fbpx
Wikipedia

PP (complexity)

PP algorithm
Answer
produced
Correct
answer
Yes No
Yes > 1/2 < 1/2
No < 1/2 > 1/2


In complexity theory, PP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an error probability of less than 1/2 for all instances. The abbreviation PP refers to probabilistic polynomial time. The complexity class was defined by Gill in 1977.[1]

PP in relation to other probabilistic complexity classes (ZPP, RP, co-RP, BPP, BQP), which generalise P within PSPACE. It is unknown if any of these inclusions are strict.

If a decision problem is in PP, then there is an algorithm for it that is allowed to flip coins and make random decisions. It is guaranteed to run in polynomial time. If the answer is YES, the algorithm will answer YES with probability more than 1/2. If the answer is NO, the algorithm will answer YES with probability less than 1/2. In more practical terms, it is the class of problems that can be solved to any fixed degree of accuracy by running a randomized, polynomial-time algorithm a sufficient (but bounded) number of times.

Turing machines that are polynomially-bound and probabilistic are characterized as PPT, which stands for probabilistic polynomial-time machines.[2] This characterization of Turing machines does not require a bounded error probability. Hence, PP is the complexity class containing all problems solvable by a PPT machine with an error probability of less than 1/2.

An alternative characterization of PP is the set of problems that can be solved by a nondeterministic Turing machine in polynomial time where the acceptance condition is that a majority (more than half) of computation paths accept. Because of this some authors have suggested the alternative name Majority-P.[3]

Definition edit

A language L is in PP if and only if there exists a probabilistic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, M outputs 1 with probability strictly greater than 1/2
  • For all x not in L, M outputs 1 with probability strictly less than 1/2.

Alternatively, PP can be defined using only deterministic Turing machines. A language L is in PP if and only if there exists a polynomial p and deterministic Turing machine M, such that

  • M runs for polynomial time on all inputs
  • For all x in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is greater than 1/2
  • For all x not in L, the fraction of strings y of length p(|x|) which satisfy M(x,y) = 1 is less than 1/2.

In both definitions, "less than" can be changed to "less than or equal to" (see below), and the threshold 1/2 can be replaced by any fixed rational number in (0,1), without changing the class.

PP vs BPP edit

BPP is a subset of PP; it can be seen as the subset for which there are efficient probabilistic algorithms. The distinction is in the error probability that is allowed: in BPP, an algorithm must give correct answer (YES or NO) with probability exceeding some fixed constant c > 1/2, such as 2/3 or 501/1000. If this is the case, then we can run the algorithm a number of times and take a majority vote to achieve any desired probability of correctness less than 1, using the Chernoff bound. This number of repeats increases if c becomes closer to 1/2, but it does not depend on the input size n.

More generally, if c can depend on the input size   polynomially, as  , then we can rerun the algorithm for   and take the majority vote. By Hoeffding's inequality, this gives us a BPP algorithm.

The important thing is that this constant c is not allowed to depend on the input. On the other hand, a PP algorithm is permitted to do something like the following:

  • On a YES instance, output YES with probability 1/2 + 1/2n, where n is the length of the input.
  • On a NO instance, output YES with probability 1/2 − 1/2n.

Because these two probabilities are exponentially close together, even if we run it for a polynomial number of times it is very difficult to tell whether we are operating on a YES instance or a NO instance. Attempting to achieve a fixed desired probability level using a majority vote and the Chernoff bound requires a number of repetitions that is exponential in n.

PP compared to other complexity classes edit

PP includes BPP, since probabilistic algorithms described in the definition of BPP form a subset of those in the definition of PP.

PP also includes NP. To prove this, we show that the NP-complete satisfiability problem belongs to PP. Consider a probabilistic algorithm that, given a formula F(x1x2, ..., xn) chooses an assignment x1x2, ..., xn uniformly at random. Then, the algorithm checks if the assignment makes the formula F true. If yes, it outputs YES. Otherwise, it outputs YES with probability   and NO with probability  .

If the formula is unsatisfiable, the algorithm will always output YES with probability  . If there exists a satisfying assignment, it will output YES with probability at least   (exactly 1/2 if it picked an unsatisfying assignment and 1 if it picked a satisfying assignment, averaging to some number greater than 1/2). Thus, this algorithm puts satisfiability in PP. As SAT is NP-complete, and we can prefix any deterministic polynomial-time many-one reduction onto the PP algorithm, NP is included in PP. Because PP is closed under complement, it also includes co-NP.

Furthermore, PP includes MA,[4] which subsumes the previous two inclusions.

PP also includes BQP, the class of decision problems solvable by efficient polynomial time quantum computers. In fact, BQP is low for PP, meaning that a PP machine achieves no benefit from being able to solve BQP problems instantly. The class of polynomial time on quantum computers with postselection, PostBQP, is equal to PP[5] (see #PostBQP below).

Furthermore, PP includes QMA, which subsumes inclusions of MA and BQP.

A polynomial time Turing machine with a PP oracle (PPP) can solve all problems in PH, the entire polynomial hierarchy. This result was shown by Seinosuke Toda in 1989 and is known as Toda's theorem. This is evidence of how hard it is to solve problems in PP. The class #P is in some sense about as hard, since P#P = PPP and therefore P#P includes PH as well.[6]

PP strictly includes uniform TC0, the class of constant-depth, unbounded-fan-in boolean circuits with majority gates that are uniform (generated by a polynomial-time algorithm).[7]

PP is included in PSPACE. This can be easily shown by exhibiting a polynomial-space algorithm for MAJSAT, defined below; simply try all assignments and count the number of satisfying ones.

PP is not included in SIZE(nk) for any k (proof).

Complete problems and other properties edit

Unlike BPP, PP is a syntactic rather than semantic class. Any polynomial-time probabilistic machine recognizes some language in PP. In contrast, given a description of a polynomial-time probabilistic machine, it is undecidable in general to determine if it recognizes a language in BPP.

PP has natural complete problems, for example, MAJSAT.[1] MAJSAT is a decision problem in which one is given a Boolean formula F. The answer must be YES if more than half of all assignments x1x2, ..., xn make F true and NO otherwise.

Proof that PP is closed under complement edit

Let L be a language in PP. Let   denote the complement of L. By the definition of PP there is a polynomial-time probabilistic algorithm A with the property that

 

We claim that without loss of generality, the latter inequality is always strict; the theorem can be deduced from this claim: let   denote the machine which is the same as A except that   accepts when A would reject, and vice versa. Then

 

which implies that   is in PP.

Now we justify our without loss of generality assumption. Let   be the polynomial upper bound on the running time of A on input x. Thus A makes at most   random coin flips during its execution. In particular the probability of acceptance is an integer multiple of   and we have:

 

Define a machine A′ as follows: on input x, A′ runs A as a subroutine, and rejects if A would reject; otherwise, if A would accept, A′ flips   coins and rejects if they are all heads, and accepts otherwise. Then

 

This justifies the assumption (since A′ is still a polynomial-time probabilistic algorithm) and completes the proof.

David Russo proved in his 1985 Ph.D. thesis[8] that PP is closed under symmetric difference. It was an open problem for 14 years whether PP was closed under union and intersection; this was settled in the affirmative by Beigel, Reingold, and Spielman.[9] Alternate proofs were later given by Li[10] and Aaronson (see #PostBQP below).

Other equivalent complexity classes edit

PostBQP edit

The quantum complexity class BQP is the class of problems solvable in polynomial time on a quantum Turing machine. By adding postselection, a larger class called PostBQP is obtained. Informally, postselection gives the computer the following power: whenever some event (such as measuring a qubit in a certain state) has nonzero probability, you are allowed to assume that it takes place.[11] Scott Aaronson showed in 2004 that PostBQP is equal to PP.[5][12] This reformulation of PP makes it easier to show certain results, such as that PP is closed under intersection (and hence, under union), that BQP is low for PP, and that QMA is included in PP.

PQP edit

PP is also equal to another quantum complexity class known as PQP, which is the unbounded error analog of BQP. It denotes the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of less than 1/2 for all instances. Even if all amplitudes used for PQP-computation are drawn from algebraic numbers, still PQP coincides with PP.[13]

Notes edit

  1. ^ a b Gill, John (1977). "Computational Complexity of Probabilistic Turing Machines". SIAM Journal on Computing. 6 (4): 675–695. doi:10.1137/0206049.
  2. ^ Lindell, Yehuda; Katz, Jonathan (2015). Introduction to Modern Cryptography (2 ed.). Chapman and Hall/CRC. p. 46. ISBN 978-1-4665-7027-6.
  3. ^ Lance Fortnow. Computational Complexity: Wednesday, September 4, 2002: Complexity Class of the Week: PP. http://weblog.fortnow.com/2002/09/complexity-class-of-week-pp.html
  4. ^ N.K. Vereshchagin, "On the Power of PP"
  5. ^ a b Aaronson, Scott (2005). "Quantum computing, postselection, and probabilistic polynomial-time". Proceedings of the Royal Society A. 461 (2063): 3473–3482. arXiv:quant-ph/0412187. Bibcode:2005RSPSA.461.3473A. doi:10.1098/rspa.2005.1546. S2CID 1770389.
  6. ^ Toda, Seinosuke (1991). "PP is as hard as the polynomial-time hierarchy". SIAM Journal on Computing. 20 (5): 865–877. doi:10.1137/0220053. MR 1115655.
  7. ^ Allender 1996, as cited in Burtschick 1999
  8. ^ David Russo (1985). Structural Properties of Complexity Classes (Ph.D Thesis). University of California, Santa Barbara.
  9. ^ R. Beigel, N. Reingold, and D. A. Spielman, "PP is closed under intersection", Proceedings of ACM Symposium on Theory of Computing 1991, pp. 1–9, 1991.
  10. ^ Lide Li (1993). On the Counting Functions (Ph.D Thesis). University of Chicago.
  11. ^ Aaronson, Scott. "The Amazing Power of Postselection". Retrieved 2009-07-27.
  12. ^ Aaronson, Scott (2004-01-11). "Complexity Class of the Week: PP". Computational Complexity Weblog. Retrieved 2008-05-02.
  13. ^ Yamakami, Tomoyuki (1999). "Analysis of Quantum Functions". Int. J. Found. Comput. Sci. 14 (5): 815–852. arXiv:quant-ph/9909012. Bibcode:1999quant.ph..9012Y. doi:10.1142/S0129054103002047. S2CID 3265603.

References edit

  • Papadimitriou, C. (1994). "chapter 11". Computational Complexity. Addison-Wesley..
  • Allender, E. (1996). "A note on uniform circuit lower bounds for the counting hierarchy". Proceedings 2nd International Computing and Combinatorics Conference (COCOON). Lecture Notes in Computer Science. Vol. 1090. Springer-Verlag. pp. 127–135..
  • Burtschick, Hans-Jörg; Vollmer, Heribert (1998). "Lindström quantifiers and leaf language definability". Int. J. Found. Comput. Sci. 9 (3): 277–294. doi:10.1142/S0129054198000180. ECCC TR96-005.

External links edit

complexity, algorithm, answerproducedcorrectanswer, complexity, theory, class, decision, problems, solvable, probabilistic, turing, machine, polynomial, time, with, error, probability, less, than, instances, abbreviation, refers, probabilistic, polynomial, tim. PP algorithm AnswerproducedCorrectanswer Yes No Yes gt 1 2 lt 1 2 No lt 1 2 gt 1 2 In complexity theory PP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability of less than 1 2 for all instances The abbreviation PP refers to probabilistic polynomial time The complexity class was defined by Gill in 1977 1 PP in relation to other probabilistic complexity classes ZPP RP co RP BPP BQP which generalise P within PSPACE It is unknown if any of these inclusions are strict If a decision problem is in PP then there is an algorithm for it that is allowed to flip coins and make random decisions It is guaranteed to run in polynomial time If the answer is YES the algorithm will answer YES with probability more than 1 2 If the answer is NO the algorithm will answer YES with probability less than 1 2 In more practical terms it is the class of problems that can be solved to any fixed degree of accuracy by running a randomized polynomial time algorithm a sufficient but bounded number of times Turing machines that are polynomially bound and probabilistic are characterized as PPT which stands for probabilistic polynomial time machines 2 This characterization of Turing machines does not require a bounded error probability Hence PP is the complexity class containing all problems solvable by a PPT machine with an error probability of less than 1 2 An alternative characterization of PP is the set of problems that can be solved by a nondeterministic Turing machine in polynomial time where the acceptance condition is that a majority more than half of computation paths accept Because of this some authors have suggested the alternative name Majority P 3 Contents 1 Definition 2 PP vs BPP 3 PP compared to other complexity classes 4 Complete problems and other properties 4 1 Proof that PP is closed under complement 5 Other equivalent complexity classes 5 1 PostBQP 5 2 PQP 6 Notes 7 References 8 External linksDefinition editA language L is in PP if and only if there exists a probabilistic Turing machine M such that M runs for polynomial time on all inputs For all x in L M outputs 1 with probability strictly greater than 1 2 For all x not in L M outputs 1 with probability strictly less than 1 2 Alternatively PP can be defined using only deterministic Turing machines A language L is in PP if and only if there exists a polynomial p and deterministic Turing machine M such that M runs for polynomial time on all inputs For all x in L the fraction of strings y of length p x which satisfy M x y 1 is greater than 1 2 For all x not in L the fraction of strings y of length p x which satisfy M x y 1 is less than 1 2 In both definitions less than can be changed to less than or equal to see below and the threshold 1 2 can be replaced by any fixed rational number in 0 1 without changing the class PP vs BPP editBPP is a subset of PP it can be seen as the subset for which there are efficient probabilistic algorithms The distinction is in the error probability that is allowed in BPP an algorithm must give correct answer YES or NO with probability exceeding some fixed constant c gt 1 2 such as 2 3 or 501 1000 If this is the case then we can run the algorithm a number of times and take a majority vote to achieve any desired probability of correctness less than 1 using the Chernoff bound This number of repeats increases if c becomes closer to 1 2 but it does not depend on the input size n More generally if c can depend on the input size n displaystyle n nbsp polynomially as c O n k displaystyle c O n k nbsp then we can rerun the algorithm for O n 2 k displaystyle O n 2k nbsp and take the majority vote By Hoeffding s inequality this gives us a BPP algorithm The important thing is that this constant c is not allowed to depend on the input On the other hand a PP algorithm is permitted to do something like the following On a YES instance output YES with probability 1 2 1 2n where n is the length of the input On a NO instance output YES with probability 1 2 1 2n Because these two probabilities are exponentially close together even if we run it for a polynomial number of times it is very difficult to tell whether we are operating on a YES instance or a NO instance Attempting to achieve a fixed desired probability level using a majority vote and the Chernoff bound requires a number of repetitions that is exponential in n PP compared to other complexity classes editPP includes BPP since probabilistic algorithms described in the definition of BPP form a subset of those in the definition of PP PP also includes NP To prove this we show that the NP complete satisfiability problem belongs to PP Consider a probabilistic algorithm that given a formula F x1 x2 xn chooses an assignment x1 x2 xn uniformly at random Then the algorithm checks if the assignment makes the formula F true If yes it outputs YES Otherwise it outputs YES with probability 1 2 1 2 n 1 displaystyle frac 1 2 frac 1 2 n 1 nbsp and NO with probability 1 2 1 2 n 1 displaystyle frac 1 2 frac 1 2 n 1 nbsp If the formula is unsatisfiable the algorithm will always output YES with probability 1 2 1 2 n 1 lt 1 2 displaystyle frac 1 2 frac 1 2 n 1 lt frac 1 2 nbsp If there exists a satisfying assignment it will output YES with probability at least 1 2 1 2 n 1 1 1 2 n 1 1 2 n 1 2 1 2 2 n 1 gt 1 2 displaystyle left frac 1 2 frac 1 2 n 1 right cdot left 1 frac 1 2 n right 1 cdot frac 1 2 n frac 1 2 frac 1 2 2n 1 gt frac 1 2 nbsp exactly 1 2 if it picked an unsatisfying assignment and 1 if it picked a satisfying assignment averaging to some number greater than 1 2 Thus this algorithm puts satisfiability in PP As SAT is NP complete and we can prefix any deterministic polynomial time many one reduction onto the PP algorithm NP is included in PP Because PP is closed under complement it also includes co NP Furthermore PP includes MA 4 which subsumes the previous two inclusions PP also includes BQP the class of decision problems solvable by efficient polynomial time quantum computers In fact BQP is low for PP meaning that a PP machine achieves no benefit from being able to solve BQP problems instantly The class of polynomial time on quantum computers with postselection PostBQP is equal to PP 5 see PostBQP below Furthermore PP includes QMA which subsumes inclusions of MA and BQP A polynomial time Turing machine with a PP oracle PPP can solve all problems in PH the entire polynomial hierarchy This result was shown by Seinosuke Toda in 1989 and is known as Toda s theorem This is evidence of how hard it is to solve problems in PP The class P is in some sense about as hard since P P PPP and therefore P P includes PH as well 6 PP strictly includes uniform TC0 the class of constant depth unbounded fan in boolean circuits with majority gates that are uniform generated by a polynomial time algorithm 7 PP is included in PSPACE This can be easily shown by exhibiting a polynomial space algorithm for MAJSAT defined below simply try all assignments and count the number of satisfying ones PP is not included in SIZE nk for any k proof Complete problems and other properties editUnlike BPP PP is a syntactic rather than semantic class Any polynomial time probabilistic machine recognizes some language in PP In contrast given a description of a polynomial time probabilistic machine it is undecidable in general to determine if it recognizes a language in BPP PP has natural complete problems for example MAJSAT 1 MAJSAT is a decision problem in which one is given a Boolean formula F The answer must be YES if more than half of all assignments x1 x2 xn make F true and NO otherwise Proof that PP is closed under complement edit Let L be a language in PP Let L c displaystyle L c nbsp denote the complement of L By the definition of PP there is a polynomial time probabilistic algorithm A with the property that x L Pr A accepts x gt 1 2 and x L Pr A accepts x 1 2 displaystyle x in L Rightarrow Pr A text accepts x gt frac 1 2 quad text and quad x not in L Rightarrow Pr A text accepts x leq frac 1 2 nbsp We claim that without loss of generality the latter inequality is always strict the theorem can be deduced from this claim let A c displaystyle A c nbsp denote the machine which is the same as A except that A c displaystyle A c nbsp accepts when A would reject and vice versa Then x L c Pr A c accepts x gt 1 2 and x L c Pr A c accepts x lt 1 2 displaystyle x in L c Rightarrow Pr A c text accepts x gt frac 1 2 quad text and quad x not in L c Rightarrow Pr A c text accepts x lt frac 1 2 nbsp which implies that L c displaystyle L c nbsp is in PP Now we justify our without loss of generality assumption Let f x displaystyle f x nbsp be the polynomial upper bound on the running time of A on input x Thus A makes at most f x displaystyle f x nbsp random coin flips during its execution In particular the probability of acceptance is an integer multiple of 2 f x displaystyle 2 f x nbsp and we have x L Pr A accepts x 1 2 1 2 f x displaystyle x in L Rightarrow Pr A text accepts x geq frac 1 2 frac 1 2 f x nbsp Define a machine A as follows on input x A runs A as a subroutine and rejects if A would reject otherwise if A would accept A flips f x 1 displaystyle f x 1 nbsp coins and rejects if they are all heads and accepts otherwise Then x L Pr A accepts x 1 2 1 1 2 f x 1 lt 1 2 and x L Pr A accepts x 1 2 1 2 f x 1 1 2 f x 1 gt 1 2 displaystyle x not in L Rightarrow Pr A text accepts x leq frac 1 2 cdot left 1 frac 1 2 f x 1 right lt frac 1 2 quad text and quad x in L Rightarrow Pr A text accepts x geq left frac 1 2 frac 1 2 f x right cdot left 1 frac 1 2 f x 1 right gt frac 1 2 nbsp This justifies the assumption since A is still a polynomial time probabilistic algorithm and completes the proof David Russo proved in his 1985 Ph D thesis 8 that PP is closed under symmetric difference It was an open problem for 14 years whether PP was closed under union and intersection this was settled in the affirmative by Beigel Reingold and Spielman 9 Alternate proofs were later given by Li 10 and Aaronson see PostBQP below Other equivalent complexity classes editPostBQP edit The quantum complexity class BQP is the class of problems solvable in polynomial time on a quantum Turing machine By adding postselection a larger class called PostBQP is obtained Informally postselection gives the computer the following power whenever some event such as measuring a qubit in a certain state has nonzero probability you are allowed to assume that it takes place 11 Scott Aaronson showed in 2004 that PostBQP is equal to PP 5 12 This reformulation of PP makes it easier to show certain results such as that PP is closed under intersection and hence under union that BQP is low for PP and that QMA is included in PP PQP edit PP is also equal to another quantum complexity class known as PQP which is the unbounded error analog of BQP It denotes the class of decision problems solvable by a quantum computer in polynomial time with an error probability of less than 1 2 for all instances Even if all amplitudes used for PQP computation are drawn from algebraic numbers still PQP coincides with PP 13 Notes edit a b Gill John 1977 Computational Complexity of Probabilistic Turing Machines SIAM Journal on Computing 6 4 675 695 doi 10 1137 0206049 Lindell Yehuda Katz Jonathan 2015 Introduction to Modern Cryptography 2 ed Chapman and Hall CRC p 46 ISBN 978 1 4665 7027 6 Lance Fortnow Computational Complexity Wednesday September 4 2002 Complexity Class of the Week PP http weblog fortnow com 2002 09 complexity class of week pp html N K Vereshchagin On the Power of PP a b Aaronson Scott 2005 Quantum computing postselection and probabilistic polynomial time Proceedings of the Royal Society A 461 2063 3473 3482 arXiv quant ph 0412187 Bibcode 2005RSPSA 461 3473A doi 10 1098 rspa 2005 1546 S2CID 1770389 Toda Seinosuke 1991 PP is as hard as the polynomial time hierarchy SIAM Journal on Computing 20 5 865 877 doi 10 1137 0220053 MR 1115655 Allender 1996 as cited in Burtschick 1999 David Russo 1985 Structural Properties of Complexity Classes Ph D Thesis University of California Santa Barbara R Beigel N Reingold and D A Spielman PP is closed under intersection Proceedings of ACM Symposium on Theory of Computing 1991 pp 1 9 1991 Lide Li 1993 On the Counting Functions Ph D Thesis University of Chicago Aaronson Scott The Amazing Power of Postselection Retrieved 2009 07 27 Aaronson Scott 2004 01 11 Complexity Class of the Week PP Computational Complexity Weblog Retrieved 2008 05 02 Yamakami Tomoyuki 1999 Analysis of Quantum Functions Int J Found Comput Sci 14 5 815 852 arXiv quant ph 9909012 Bibcode 1999quant ph 9012Y doi 10 1142 S0129054103002047 S2CID 3265603 References editPapadimitriou C 1994 chapter 11 Computational Complexity Addison Wesley Allender E 1996 A note on uniform circuit lower bounds for the counting hierarchy Proceedings 2nd International Computing and Combinatorics Conference COCOON Lecture Notes in Computer Science Vol 1090 Springer Verlag pp 127 135 Burtschick Hans Jorg Vollmer Heribert 1998 Lindstrom quantifiers and leaf language definability Int J Found Comput Sci 9 3 277 294 doi 10 1142 S0129054198000180 ECCC TR96 005 External links editComplexity Zoo PP Retrieved from https en wikipedia org w index php title PP complexity amp oldid 1219656207, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.