fbpx
Wikipedia

Partial pressure

In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature.[1] The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture (Dalton's Law).

The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.

The partial pressure of a gas is a measure of thermodynamic activity of the gas's molecules. Gases dissolve, diffuse, and react according to their partial pressures but not according to their concentrations in gas mixtures or liquids. This general property of gases is also true in chemical reactions of gases in biology. For example, the necessary amount of oxygen for human respiration, and the amount that is toxic, is set by the partial pressure of oxygen alone. This is true across a very wide range of different concentrations of oxygen present in various inhaled breathing gases or dissolved in blood;[2] consequently, mixture ratios, like that of breathable 20% oxygen and 80% Nitrogen, are determined by volume instead of by weight or mass.[3] Furthermore, the partial pressures of oxygen and carbon dioxide are important parameters in tests of arterial blood gases. That said, these pressures can also be measured in, for example, cerebrospinal fluid.

Symbol edit

The symbol for pressure is usually P or p which may use a subscript to identify the pressure, and gas species are also referred to by subscript. When combined, these subscripts are applied recursively.[4][5]

Examples:

  •   or   = pressure at time 1
  •   or   = partial pressure of hydrogen
  •   or   or PaO2 = arterial partial pressure of oxygen
  •   or   or PvO2 = venous partial pressure of oxygen

Dalton's law of partial pressures edit

 
Schematic showing the concept of Dalton's Law.

Dalton's law expresses the fact that the total pressure of a mixture of ideal gases is equal to the sum of the partial pressures of the individual gases in the mixture.[6] This equality arises from the fact that in an ideal gas, the molecules are so far apart that they do not interact with each other. Most actual real-world gases come very close to this ideal. For example, given an ideal gas mixture of nitrogen (N2), hydrogen (H2) and ammonia (NH3):

 
where:
  •   = total pressure of the gas mixture
  •   = partial pressure of nitrogen (N2)
  •   = partial pressure of hydrogen (H2)
  •   = partial pressure of ammonia (NH3)

Ideal gas mixtures edit

Ideally the ratio of partial pressures equals the ratio of the number of molecules. That is, the mole fraction   of an individual gas component in an ideal gas mixture can be expressed in terms of the component's partial pressure or the moles of the component:

 

and the partial pressure of an individual gas component in an ideal gas can be obtained using this expression:

 
where:  
  = mole fraction of any individual gas component in a gas mixture
  = partial pressure of any individual gas component in a gas mixture
  = moles of any individual gas component in a gas mixture
  = total moles of the gas mixture
  = total pressure of the gas mixture

The mole fraction of a gas component in a gas mixture is equal to the volumetric fraction of that component in a gas mixture.[7]

The ratio of partial pressures relies on the following isotherm relation:

 
  • VX is the partial volume of any individual gas component (X)
  • Vtot is the total volume of the gas mixture
  • pX is the partial pressure of gas X
  • ptot is the total pressure of the gas mixture
  • nX is the amount of substance of gas (X)
  • ntot is the total amount of substance in gas mixture

Partial volume (Amagat's law of additive volume) edit

The partial volume of a particular gas in a mixture is the volume of one component of the gas mixture. It is useful in gas mixtures, e.g. air, to focus on one particular gas component, e.g. oxygen.

It can be approximated both from partial pressure and molar fraction:[8]

 
  • VX is the partial volume of an individual gas component X in the mixture
  • Vtot is the total volume of the gas mixture
  • pX is the partial pressure of gas X
  • ptot is the total pressure of the gas mixture
  • nX is the amount of substance of gas X
  • ntot is the total amount of substance in the gas mixture

Vapor pressure edit

 
A log-lin vapor pressure chart for various liquids

Vapor pressure is the pressure of a vapor in equilibrium with its non-vapor phases (i.e., liquid or solid). Most often the term is used to describe a liquid's tendency to evaporate. It is a measure of the tendency of molecules and atoms to escape from a liquid or a solid. A liquid's atmospheric pressure boiling point corresponds to the temperature at which its vapor pressure is equal to the surrounding atmospheric pressure and it is often called the normal boiling point.

The higher the vapor pressure of a liquid at a given temperature, the lower the normal boiling point of the liquid.

The vapor pressure chart displayed has graphs of the vapor pressures versus temperatures for a variety of liquids.[9] As can be seen in the chart, the liquids with the highest vapor pressures have the lowest normal boiling points.

For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart. It also has the lowest normal boiling point (−24.2 °C), which is where the vapor pressure curve of methyl chloride (the blue line) intersects the horizontal pressure line of one atmosphere (atm) of absolute vapor pressure. At higher altitudes, the atmospheric pressure is less than that at sea level, so boiling points of liquids are reduced. At the top of Mount Everest, the atmospheric pressure is approximately 0.333 atm, so by using the graph, the boiling point of diethyl ether would be approximately 7.5 °C versus 34.6 °C at sea level (1 atm).

Equilibrium constants of reactions involving gas mixtures edit

It is possible to work out the equilibrium constant for a chemical reaction involving a mixture of gases given the partial pressure of each gas and the overall reaction formula. For a reversible reaction involving gas reactants and gas products, such as:

 

the equilibrium constant of the reaction would be:

 
where:  
  =  the equilibrium constant of the reaction
  =  coefficient of reactant  
  =  coefficient of reactant  
  =  coefficient of product  
  =  coefficient of product  
  =  the partial pressure of   raised to the power of  
  =  the partial pressure of   raised to the power of  
  =  the partial pressure of   raised to the power of  
  =  the partial pressure of   raised to the power of  

For reversible reactions, changes in the total pressure, temperature or reactant concentrations will shift the equilibrium so as to favor either the right or left side of the reaction in accordance with Le Chatelier's Principle. However, the reaction kinetics may either oppose or enhance the equilibrium shift. In some cases, the reaction kinetics may be the overriding factor to consider.

Henry's law and the solubility of gases edit

Gases will dissolve in liquids to an extent that is determined by the equilibrium between the undissolved gas and the gas that has dissolved in the liquid (called the solvent).[10] The equilibrium constant for that equilibrium is:

 

 

 

 

 

(1)

where:

  •   =  the equilibrium constant for the solvation process
  •   =  partial pressure of gas   in equilibrium with a solution containing some of the gas
  •   =  the concentration of gas   in the liquid solution

The form of the equilibrium constant shows that the concentration of a solute gas in a solution is directly proportional to the partial pressure of that gas above the solution. This statement is known as Henry's law and the equilibrium constant   is quite often referred to as the Henry's law constant.[10][11][12]

Henry's law is sometimes written as:[13]

 

 

 

 

 

(2)

where   is also referred to as the Henry's law constant.[13] As can be seen by comparing equations (1) and (2) above,   is the reciprocal of  . Since both may be referred to as the Henry's law constant, readers of the technical literature must be quite careful to note which version of the Henry's law equation is being used.

Henry's law is an approximation that only applies for dilute, ideal solutions and for solutions where the liquid solvent does not react chemically with the gas being dissolved.

In diving breathing gases edit

In underwater diving the physiological effects of individual component gases of breathing gases are a function of partial pressure.[14]

Using diving terms, partial pressure is calculated as:

partial pressure = (total absolute pressure) × (volume fraction of gas component)[14]

For the component gas "i":

pi = P × Fi[14]

For example, at 50 metres (164 ft) underwater, the total absolute pressure is 6 bar (600 kPa) (i.e., 1 bar of atmospheric pressure + 5 bar of water pressure) and the partial pressures of the main components of air, oxygen 21% by volume and nitrogen approximately 79% by volume are:

pN2 = 6 bar × 0.79 = 4.7 bar absolute
pO2 = 6 bar × 0.21 = 1.3 bar absolute
where:  
pi = partial pressure of gas component i  =   in the terms used in this article
P = total pressure =   in the terms used in this article
Fi = volume fraction of gas component i  =  mole fraction,  , in the terms used in this article
pN2 = partial pressure of nitrogen  =   in the terms used in this article
pO2 = partial pressure of oxygen  =   in the terms used in this article

The minimum safe lower limit for the partial pressures of oxygen in a breathing gas mixture for diving is 0.16 bars (16 kPa) absolute. Hypoxia and sudden unconsciousness can become a problem with an oxygen partial pressure of less than 0.16 bar absolute.[15]Oxygen toxicity, involving convulsions, becomes a problem when oxygen partial pressure is too high. The NOAA Diving Manual recommends a maximum single exposure of 45 minutes at 1.6 bar absolute, of 120 minutes at 1.5 bar absolute, of 150 minutes at 1.4 bar absolute, of 180 minutes at 1.3 bar absolute and of 210 minutes at 1.2 bar absolute. Oxygen toxicity becomes a risk when these oxygen partial pressures and exposures are exceeded. The partial pressure of oxygen also determines the maximum operating depth of a gas mixture.[14]

Narcosis is a problem when breathing gases at high pressure. Typically, the maximum total partial pressure of narcotic gases used when planning for technical diving may be around 4.5 bar absolute, based on an equivalent narcotic depth of 35 metres (115 ft).

The effect of a toxic contaminant such as carbon monoxide in breathing gas is also related to the partial pressure when breathed. A mixture which may be relatively safe at the surface could be dangerously toxic at the maximum depth of a dive, or a tolerable level of carbon dioxide in the breathing loop of a diving rebreather may become intolerable within seconds during descent when the partial pressure rapidly increases, and could lead to panic or incapacitation of the diver.[14]

In medicine edit

The partial pressures of particularly oxygen ( ) and carbon dioxide ( ) are important parameters in tests of arterial blood gases, but can also be measured in, for example, cerebrospinal fluid. [why?]

Reference ranges for   and  
Unit Arterial blood gas Venous blood gas Cerebrospinal fluid Alveolar pulmonary
gas pressures
  kPa 11–13[16] 4.0–5.3[16] 5.3–5.9[16] 14.2
mmHg 75–100[17] 30–40[18] 40–44[19] 107
  kPa 4.7–6.0[16] 5.5–6.8[16] 5.9–6.7[16] 4.8
mmHg 35–45[17] 41–51[18] 44–50[19] 36

See also edit

  • Blood gas tension – Partial pressure of blood gases
  • Breathing gas – Gas used for human respiration
  • Henry's law – Gas law regarding proportionality of dissolved gas
  • Ideal gas – Mathematical model which approximates the behavior of real gases
    • Ideal gas law – Equation of the state of a hypothetical ideal gas
  • Mole fraction – Proportion of a constituent in a mixture
  • Vapor – Substances in the gas phase at a temperature lower than its critical point

References edit

  1. ^ Charles Henrickson (2005). Chemistry. Cliffs Notes. ISBN 978-0-7645-7419-1.
  2. ^ "Gas Pressure and Respiration". Lumen Learning.
  3. ^ Gas blending
  4. ^ Staff. "Symbols and Units" (PDF). Respiratory Physiology & Neurobiology : Guide for Authors. Elsevier. p. 1. (PDF) from the original on 2015-07-23. Retrieved 3 June 2017. All symbols referring to gas species are in subscript,
  5. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "pressure, p". doi:10.1351/goldbook.P04819
  6. ^ Dalton's Law of Partial Pressures
  7. ^ Frostberg State University's "General Chemistry Online"
  8. ^ Page 200 in: Medical biophysics. Flemming Cornelius. 6th Edition, 2008.
  9. ^ Perry, R.H.; Green, D.W., eds. (1997). Perry's Chemical Engineers' Handbook (7th ed.). McGraw-Hill. ISBN 978-0-07-049841-9.
  10. ^ a b An extensive list of Henry's law constants, and a conversion tool
  11. ^ Francis L. Smith & Allan H. Harvey (September 2007). "Avoid Common Pitfalls When Using Henry's Law". CEP (Chemical Engineering Progress). ISSN 0360-7275.
  12. ^ Introductory University Chemistry, Henry's Law and the Solubility of Gases 2012-05-04 at the Wayback Machine
  13. ^ a b . Archived from the original on 2012-03-07. Retrieved 2006-05-26.
  14. ^ a b c d e NOAA Diving Program (U.S.) (December 1979). Miller, James W. (ed.). NOAA Diving Manual, Diving for Science and Technology (2nd ed.). Silver Spring, Maryland: US Department of Commerce: National Oceanic and Atmospheric Administration, Office of Ocean Engineering.
  15. ^ Sawatzky, David (August 2008). "3: Oxygen and its affect on the diver". In Mount, Tom; Dituri, Joseph (eds.). Exploration and Mixed Gas Diving Encyclopedia (1st ed.). Miami Shores, Florida: International Association of Nitrox Divers. pp. 41–50. ISBN 978-0-915539-10-9.
  16. ^ a b c d e f Derived from mmHg values using 0.133322 kPa/mmHg
  17. ^ a b Normal Reference Range Table 2011-12-25 at the Wayback Machine from The University of Texas Southwestern Medical Center at Dallas. Used in Interactive Case Study Companion to Pathologic basis of disease.
  18. ^ a b The Medical Education Division of the Brookside Associates--> ABG (Arterial Blood Gas) Retrieved on Dec 6, 2009
  19. ^ a b Pathology 425 Cerebrospinal Fluid [CSF] 2012-02-22 at the Wayback Machine at the Department of Pathology and Laboratory Medicine at the University of British Columbia. By G.P. Bondy. Retrieved November 2011

partial, pressure, mixture, gases, each, constituent, partial, pressure, which, notional, pressure, that, constituent, alone, occupied, entire, volume, original, mixture, same, temperature, total, pressure, ideal, mixture, partial, pressures, gases, mixture, d. In a mixture of gases each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature 1 The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture Dalton s Law The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases oxygen nitrogen argon water vapor carbon dioxide etc The partial pressure of a gas is a measure of thermodynamic activity of the gas s molecules Gases dissolve diffuse and react according to their partial pressures but not according to their concentrations in gas mixtures or liquids This general property of gases is also true in chemical reactions of gases in biology For example the necessary amount of oxygen for human respiration and the amount that is toxic is set by the partial pressure of oxygen alone This is true across a very wide range of different concentrations of oxygen present in various inhaled breathing gases or dissolved in blood 2 consequently mixture ratios like that of breathable 20 oxygen and 80 Nitrogen are determined by volume instead of by weight or mass 3 Furthermore the partial pressures of oxygen and carbon dioxide are important parameters in tests of arterial blood gases That said these pressures can also be measured in for example cerebrospinal fluid Contents 1 Symbol 2 Dalton s law of partial pressures 3 Ideal gas mixtures 4 Partial volume Amagat s law of additive volume 5 Vapor pressure 6 Equilibrium constants of reactions involving gas mixtures 7 Henry s law and the solubility of gases 8 In diving breathing gases 9 In medicine 10 See also 11 ReferencesSymbol editThe symbol for pressure is usually P or p which may use a subscript to identify the pressure and gas species are also referred to by subscript When combined these subscripts are applied recursively 4 5 Examples P1 displaystyle P 1 nbsp or p1 displaystyle p 1 nbsp pressure at time 1 PH2 displaystyle P ce H2 nbsp or pH2 displaystyle p ce H2 nbsp partial pressure of hydrogen PaO2 displaystyle P a ce O2 nbsp or paO2 displaystyle p a ce O2 nbsp or PaO2 arterial partial pressure of oxygen PvO2 displaystyle P v ce O2 nbsp or pvO2 displaystyle p v ce O2 nbsp or PvO2 venous partial pressure of oxygenDalton s law of partial pressures editMain article Dalton s law nbsp Schematic showing the concept of Dalton s Law Dalton s law expresses the fact that the total pressure of a mixture of ideal gases is equal to the sum of the partial pressures of the individual gases in the mixture 6 This equality arises from the fact that in an ideal gas the molecules are so far apart that they do not interact with each other Most actual real world gases come very close to this ideal For example given an ideal gas mixture of nitrogen N2 hydrogen H2 and ammonia NH3 p pN2 pH2 pNH3 displaystyle p p ce N2 p ce H2 p ce NH3 nbsp where p displaystyle p nbsp total pressure of the gas mixture pN2 displaystyle p ce N2 nbsp partial pressure of nitrogen N2 pH2 displaystyle p ce H2 nbsp partial pressure of hydrogen H2 pNH3 displaystyle p ce NH3 nbsp partial pressure of ammonia NH3 Ideal gas mixtures editIdeally the ratio of partial pressures equals the ratio of the number of molecules That is the mole fraction xi displaystyle x mathrm i nbsp of an individual gas component in an ideal gas mixture can be expressed in terms of the component s partial pressure or the moles of the component xi pip nin displaystyle x mathrm i frac p mathrm i p frac n mathrm i n nbsp and the partial pressure of an individual gas component in an ideal gas can be obtained using this expression pi xi p displaystyle p mathrm i x mathrm i cdot p nbsp where xi displaystyle x mathrm i nbsp mole fraction of any individual gas component in a gas mixturepi displaystyle p mathrm i nbsp partial pressure of any individual gas component in a gas mixtureni displaystyle n mathrm i nbsp moles of any individual gas component in a gas mixturen displaystyle n nbsp total moles of the gas mixturep displaystyle p nbsp total pressure of the gas mixtureThe mole fraction of a gas component in a gas mixture is equal to the volumetric fraction of that component in a gas mixture 7 The ratio of partial pressures relies on the following isotherm relation VXVtot pXptot nXntot displaystyle frac V rm X V rm tot frac p rm X p rm tot frac n rm X n rm tot nbsp VX is the partial volume of any individual gas component X Vtot is the total volume of the gas mixture pX is the partial pressure of gas X ptot is the total pressure of the gas mixture nX is the amount of substance of gas X ntot is the total amount of substance in gas mixturePartial volume Amagat s law of additive volume editThe partial volume of a particular gas in a mixture is the volume of one component of the gas mixture It is useful in gas mixtures e g air to focus on one particular gas component e g oxygen It can be approximated both from partial pressure and molar fraction 8 VX Vtot pXptot Vtot nXntot displaystyle V rm X V rm tot times frac p rm X p rm tot V rm tot times frac n rm X n rm tot nbsp VX is the partial volume of an individual gas component X in the mixture Vtot is the total volume of the gas mixture pX is the partial pressure of gas X ptot is the total pressure of the gas mixture nX is the amount of substance of gas X ntot is the total amount of substance in the gas mixtureVapor pressure editMain article Vapor pressure nbsp A log lin vapor pressure chart for various liquidsVapor pressure is the pressure of a vapor in equilibrium with its non vapor phases i e liquid or solid Most often the term is used to describe a liquid s tendency to evaporate It is a measure of the tendency of molecules and atoms to escape from a liquid or a solid A liquid s atmospheric pressure boiling point corresponds to the temperature at which its vapor pressure is equal to the surrounding atmospheric pressure and it is often called the normal boiling point The higher the vapor pressure of a liquid at a given temperature the lower the normal boiling point of the liquid The vapor pressure chart displayed has graphs of the vapor pressures versus temperatures for a variety of liquids 9 As can be seen in the chart the liquids with the highest vapor pressures have the lowest normal boiling points For example at any given temperature methyl chloride has the highest vapor pressure of any of the liquids in the chart It also has the lowest normal boiling point 24 2 C which is where the vapor pressure curve of methyl chloride the blue line intersects the horizontal pressure line of one atmosphere atm of absolute vapor pressure At higher altitudes the atmospheric pressure is less than that at sea level so boiling points of liquids are reduced At the top of Mount Everest the atmospheric pressure is approximately 0 333 atm so by using the graph the boiling point of diethyl ether would be approximately 7 5 C versus 34 6 C at sea level 1 atm Equilibrium constants of reactions involving gas mixtures editIt is possible to work out the equilibrium constant for a chemical reaction involving a mixture of gases given the partial pressure of each gas and the overall reaction formula For a reversible reaction involving gas reactants and gas products such as aA bB cC dD displaystyle ce mathit a A mathit b B lt gt mathit c C mathit d D nbsp the equilibrium constant of the reaction would be Kp pCcpDdpAapBb displaystyle K mathrm p frac p C c p D d p A a p B b nbsp where Kp displaystyle K p nbsp the equilibrium constant of the reactiona displaystyle a nbsp coefficient of reactant A displaystyle A nbsp b displaystyle b nbsp coefficient of reactant B displaystyle B nbsp c displaystyle c nbsp coefficient of product C displaystyle C nbsp d displaystyle d nbsp coefficient of product D displaystyle D nbsp pCc displaystyle p C c nbsp the partial pressure of C displaystyle C nbsp raised to the power of c displaystyle c nbsp pDd displaystyle p D d nbsp the partial pressure of D displaystyle D nbsp raised to the power of d displaystyle d nbsp pAa displaystyle p A a nbsp the partial pressure of A displaystyle A nbsp raised to the power of a displaystyle a nbsp pBb displaystyle p B b nbsp the partial pressure of B displaystyle B nbsp raised to the power of b displaystyle b nbsp For reversible reactions changes in the total pressure temperature or reactant concentrations will shift the equilibrium so as to favor either the right or left side of the reaction in accordance with Le Chatelier s Principle However the reaction kinetics may either oppose or enhance the equilibrium shift In some cases the reaction kinetics may be the overriding factor to consider Henry s law and the solubility of gases editMain article Henry s law Gases will dissolve in liquids to an extent that is determined by the equilibrium between the undissolved gas and the gas that has dissolved in the liquid called the solvent 10 The equilibrium constant for that equilibrium is k pxCx displaystyle k frac p x C x nbsp 1 where k displaystyle k nbsp the equilibrium constant for the solvation process px displaystyle p x nbsp partial pressure of gas x displaystyle x nbsp in equilibrium with a solution containing some of the gas Cx displaystyle C x nbsp the concentration of gas x displaystyle x nbsp in the liquid solutionThe form of the equilibrium constant shows that the concentration of a solute gas in a solution is directly proportional to the partial pressure of that gas above the solution This statement is known as Henry s law and the equilibrium constant k displaystyle k nbsp is quite often referred to as the Henry s law constant 10 11 12 Henry s law is sometimes written as 13 k Cxpx displaystyle k frac C x p x nbsp 2 where k displaystyle k nbsp is also referred to as the Henry s law constant 13 As can be seen by comparing equations 1 and 2 above k displaystyle k nbsp is the reciprocal of k displaystyle k nbsp Since both may be referred to as the Henry s law constant readers of the technical literature must be quite careful to note which version of the Henry s law equation is being used Henry s law is an approximation that only applies for dilute ideal solutions and for solutions where the liquid solvent does not react chemically with the gas being dissolved In diving breathing gases editIn underwater diving the physiological effects of individual component gases of breathing gases are a function of partial pressure 14 Using diving terms partial pressure is calculated as partial pressure total absolute pressure volume fraction of gas component 14 For the component gas i pi P Fi 14 For example at 50 metres 164 ft underwater the total absolute pressure is 6 bar 600 kPa i e 1 bar of atmospheric pressure 5 bar of water pressure and the partial pressures of the main components of air oxygen 21 by volume and nitrogen approximately 79 by volume are pN2 6 bar 0 79 4 7 bar absolute pO2 6 bar 0 21 1 3 bar absolutewhere pi partial pressure of gas component i Pi displaystyle P mathrm i nbsp in the terms used in this articleP total pressure P displaystyle P nbsp in the terms used in this articleFi volume fraction of gas component i mole fraction xi displaystyle x mathrm i nbsp in the terms used in this articlepN2 partial pressure of nitrogen PN2 displaystyle P mathrm N 2 nbsp in the terms used in this articlepO2 partial pressure of oxygen PO2 displaystyle P mathrm O 2 nbsp in the terms used in this articleThe minimum safe lower limit for the partial pressures of oxygen in a breathing gas mixture for diving is 0 16 bars 16 kPa absolute Hypoxia and sudden unconsciousness can become a problem with an oxygen partial pressure of less than 0 16 bar absolute 15 Oxygen toxicity involving convulsions becomes a problem when oxygen partial pressure is too high The NOAA Diving Manual recommends a maximum single exposure of 45 minutes at 1 6 bar absolute of 120 minutes at 1 5 bar absolute of 150 minutes at 1 4 bar absolute of 180 minutes at 1 3 bar absolute and of 210 minutes at 1 2 bar absolute Oxygen toxicity becomes a risk when these oxygen partial pressures and exposures are exceeded The partial pressure of oxygen also determines the maximum operating depth of a gas mixture 14 Narcosis is a problem when breathing gases at high pressure Typically the maximum total partial pressure of narcotic gases used when planning for technical diving may be around 4 5 bar absolute based on an equivalent narcotic depth of 35 metres 115 ft The effect of a toxic contaminant such as carbon monoxide in breathing gas is also related to the partial pressure when breathed A mixture which may be relatively safe at the surface could be dangerously toxic at the maximum depth of a dive or a tolerable level of carbon dioxide in the breathing loop of a diving rebreather may become intolerable within seconds during descent when the partial pressure rapidly increases and could lead to panic or incapacitation of the diver 14 In medicine editThe partial pressures of particularly oxygen pO2 displaystyle p mathrm O 2 nbsp and carbon dioxide pCO2 displaystyle p mathrm CO 2 nbsp are important parameters in tests of arterial blood gases but can also be measured in for example cerebrospinal fluid why Reference ranges for pO2 displaystyle p mathrm O 2 nbsp and pCO2 displaystyle p mathrm CO 2 nbsp Unit Arterial blood gas Venous blood gas Cerebrospinal fluid Alveolar pulmonary gas pressurespO2 displaystyle p mathrm O 2 nbsp kPa 11 13 16 4 0 5 3 16 5 3 5 9 16 14 2mmHg 75 100 17 30 40 18 40 44 19 107pCO2 displaystyle p mathrm CO 2 nbsp kPa 4 7 6 0 16 5 5 6 8 16 5 9 6 7 16 4 8mmHg 35 45 17 41 51 18 44 50 19 36See also editBlood gas tension Partial pressure of blood gases Breathing gas Gas used for human respiration Henry s law Gas law regarding proportionality of dissolved gas Ideal gas Mathematical model which approximates the behavior of real gases Ideal gas law Equation of the state of a hypothetical ideal gas Mole fraction Proportion of a constituent in a mixture Mole unit SI unit of amount of substance Vapor Substances in the gas phase at a temperature lower than its critical pointReferences edit Charles Henrickson 2005 Chemistry Cliffs Notes ISBN 978 0 7645 7419 1 Gas Pressure and Respiration Lumen Learning Gas blending Staff Symbols and Units PDF Respiratory Physiology amp Neurobiology Guide for Authors Elsevier p 1 Archived PDF from the original on 2015 07 23 Retrieved 3 June 2017 All symbols referring to gas species are in subscript IUPAC Compendium of Chemical Terminology 2nd ed the Gold Book 1997 Online corrected version 2006 pressure p doi 10 1351 goldbook P04819 Dalton s Law of Partial Pressures Frostberg State University s General Chemistry Online Page 200 in Medical biophysics Flemming Cornelius 6th Edition 2008 Perry R H Green D W eds 1997 Perry s Chemical Engineers Handbook 7th ed McGraw Hill ISBN 978 0 07 049841 9 a b An extensive list of Henry s law constants and a conversion tool Francis L Smith amp Allan H Harvey September 2007 Avoid Common Pitfalls When Using Henry s Law CEP Chemical Engineering Progress ISSN 0360 7275 Introductory University Chemistry Henry s Law and the Solubility of Gases Archived 2012 05 04 at the Wayback Machine a b University of Arizona chemistry class notes Archived from the original on 2012 03 07 Retrieved 2006 05 26 a b c d e NOAA Diving Program U S December 1979 Miller James W ed NOAA Diving Manual Diving for Science and Technology 2nd ed Silver Spring Maryland US Department of Commerce National Oceanic and Atmospheric Administration Office of Ocean Engineering Sawatzky David August 2008 3 Oxygen and its affect on the diver In Mount Tom Dituri Joseph eds Exploration and Mixed Gas Diving Encyclopedia 1st ed Miami Shores Florida International Association of Nitrox Divers pp 41 50 ISBN 978 0 915539 10 9 a b c d e f Derived from mmHg values using 0 133322 kPa mmHg a b Normal Reference Range Table Archived 2011 12 25 at the Wayback Machine from The University of Texas Southwestern Medical Center at Dallas Used in Interactive Case Study Companion to Pathologic basis of disease a b The Medical Education Division of the Brookside Associates gt ABG Arterial Blood Gas Retrieved on Dec 6 2009 a b Pathology 425 Cerebrospinal Fluid CSF Archived 2012 02 22 at the Wayback Machine at the Department of Pathology and Laboratory Medicine at the University of British Columbia By G P Bondy Retrieved November 2011 Retrieved from https en wikipedia org w index php title Partial pressure amp oldid 1183941560 Partial volume 28Amagat 27s law of additive volume 29, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.