superellipses e 10 m 1 5 0 322 102 disco rectangles e 1 5 1 894 108 disco rectangles e 2 2 245 108 Aligned squares of side ℓ displaystyle ell nbsp 0 66675 2 52 0 66674349 3 94 0 66653 1 113 0 6666 4 114 0 668 101 1 09884280 9 94 1 0982 3 113 1 098 1 114 1 09884280 9 94 1 0982 3 113 1 098 1 114 Randomly oriented squares 0 62554075 4 94 0 6254 2 114 0 625 102 0 9822723 1 94 0 9819 6 114 0 982278 14 115 0 9822723 1 94 0 9819 6 114 0 982278 14 115 Randomly oriented squares within angle p 4 displaystyle pi 4 nbsp 0 6255 1 114 0 98216 15 114 Rectangles e 1 1 0 624870 7 0 980484 19 1 078532 21 115 Rectangles e 2 0 590635 5 0 893147 13 1 786294 26 115 Rectangles e 3 0 5405983 34 0 777830 7 2 333491 22 115 Rectangles e 4 0 4948145 38 0 682830 8 2 731318 30 115 Rectangles e 5 0 4551398 31 0 451 102 0 607226 6 3 036130 28 115 Rectangles e 10 0 3233507 25 0 319 102 0 3906022 37 3 906022 37 115 Rectangles e 20 0 2048518 22 0 2292268 27 4 584535 54 115 Rectangles e 50 0 09785513 36 0 1029802 4 5 149008 20 115 Rectangles e 100 0 0523676 6 0 0537886 6 5 378856 60 115 Rectangles e 200 0 02714526 34 0 02752050 35 5 504099 69 115 Rectangles e 1000 0 00559424 6 0 00560995 6 5 609947 60 115 Sticks needles of length ℓ displaystyle ell nbsp 5 63726 2 116 5 6372858 6 94 5 637263 11 115 5 63724 18 117 sticks with log normal length dist STD 0 5 4 756 3 117 sticks with correlated angle dist s 0 5 6 6076 4 117 Power law disks x 2 05 0 993 1 118 4 90 1 0 0380 6 Power law disks x 2 25 0 8591 5 118 1 959 5 0 06930 12 Power law disks x 2 5 0 7836 4 118 1 5307 17 0 09745 11 Power law disks x 4 0 69543 6 118 1 18853 19 0 18916 3 Power law disks x 5 0 68643 13 118 1 1597 3 0 22149 8 Power law disks x 6 0 68241 8 118 1 1470 1 0 24340 5 Power law disks x 7 0 6803 8 118 1 140 6 0 25933 16 Power law disks x 8 0 67917 9 118 1 1368 5 0 27140 7 Power law disks x 9 0 67856 12 118 1 1349 4 0 28098 9 Voids around disks of radius r 1 Fc disk 0 32355169 2 94 0 318 2 119 0 3261 6 120 nbsp 2D continuum percolation with disks nbsp 2D continuum percolation with ellipses of aspect ratio 2 For disks n c 4 r 2 N L 2 displaystyle n c 4r 2 N L 2 nbsp equals the critical number of disks per unit area measured in units of the diameter 2 r displaystyle 2r nbsp where N displaystyle N nbsp is the number of objects and L displaystyle L nbsp is the system sizeFor disks h c p r 2 N L 2 p 4 n c displaystyle eta c pi r 2 N L 2 pi 4 n c nbsp equals critical total disk area 4 h c displaystyle 4 eta c nbsp gives the number of disk centers within the circle of influence radius 2 r r c L h c p N L 2 n c N displaystyle r c L sqrt frac eta c pi N frac L 2 sqrt frac n c N nbsp is the critical disk radius h c p a b N L 2 displaystyle eta c pi abN L 2 nbsp for ellipses of semi major and semi minor axes of a and b respectively Aspect ratio ϵ a b displaystyle epsilon a b nbsp with a gt b displaystyle a gt b nbsp h c ℓ m N L 2 displaystyle eta c ell mN L 2 nbsp for rectangles of dimensions ℓ displaystyle ell nbsp and m displaystyle m nbsp Aspect ratio ϵ ℓ m displaystyle epsilon ell m nbsp with ℓ gt m displaystyle ell gt m nbsp h c p x N 4 L 2 x 2 displaystyle eta c pi xN 4L 2 x 2 nbsp for power law distributed disks with Prob radius R R x displaystyle hbox Prob radius geq R R x nbsp R 1 displaystyle R geq 1 nbsp ϕ c 1 e h c displaystyle phi c 1 e eta c nbsp equals critical area fraction For disks Ref 99 use ϕ c 1 e p x 2 displaystyle phi c 1 e pi x 2 nbsp where x displaystyle x nbsp is the density of disks of radius 1 2 displaystyle 1 sqrt 2 nbsp n c ℓ 2 N L 2 displaystyle n c ell 2 N L 2 nbsp equals number of objects of maximum length ℓ 2 a displaystyle ell 2a nbsp per unit area For ellipses n c 4 ϵ p h c displaystyle n c 4 epsilon pi eta c nbsp For void percolation ϕ c e h c displaystyle phi c e eta c nbsp is the critical void fraction For more ellipse values see 109 112 For more rectangle values see 115 Both ellipses and rectangles belong to the superellipses with x a 2 m y b 2 m 1 displaystyle x a 2m y b 2m 1 nbsp For more percolation values of superellipses see 102 For the monodisperse particle systems the percolation thresholds of concave shaped superdisks are obtained as seen in 121 For binary dispersions of disks see 95 122 123 Thresholds on 2D random and quasi lattices edit nbsp Voronoi diagram solid lines and its dual the Delaunay triangulation dotted lines for a Poisson distribution of points nbsp Delaunay triangulation nbsp The Voronoi covering or line graph dotted red lines and the Voronoi diagram black lines nbsp The Relative Neighborhood Graph black lines 124 superimposed on the Delaunay triangulation black plus grey lines nbsp The Gabriel Graph a subgraph of the Delaunay triangulation in which the circle surrounding each edge does not enclose any other points of the graph nbsp Uniform Infinite Planar Triangulation showing bond clusters From 125 Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold Relative neighborhood graph 2 5576 0 796 2 124 0 771 2 124 Voronoi tessellation 3 0 71410 2 126 0 7151 69 0 68 127 0 6670 1 128 0 6680 5 129 0 666931 5 126 Voronoi covering medial 4 0 666931 2 126 128 0 53618 2 126 Randomized kagome square octagon fraction r 1 2 4 0 6599 16 Penrose rhomb dual 4 0 6381 3 66 0 5233 2 66 Gabriel graph 4 0 6348 8 130 0 62 131 0 5167 6 130 0 52 131 Random line tessellation dual 4 0 586 2 132 Penrose rhomb 4 0 5837 3 66 0 0 5610 6 weighted bonds 133 0 58391 1 134 0 483 5 135 0 4770 2 66 Octagonal lattice chemical links Ammann Beenker tiling 4 0 585 136 0 48 136 Octagonal lattice ferromagnetic links 5 17 0 543 136 0 40 136 Dodecagonal lattice chemical links 3 63 0 628 136 0 54 136 Dodecagonal lattice ferromagnetic links 4 27 0 617 136 0 495 136 Delaunay triangulation 6 1 2 137 0 3333 1 128 0 3326 5 129 0 333069 2 126 Uniform Infinite Planar Triangulation 138 6 1 2 2 3 1 11 0 2240 125 139 Theoretical estimate Thresholds on 2D correlated systems edit Assuming power law correlations C r r a displaystyle C r sim r alpha nbsp lattice a Site percolation threshold Bond percolation threshold square 3 0 561406 4 140 square 2 0 550143 5 140 square 0 1 0 508 4 140 Thresholds on slabs edit h is the thickness of the slab h Boundary conditions b c refer to the top and bottom planes of the slab Lattice h z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold simple cubic open b c 2 5 5 0 47424 141 0 4756 142 bcc open b c 2 0 4155 142 hcp open b c 2 0 2828 142 diamond open b c 2 0 5451 142 simple cubic open b c 3 0 4264 142 bcc open b c 3 0 3531 142 bcc periodic b c 3 0 21113018 38 143 hcp open b c 3 0 2548 142 diamond open b c 3 0 5044 142 simple cubic open b c 4 0 3997 141 0 3998 142 bcc open b c 4 0 3232 142 bcc periodic b c 4 0 20235168 59 143 hcp open b c 4 0 2405 142 diamond open b c 4 0 4842 142 simple cubic periodic b c 5 6 6 0 278102 5 143 simple cubic open b c 6 0 3708 142 simple cubic periodic b c 6 6 6 0 272380 2 143 bcc open b c 6 0 2948 142 hcp open b c 6 0 2261 142 diamond open b c 6 0 4642 142 simple cubic periodic b c 7 6 6 0 3459514 12 143 0 268459 1 143 simple cubic open b c 8 0 3557 141 0 3565 142 simple cubic periodic b c 8 6 6 0 265615 5 143 bcc open b c 8 0 2811 142 hcp open b c 8 0 2190 142 diamond open b c 8 0 4549 142 simple cubic open b c 12 0 3411 142 bcc open b c 12 0 2688 142 hcp open b c 12 0 2117 142 diamond open b c 12 0 4456 142 simple cubic open b c 16 0 3219 141 0 3339 142 bcc open b c 16 0 2622 142 hcp open b c 16 0 2086 142 diamond open b c 16 0 4415 142 simple cubic open b c 32 0 3219 141 simple cubic open b c 64 0 3165 141 simple cubic open b c 128 0 31398 141 Percolation in 3D editLattice z z displaystyle overline z nbsp filling factor filling fraction Site percolation threshold Bond percolation threshold 10 3 a oxide or site bond 144 23 32 2 4 0 748713 22 144 pc bond 10 3 a 1 2 0 742334 25 145 10 3 b oxide or site bond 144 23 32 2 4 0 233 146 0 174 0 745317 25 144 pc bond 10 3 b 1 2 0 739388 22 145 silicon dioxide diamond site bond 144 4 22 2 2 3 0 638683 35 144 Modified 10 3 b 147 32 2 2 2 3 0 627 147 8 3 a 145 3 3 0 577962 33 145 0 555700 22 145 10 3 a 145 gyroid 148 3 3 0 571404 40 145 0 551060 37 145 10 3 b 145 3 3 0 565442 40 145 0 546694 33 145 cubic oxide cubic site bond 144 6 23 3 5 0 524652 50 144 bcc dual 4 0 4560 6 149 0 4031 6 149 ice Ih 4 4 p 3 16 0 340087 0 147 0 433 11 150 0 388 10 151 diamond Ice Ic 4 4 p 3 16 0 340087 0 1462332 0 4299 8 152 0 4299870 4 153 0 426 0 08 0 02 154 0 4297 4 155 0 4301 4 156 0 428 4 157 0 425 15 158 0 425 41 48 0 436 12 150 0 3895892 5 153 0 3893 2 156 0 3893 3 155 0 388 5 158 0 3886 5 152 0 388 5 157 0 390 11 151 diamond dual 6 2 3 0 3904 5 149 0 2350 5 149 3D kagome covering graph of the diamond lattice 6 p 2 12 0 37024 0 1442 0 3895 2 159 pc site for diamond dual and pc bond for diamond lattice 149 0 2709 6 149 Bow tie stack dual 5 1 3 0 3480 4 38 0 2853 4 38 honeycomb stack 5 5 0 3701 2 38 0 3093 2 38 octagonal stack dual 5 5 0 3840 4 38 0 3168 4 38 pentagonal stack 5 1 3 0 3394 4 38 0 2793 4 38 kagome stack 6 6 0 453450 0 1517 0 3346 4 38 0 2563 2 38 fcc dual 42 8 5 1 3 0 3341 5 149 0 2703 3 149 simple cubic 6 6 p 6 0 5235988 0 1631574 0 307 10 158 0 307 41 0 3115 5 160 0 3116077 2 161 0 311604 6 162 0 311605 5 163 0 311600 5 164 0 3116077 4 165 0 3116081 13 166 0 3116080 4 167 0 3116060 48 168 0 3116004 35 169 0 31160768 15 153 0 247 5 158 0 2479 4 152 0 2488 2 170 0 24881182 10 161 0 2488125 25 171 0 2488126 5 172 hcp dual 44 82 5 1 3 0 3101 5 149 0 2573 3 149 dice stack 5 8 6 p 3 9 0 604600 0 1813 0 2998 4 38 0 2378 4 38 bow tie stack 7 7 0 2822 6 38 0 2092 4 38 Stacked triangular simple hexagonal 8 8 0 26240 5 173 0 2625 2 174 0 2623 2 38 0 18602 2 173 0 1859 2 38 octagonal union jack stack 6 10 8 0 2524 6 38 0 1752 2 38 bcc 8 8 0 243 10 158 0 243 41 0 2459615 10 167 0 2460 3 175 0 2464 7 152 0 2458 2 156 0 178 5 158 0 1795 3 152 0 18025 15 170 0 1802875 10 172 simple cubic with 3NN same as bcc 8 8 0 2455 1 176 0 2457 7 177 fcc D3 12 12 p 3 2 0 740480 0 147530 0 195 41 0 198 3 178 0 1998 6 152 0 1992365 10 167 0 19923517 20 153 0 1994 2 156 0 199236 4 179 0 1198 3 152 0 1201635 10 172 0 120169 2 179 hcp 12 12 p 3 2 0 740480 0 147545 0 195 5 158 0 1992555 10 180 0 1201640 10 180 0 119 2 158 La2 x Srx Cu O4 12 12 0 19927 2 181 simple cubic with 2NN same as fcc 12 12 0 1991 1 176 simple cubic with NN 4NN 12 12 0 15040 12 182 0 1503793 7 183 0 1068263 7 184 simple cubic with 3NN 4NN 14 14 0 20490 12 182 0 1012133 7 184 bcc NN 2NN sc 3 4 sc 3NN 4NN 14 14 0 175 41 0 1686 20 185 0 1759432 8 0 0991 5 185 0 1012133 7 45 0 1759432 8 45 Nanotube fibers on FCC 14 14 0 1533 13 186 simple cubic with NN 3NN 14 14 0 1420 1 176 0 0920213 7 184 simple cubic with 2NN 4NN 18 18 0 15950 12 182 0 0751589 9 184 simple cubic with NN 2NN 18 18 0 137 48 0 136 187 0 1372 1 176 0 13735 5 citation needed 0 1373045 5 45 0 0752326 6 184 fcc with NN 2NN sc 2NN 4NN 18 18 0 136 41 0 1361408 8 45 0 0751589 9 45 simple cubic with short length correlation 6 6 0 126 1 188 simple cubic with NN 3NN 4NN 20 20 0 11920 12 182 0 0624379 9 184 simple cubic with 2NN 3NN 20 20 0 1036 1 176 0 0629283 7 184 simple cubic with NN 2NN 4NN 24 24 0 11440 12 182 0 0533056 6 184 simple cubic with 2NN 3NN 4NN 26 26 0 11330 12 182 0 0474609 9 simple cubic with NN 2NN 3NN 26 26 0 097 41 0 0976 1 176 0 0976445 10 0 0976444 6 45 0 0497080 10 184 bcc with NN 2NN 3NN 26 26 0 095 48 0 0959084 6 45 0 0492760 10 45 simple cubic with NN 2NN 3NN 4NN 32 32 0 10000 12 182 0 0801171 9 45 0 0392312 8 184 fcc with NN 2NN 3NN 42 42 0 061 48 0 0610 5 187 0 0618842 8 45 0 0290193 7 45 fcc with NN 2NN 3NN 4NN 54 54 0 0500 5 187 sc 1 2 3 4 5 simple cubic with NN 2NN 3NN 4NN 5NN 56 56 0 0461815 5 45 0 0210977 7 45 sc 1 6 2x2x2 cube 51 80 80 0 0337049 9 45 0 03373 13 51 0 0143950 10 45 sc 1 7 92 92 0 0290800 10 45 0 0123632 8 45 sc 1 8 122 122 0 0218686 6 45 0 0091337 7 45 sc 1 9 146 146 0 0184060 10 45 0 0075532 8 45 sc 1 10 170 170 0 0064352 8 45 sc 1 11 178 178 0 0061312 8 45 sc 1 12 202 202 0 0053670 10 45 sc 1 13 250 250 0 0042962 8 45 3x3x3 cube 274 274 fc 0 76564 1 52 pc 0 0098417 7 52 0 009854 6 51 4x4x4 cube 636 636 fc 0 76362 1 52 pc 0 0042050 2 52 0 004217 3 51 5x5x5 cube 1214 1250 fc 0 76044 2 52 pc 0 0021885 2 52 0 002185 4 51 6x6x6 cube 2056 2056 0 001289 2 51 Filling factor fraction of space filled by touching spheres at every lattice site for systems with uniform bond length only Also called Atomic Packing Factor Filling fraction or Critical Filling Fraction filling factor pc site NN nearest neighbor 2NN next nearest neighbor 3NN next next nearest neighbor etc kxkxk cubes are cubes of occupied sites on a lattice and are equivalent to extended range percolation of a cube of length 2k 1 with edges and corners removed with z 2k 1 3 12 2k 1 9 center site not counted in z Question the bond thresholds for the hcp and fcc lattice agree within the small statistical error Are they identical and if not how far apart are they Which threshold is expected to be bigger Similarly for the ice and diamond lattices See 189 System polymer Fc percolating excluded volume of athermal polymer matrix bond fluctuation model on cubic lattice 0 4304 3 190 3D distorted lattices edit Here one distorts a regular lattice of unit spacing by moving vertices uniformly within the cube x a x a y a y a z a z a displaystyle x alpha x alpha y alpha y alpha z alpha z alpha nbsp and considers percolation when sites are within Euclidean distance d displaystyle d nbsp of each other Lattice z displaystyle overline z nbsp a displaystyle alpha nbsp d displaystyle d nbsp Site percolation threshold Bond percolation threshold cubic 0 05 1 0 0 60254 3 191 0 1 1 00625 0 58688 4 191 0 15 1 025 0 55075 2 191 0 175 1 05 0 50645 5 191 0 2 1 1 0 44342 3 191 Overlapping shapes on 3D lattices edit Site threshold is the number of overlapping objects per lattice site The coverage fc is the net fraction of sites covered and v is the volume number of cubes Overlapping cubes are given in the section on thresholds of 3D lattices Here z is the coordination number to k mers of either orientation with z 6 k 2 18 k 4 displaystyle z 6k 2 18k 4 nbsp System k z Site coverage fc Site percolation threshold pc 1 x 2 dimer cubic lattice 2 56 0 24542 51 0 045847 2 51 1 x 3 trimer cubic lattice 3 104 0 19578 51 0 023919 9 51 1 x 4 stick cubic lattice 4 164 0 16055 51 0 014478 7 51 1 x 5 stick cubic lattice 5 236 0 13488 51 0 009613 8 51 1 x 6 stick cubic lattice 6 320 0 11569 51 0 006807 2 51 2 x 2 plaquette cubic lattice 2 0 22710 51 0 021238 2 51 3 x 3 plaquette cubic lattice 3 0 18686 51 0 007632 5 51 4 x 4 plaquette cubic lattice 4 0 16159 51 0 003665 3 51 5 x 5 plaquette cubic lattice 5 0 14316 51 0 002058 5 51 6 x 6 plaquette cubic lattice 6 0 12900 51 0 001278 5 51 The coverage is calculated from p c displaystyle p c nbsp by ϕ c 1 1 p c 3 k displaystyle phi c 1 1 p c 3k nbsp for sticks and ϕ c 1 1 p c 3 k 2 displaystyle phi c 1 1 p c 3k 2 nbsp for plaquettes Dimer percolation in 3D edit System Site percolation threshold Bond percolation threshold Simple cubic 0 2555 1 192 Thresholds for 3D continuum models edit All overlapping except for jammed spheres and polymer matrix System Fc hc Spheres of radius r 0 289 193 0 293 194 0 286 195 0 295 101 0 2895 5 196 0 28955 7 197 0 2896 7 198 0 289573 2 199 0 2896 200 0 2854 201 0 290 202 0 290 203 0 3418 7 196 0 3438 13 204 0 341889 3 199 0 3360 201 0 34189 2 113 corrected 0 341935 8 205 0 335 206 Oblate ellipsoids with major radius r and aspect ratio 4 3 0 2831 201 0 3328 201 Prolate ellipsoids with minor radius r and aspect ratio 3 2 0 2757 200 0 2795 201 0 2763 202 0 3278 201 Oblate ellipsoids with major radius r and aspect ratio 2 0 2537 200 0 2629 201 0 254 202 0 3050 201 Prolate ellipsoids with minor radius r and aspect ratio 2 0 2537 200 0 2618 201 0 25 2 207 0 2507 202 0 3035 201 0 29 3 207 Oblate ellipsoids with major radius r and aspect ratio 3 0 2289 201 0 2599 201 Prolate ellipsoids with minor radius r and aspect ratio 3 0 2033 200 0 2244 201 0 20 2 207 0 2541 201 0 22 3 207 Oblate ellipsoids with major radius r and aspect ratio 4 0 2003 201 0 2235 201 Prolate ellipsoids with minor radius r and aspect ratio 4 0 1901 201 0 16 2 207 0 2108 201 0 17 3 207 Oblate ellipsoids with major radius r and aspect ratio 5 0 1757 201 0 1932 201 Prolate ellipsoids with minor radius r and aspect ratio 5 0 1627 201 0 13 2 207 0 1776 201 0 15 2 207 Oblate ellipsoids with major radius r and aspect ratio 10 0 0895 200 0 1058 201 0 1118 201 Prolate ellipsoids with minor radius r and aspect ratio 10 0 0724 200 0 08703 201 0 07 2 207 0 09105 201 0 07 2 207 Oblate ellipsoids with major radius r and aspect ratio 100 0 01248 201 0 01256 201 Prolate ellipsoids with minor radius r and aspect ratio 100 0 006949 201 0 006973 201 Oblate ellipsoids with major radius r and aspect ratio 1000 0 001275 201 0 001276 201 Oblate ellipsoids with major radius r and aspect ratio 2000 0 000637 201 0 000637 201 Spherocylinders with H D 1 0 2439 2 198 Spherocylinders with H D 4 0 1345 1 198 Spherocylinders with H D 10 0 06418 20 198 Spherocylinders with H D 50 0 01440 8 198 Spherocylinders with H D 100 0 007156 50 198 Spherocylinders with H D 200 0 003724 90 198 Aligned cylinders 0 2819 2 208 0 3312 1 208 Aligned cubes of side ℓ 2 a displaystyle ell 2a nbsp 0 2773 2 114 0 27727 2 52 0 27730261 79 168 0 3247 3 113 0 3248 3 114 0 32476 4 208 0 324766 1 168 Randomly oriented icosahedra 0 3030 5 209 Randomly oriented dodecahedra 0 2949 5 209 Randomly oriented octahedra 0 2514 6 209 Randomly oriented cubes of side ℓ 2 a displaystyle ell 2a nbsp 0 2168 2 114 0 2174 200 0 2444 3 114 0 2443 5 209 Randomly oriented tetrahedra 0 1701 7 209 Randomly oriented disks of radius r in 3D 0 9614 5 210 Randomly oriented square plates of side p r displaystyle sqrt pi r nbsp 0 8647 6 210 Randomly oriented triangular plates of side 2 p 3 1 4 r displaystyle sqrt 2 pi 3 1 4 r nbsp 0 7295 6 210 Jammed spheres average z 6 0 183 3 211 0 1990 212 see also contact network of jammed spheres below 0 59 1 211 volume fraction of all spheres h c 4 3 p r 3 N L 3 displaystyle eta c 4 3 pi r 3 N L 3 nbsp is the total volume for spheres where N is the number of objects and L is the system size ϕ c 1 e h c displaystyle phi c 1 e eta c nbsp is the critical volume fraction valid for overlapping randomly placed objects For disks and plates these are effective volumes and volume fractions For void Swiss Cheese model ϕ c e h c displaystyle phi c e eta c nbsp is the critical void fraction For more results on void percolation around ellipsoids and elliptical plates see 213 For more ellipsoid percolation values see 201 For spherocylinders H D is the ratio of the height to the diameter of the cylinder which is then capped by hemispheres Additional values are given in 198 For superballs m is the deformation parameter the percolation values are given in 214 215 In addition the thresholds of concave shaped superballs are also determined in 121 For cuboid like particles superellipsoids m is the deformation parameter more percolation values are given in 200 Void percolation in 3D edit Void percolation refers to percolation in the space around overlapping objects Here ϕ c displaystyle phi c nbsp refers to the fraction of the space occupied by the voids not of the particles at the critical point and is related to h c displaystyle eta c nbsp by ϕ c e h c displaystyle phi c e eta c nbsp h c displaystyle eta c nbsp is defined as in the continuum percolation section above System Fc hc Voids around disks of radius r 22 86 2 213 Voids around randomly oriented tetrahedra 0 0605 6 216 Voids around oblate ellipsoids of major radius r and aspect ratio 32 0 5308 7 217 0 6333 217 Voids around oblate ellipsoids of major radius r and aspect ratio 16 0 3248 5 217 1 125 217 Voids around oblate ellipsoids of major radius r and aspect ratio 10 1 542 1 213 Voids around oblate ellipsoids of major radius r and aspect ratio 8 0 1615 4 217 1 823 217 Voids around oblate ellipsoids of major radius r and aspect ratio 4 0 0711 2 217 2 643 217 2 618 5 213 Voids around oblate ellipsoids of major radius r and aspect ratio 2 3 239 4 213 Voids around prolate ellipsoids of aspect ratio 8 0 0415 7 218 Voids around prolate ellipsoids of aspect ratio 6 0 0397 7 218 Voids around prolate ellipsoids of aspect ratio 4 0 0376 7 218 Voids around prolate ellipsoids of aspect ratio 3 0 03503 50 218 Voids around prolate ellipsoids of aspect ratio 2 0 0323 5 218 Voids around aligned square prisms of aspect ratio 2 0 0379 5 219 Voids around randomly oriented square prisms of aspect ratio 20 0 0534 4 219 Voids around randomly oriented square prisms of aspect ratio 15 0 0535 4 219 Voids around randomly oriented square prisms of aspect ratio 10 0 0524 5 219 Voids around randomly oriented square prisms of aspect ratio 8 0 0523 6 219 Voids around randomly oriented square prisms of aspect ratio 7 0 0519 3 219 Voids around randomly oriented square prisms of aspect ratio 6 0 0519 5 219 Voids around randomly oriented square prisms of aspect ratio 5 0 0515 7 219 Voids around randomly oriented square prisms of aspect ratio 4 0 0505 7 219 Voids around randomly oriented square prisms of aspect ratio 3 0 0485 11 219 Voids around randomly oriented square prisms of aspect ratio 5 2 0 0483 8 219 Voids around randomly oriented square prisms of aspect ratio 2 0 0465 7 219 Voids around randomly oriented square prisms of aspect ratio 3 2 0 0461 14 219 Voids around hemispheres 0 0455 6 220 Voids around aligned tetrahedra 0 0605 6 216 Voids around randomly oriented tetrahedra 0 0605 6 216 Voids around aligned cubes 0 036 1 52 0 0381 3 216 Voids around randomly oriented cubes 0 0452 6 216 0 0449 5 219 Voids around aligned octahedra 0 0407 3 216 Voids around randomly oriented octahedra 0 0398 5 216 Voids around aligned dodecahedra 0 0356 3 216 Voids around randomly oriented dodecahedra 0 0360 3 216 Voids around aligned icosahedra 0 0346 3 216 Voids around randomly oriented icosahedra 0 0336 7 216 Voids around spheres 0 034 7 221 0 032 4 222 0 030 2 119 0 0301 3 223 0 0294 218 0 0300 3 224 0 0317 4 225 0 0308 5 220 0 0301 1 217 0 0301 1 216 3 506 8 224 3 515 6 213 3 510 2 105 Thresholds on 3D random and quasi lattices edit Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold Contact network of packed spheres 6 0 310 5 211 0 287 50 226 0 3116 3 212 Random plane tessellation dual 6 0 290 7 227 Icosahedral Penrose 6 0 285 228 0 225 228 Penrose w 2 diagonals 6 764 0 271 228 0 207 228 Penrose w 8 diagonals 12 764 0 188 228 0 111 228 Voronoi network 15 54 0 1453 20 185 0 0822 50 185 Thresholds for other 3D models edit Lattice z z displaystyle overline z nbsp Site percolation threshold Critical coverage fraction ϕ c displaystyle phi c nbsp Bond percolation threshold Drilling percolation simple cubic lattice 6 6 0 6345 3 229 0 6339 5 230 0 633965 15 231 0 25480 Drill in z direction on cubic lattice remove single sites 6 6 0 592746 columns 0 4695 10 sites 232 0 2784 Random tube model simple cubic lattice 0 231456 6 233 Pac Man percolation simple cubic lattice 0 139 6 234 displaystyle nbsp In drilling percolation the site threshold p c displaystyle p c nbsp represents the fraction of columns in each direction that have not been removed and ϕ c p c 3 displaystyle phi c p c 3 nbsp For the 1d drilling we have ϕ c p c displaystyle phi c p c nbsp columns p c displaystyle p c nbsp sites In tube percolation the bond threshold represents the value of the parameter m displaystyle mu nbsp such that the probability of putting a bond between neighboring vertical tube segments is 1 e m h i displaystyle 1 e mu h i nbsp where h i displaystyle h i nbsp is the overlap height of two adjacent tube segments 233 Thresholds in different dimensional spaces editContinuum models in higher dimensions edit d System Fc hc 4 Overlapping hyperspheres 0 1223 4 113 0 1300 13 204 0 1304 5 113 4 Aligned hypercubes 0 1132 5 113 0 1132348 17 168 0 1201 6 113 4 Voids around hyperspheres 0 00211 2 120 6 161 10 120 6 248 2 105 5 Overlapping hyperspheres 0 0544 6 204 0 05443 7 113 5 Aligned hypercubes 0 04900 7 113 0 0481621 13 168 0 05024 7 113 5 Voids around hyperspheres 1 26 6 x10 4 120 8 98 4 120 9 170 8 105 6 Overlapping hyperspheres 0 02391 31 204 0 02339 5 113 6 Aligned hypercubes 0 02082 8 113 0 0213479 10 168 0 02104 8 113 6 Voids around hyperspheres 8 0 6 x10 6 120 11 74 8 120 12 24 2 105 7 Overlapping hyperspheres 0 01102 16 204 0 01051 3 113 7 Aligned hypercubes 0 00999 5 113 0 0097754 31 168 0 01004 5 113 7 Voids around hyperspheres 15 46 5 105 8 Overlapping hyperspheres 0 00516 8 204 0 004904 6 113 8 Aligned hypercubes 0 004498 5 113 8 Voids around hyperspheres 18 64 8 105 9 Overlapping hyperspheres 0 002353 4 113 9 Aligned hypercubes 0 002166 4 113 9 Voids around hyperspheres 22 1 4 105 10 Overlapping hyperspheres 0 001138 3 113 10 Aligned hypercubes 0 001058 4 113 11 Overlapping hyperspheres 0 0005530 3 113 11 Aligned hypercubes 0 0005160 3 113 h c p d 2 G d 2 1 r d N L d displaystyle eta c pi d 2 Gamma d 2 1 r d N L d nbsp In 4d h c 1 2 p 2 r 4 N L 4 displaystyle eta c 1 2 pi 2 r 4 N L 4 nbsp In 5d h c 8 15 p 2 r 5 N L 5 displaystyle eta c 8 15 pi 2 r 5 N L 5 nbsp In 6d h c 1 6 p 3 r 6 N L 6 displaystyle eta c 1 6 pi 3 r 6 N L 6 nbsp ϕ c 1 e h c displaystyle phi c 1 e eta c nbsp is the critical volume fraction valid for overlapping objects For void models ϕ c e h c displaystyle phi c e eta c nbsp is the critical void fraction and h c displaystyle eta c nbsp is the total volume of the overlapping objects Thresholds on hypercubic lattices edit d z Site thresholds Bond thresholds 4 8 0 198 1 235 0 197 6 236 0 1968861 14 237 0 196889 3 238 0 196901 5 239 0 19680 23 240 0 1968904 65 168 0 19688561 3 241 0 1600 1 242 0 16005 15 170 0 1601314 13 237 0 160130 3 238 0 1601310 10 171 0 1601312 2 243 0 16013122 6 241 5 10 0 141 1 0 198 1 235 0 141 3 236 0 1407966 15 237 0 1407966 26 168 0 14079633 4 241 0 1181 1 242 0 118 1 244 0 11819 4 170 0 118172 1 237 0 1181718 3 171 0 11817145 3 241 6 12 0 106 1 235 0 108 3 236 0 109017 2 237 0 1090117 30 168 0 109016661 8 241 0 0943 1 242 0 0942 1 245 0 0942019 6 237 0 09420165 2 241 7 14 0 05950 5 245 0 088939 20 246 0 0889511 9 237 0 0889511 90 168 0 088951121 1 241 0 0787 1 242 0 078685 30 245 0 0786752 3 237 0 078675230 2 241 8 16 0 0752101 5 237 0 075210128 1 241 0 06770 5 245 0 06770839 7 237 0 0677084181 3 241 9 18 0 0652095 3 237 0 0652095348 6 241 0 05950 5 245 0 05949601 5 237 0 0594960034 1 241 10 20 0 0575930 1 237 0 0575929488 4 241 0 05309258 4 237 0 0530925842 2 241 11 22 0 05158971 8 237 0 0515896843 2 241 0 04794969 1 237 0 04794968373 8 241 12 24 0 04673099 6 237 0 0467309755 1 241 0 04372386 1 237 0 04372385825 10 241 13 26 0 04271508 8 237 0 04271507960 10 241 0 04018762 1 237 0 04018761703 6 241 For thresholds on high dimensional hypercubic lattices we have the asymptotic series expansions 236 244 247 p c s i t e d s 1 3 2 s 2 15 4 s 3 83 4 s 4 6577 48 s 5 119077 96 s 6 O s 7 displaystyle p c mathrm site d sigma 1 frac 3 2 sigma 2 frac 15 4 sigma 3 frac 83 4 sigma 4 frac 6577 48 sigma 5 frac 119077 96 sigma 6 mathcal O sigma 7 nbsp p c b o n d d s 1 5 2 s 3 15 2 s 4 57 s 5 4855 12 s 6 O s 7 displaystyle p c mathrm bond d sigma 1 frac 5 2 sigma 3 frac 15 2 sigma 4 57 sigma 5 frac 4855 12 sigma 6 mathcal O sigma 7 nbsp where s 2 d 1 displaystyle sigma 2d 1 nbsp For 13 dimensional bond percolation for example the error with the measured value is less than 10 6 and these formulas can be useful for higher dimensional systems Thresholds in other higher dimensional lattices edit d lattice z Site thresholds Bond thresholds 4 diamond 5 0 2978 2 156 0 2715 3 156 4 kagome 8 0 2715 3 159 0 177 1 156 4 bcc 16 0 1037 3 156 0 074 1 156 0 074212 1 243 4 fcc D4 hypercubic 2NN 24 0 0842 3 156 0 08410 23 240 0 0842001 11 179 0 049 1 156 0 049517 1 243 0 0495193 8 179 4 hypercubic NN 2NN 32 0 06190 23 240 0 0617731 19 248 0 035827 1 243 0 0338047 27 248 4 hypercubic 3NN 32 0 04540 23 240 4 hypercubic NN 3NN 40 0 04000 23 240 0 0271892 22 248 4 hypercubic 2NN 3NN 56 0 03310 23 240 0 0194075 15 248 4 hypercubic NN 2NN 3NN 64 0 03190 23 240 0 0319407 13 248 0 0171036 11 248 4 hypercubic NN 2NN 3NN 4NN 88 0 0231538 12 248 0 0122088 8 248 4 hypercubic NN 5NN 136 0 0147918 12 248 0 0077389 9 248 4 hypercubic NN 6NN 232 0 0088400 10 248 0 0044656 11 248 4 hypercubic NN 7NN 296 0 0070006 6 248 0 0034812 7 248 4 hypercubic NN 8NN 320 0 0064681 9 248 0 0032143 8 248 4 hypercubic NN 9NN 424 0 0048301 9 248 0 0024117 7 248 5 diamond 6 0 2252 3 156 0 2084 4 159 5 kagome 10 0 2084 4 159 0 130 2 156 5 bcc 32 0 0446 4 156 0 033 1 156 5 fcc D5 hypercubic 2NN 40 0 0431 3 156 0 0435913 6 179 0 026 2 156 0 0271813 2 179 5 hypercubic NN 2NN 50 0 0334 2 249 0 0213 1 249 6 diamond 7 0 1799 5 156 0 1677 7 159 6 kagome 12 0 1677 7 159 6 fcc D6 60 0 0252 5 156 0 02602674 12 179 0 01741556 5 179 6 bcc 64 0 0199 5 156 6 E6 179 72 0 02194021 14 179 0 01443205 8 179 7 fcc D7 84 0 01716730 5 179 0 012217868 13 179 7 E7 179 126 0 01162306 4 179 0 00808368 2 179 8 fcc D8 112 0 01215392 4 179 0 009081804 6 179 8 E8 179 240 0 00576991 2 179 0 004202070 2 179 9 fcc D9 144 0 00905870 2 179 0 007028457 3 179 9 L 9 displaystyle Lambda 9 nbsp 179 272 0 00480839 2 179 0 0037006865 11 179 10 fcc D10 180 0 007016353 9 179 0 005605579 6 179 11 fcc D11 220 0 005597592 4 179 0 004577155 3 179 12 fcc D12 264 0 004571339 4 179 0 003808960 2 179 13 fcc D13 312 0 003804565 3 179 0 0032197013 14 179 Thresholds in one dimensional long range percolation edit nbsp Long range bond percolation model The lines represent the possible bonds with width decreasing as the connection probability decreases left panel An instance of the model together with the clusters generated right panel In a one dimensional chain we establish bonds between distinct sites i displaystyle i nbsp and j displaystyle j nbsp with probability p C i j 1 s displaystyle p frac C i j 1 sigma nbsp decaying as a power law with an exponent s gt 0 displaystyle sigma gt 0 nbsp Percolation occurs 250 251 at a critical value C c lt 1 displaystyle C c lt 1 nbsp for s lt 1 displaystyle sigma lt 1 nbsp The numerically determined percolation thresholds are given by 252 s displaystyle sigma nbsp C c displaystyle C c nbsp Critical thresholds C c displaystyle C c nbsp as a function of s displaystyle sigma nbsp 252 The dotted line is the rigorous lower bound 250 0 1 0 047685 8 nbsp 0 2 0 093211 16 0 3 0 140546 17 0 4 0 193471 15 0 5 0 25482 5 0 6 0 327098 6 0 7 0 413752 14 0 8 0 521001 14 0 9 0 66408 7 Thresholds on hyperbolic hierarchical and tree lattices edit In these lattices there may be two percolation thresholds the lower threshold is the probability above which infinite clusters appear and the upper is the probability above which there is a unique infinite cluster nbsp Visualization of a triangular hyperbolic lattice 3 7 projected on the Poincare disk red bonds Green bonds show dual clusters on the 7 3 lattice 253 nbsp Depiction of the non planar Hanoi network HN NP 254 Lattice z z displaystyle overline z nbsp Site percolation threshold Bond percolation threshold Lower Upper Lower Upper 3 7 hyperbolic 7 7 0 26931171 7 255 0 20 256 0 73068829 7 255 0 73 2 256 0 20 257 0 1993505 5 255 0 37 257 0 4694754 8 255 3 8 hyperbolic 8 8 0 20878618 9 255 0 79121382 9 255 0 1601555 2 255 0 4863559 6 255 3 9 hyperbolic 9 9 0 1715770 1 255 0 8284230 1 255 0 1355661 4 255 0 4932908 1 255 4 5 hyperbolic 5 5 0 29890539 6 255 0 8266384 5 255 0 27 257 0 2689195 3 255 0 52 257 0 6487772 3 255 4 6 hyperbolic 6 6 0 22330172 3 255 0 87290362 7 255 0 20714787 9 255 0 6610951 2 255 4 7 hyperbolic 7 7 0 17979594 1 255 0 89897645 3 255 0 17004767 3 255 0 66473420 4 255 4 8 hyperbolic 8 8 0 151035321 9 255 0 91607962 7 255 0 14467876 3 255 0 66597370 3 255 4 9 hyperbolic 8 8 0 13045681 3 255 0 92820305 3 255 0 1260724 1 255 0 66641596 2 255 5 5 hyperbolic 5 5 0 26186660 5 255 0 89883342 7 255 0 263 10 258 0 25416087 3 255 0 749 10 258 0 74583913 3 255 7 3 hyperbolic 3 3 0 54710885 10 255 0 8550371 5 255 0 86 2 256 0 53 257 0 551 10 258 0 5305246 8 255 0 72 257 0 810 10 258 0 8006495 5 255 3 Cayley tree 3 3 1 2 1 2 257 1 257 Enhanced binary tree EBT 0 304 1 259 0 306 10 258 13 3 2 0 302776 260 0 48 257 0 564 1 259 0 564 10 258 1 2 260 Enhanced binary tree dual 0 436 1 259 0 452 10 258 0 696 1 259 0 699 10 258 Non Planar Hanoi Network HN NP 0 319445 254 0 381996 254 Cayley tree with grandparents 8 0 158656326 261 Note m n is the Schlafli symbol signifying a hyperbolic lattice in which n regular m gons meet at every vertexFor bond percolation on P Q we have by duality p c ℓ P Q p c u Q, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.