fbpx
Wikipedia

PINK1

PTEN-induced kinase 1 (PINK1) is a mitochondrial serine/threonine-protein kinase encoded by the PINK1 gene.[5][6]

PINK1
Identifiers
AliasesPINK1, BRPK, PARK6, PTEN induced putative kinase 1, PTEN induced kinase 1
External IDsOMIM: 608309 MGI: 1916193 HomoloGene: 32672 GeneCards: PINK1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_032409

NM_026880

RefSeq (protein)

NP_115785

NP_081156

Location (UCSC)Chr 1: 20.63 – 20.65 MbChr 4: 138.04 – 138.05 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

It is thought to protect cells from stress-induced mitochondrial dysfunction. PINK1 activity causes the parkin protein to bind to depolarized mitochondria to induce autophagy of those mitochondria.[7][8] PINK1 is processed by healthy mitochondria and released to trigger neuron differentiation.[9] Mutations in this gene cause one form of autosomal recessive early-onset Parkinson's disease.[10]

Structure edit

PINK1 is synthesized as a 63000 Da protein which is often cleaved by PARL, between the 103-Alanine and the 104-Phenylalanine residues, into a 53000 Da fragment.[11] PINK1 contains an N-terminal mitochondrial localization sequence, a putative transmembrane sequence, a Ser/Thr kinase domain, and a C-terminal regulatory sequence. The protein has been found to localize to the outer membrane of mitochondria, but can also be found throughout the cytosol. Experiments suggest the Ser/Thr kinase domain faces outward toward the cytosol, indicating a possible point of interaction with parkin.[12]

The structure of PINK1 has been solved and shows how the protein binds and phosphorylates its substrate ubiquitin.[13]

Function edit

PINK1 is intimately involved with mitochondrial quality control by identifying damaged mitochondria and targeting specific mitochondria for degradation. Healthy mitochondria maintain a membrane potential that can be used to import PINK1 into the inner membrane where it is cleaved by PARL and cleared from the outer membrane. Severely damaged mitochondria lack sufficient membrane potential to import PINK1, which then accumulates on the outer membrane. PINK1 then recruits parkin to target the damaged mitochondria for degradation through autophagy.[14] Due to the presence of PINK1 throughout the cytoplasm, it has been suggested that PINK1 functions as a "scout" to probe for damaged mitochondria.[15]

 
Damaged mitochondria is being recognized by PINK1. PINK1 builds up on the outer membrane of the mitochondria and recruits parkin. The PINK1/parkin pathway then designates the mitochondria for degradation by lysosomes.
 
Healthy mitochondria can import PINK1 where it is subsequently cleaved by PARL. This prevents any buildup of PINK1 and parkin is not recruited to the mitochondria.

PINK1 may also control mitochondria quality through mitochondrial fission. Through mitochondrial fission, a number of daughter mitochondria are created, often with an uneven distribution in membrane potential. Mitochondria with a strong, healthy membrane potential were more likely to undergo fusion than mitochondria with low membrane potential. Interference with the mitochondrial fission pathway led to an increase in oxidized proteins and a decrease in respiration.[16] Without PINK1, parkin cannot efficiently localize to damaged mitochondria, while an over-expression of PINK1 causes parkin to localize to even healthy mitochondria.[17] Furthermore, mutations in both Drp1, a mitochondrial fission factor, and PINK1 were fatal in Drosophila models. However, an over-expression of Drp1 could rescue subjects deficient in PINK1 or parkin, suggesting mitochondrial fission initiated by Drp1 recreates the same effects of the PINK1/parkin pathway.[18]

In addition to mitochondrial fission, PINK1 has been implicated in mitochondrial motility. The accumulation of PINK1 and recruitment of parkin targets a mitochondrion for degradation, and PINK1 may serve to enhance degradation rates by arresting mitochondrial motility. Over-expression of PINK1 produced similar effects to silencing Miro, a protein closely associated with mitochondrial migration.[19]

Another mechanism of mitochondrial quality control may arise through mitochondria-derived vesicles. Oxidative stress in mitochondria can produce potentially harmful compounds including improperly folded proteins or reactive oxygen species. PINK1 has been shown to facilitate the creation of mitochondria-derived vesicles which can separate reactive oxygen species and shuttle them toward lysosomes for degradation.[20]

Disease relevance edit

Parkinson's disease is often characterized by the degeneration of dopaminergic neurons and associated with the build-up of improperly folded proteins and Lewy bodies. Mutations in the PINK1 protein have been shown to lead to a build-up of such improperly folded proteins in the mitochondria of both fly and human cells.[21] Specifically, mutations in the serine/threonine kinase domain have been found in a number of Parkinson's patients where PINK1 fails to protect against stress-induced mitochondrial dysfunction and apoptosis.[22]

Pharmacological manipulation edit

To date, there have been few reports of small molecules that activate PINK1 and their promise as potential treatments for Parkinson's disease. The first report appeared in 2013 when Kevan Shokat and his team from UCSF identified a nucleobase called kinetin as an activator of PINK1.[23] Subsequently, it was shown by others that the nucleoside derivative of kinetin, i.e. kinetin riboside, exhibited significant activation of PINK1 in cells.[24] Additionally, the monophosphate prodrugs of kinetin riboside, ProTides, also showed activation of PINK1.[25] In December 2017, niclosamide, an anthelmintic drug, was identified as a potent activator of PINK1 in cells and in neurons.[26]

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000158828 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000028756 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Unoki M, Nakamura Y (Aug 2001). "Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway". Oncogene. 20 (33): 4457–65. doi:10.1038/sj.onc.1204608. PMID 11494141.
  6. ^ Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A, Dallapiccola B, Bentivoglio AR (Sep 2004). "PINK1 mutations are associated with sporadic early-onset parkinsonism". Ann Neurol. 56 (3): 336–41. doi:10.1002/ana.20256. PMID 15349860. S2CID 11049051.
  7. ^ Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010). "PINK1 is selectively stabilized on impaired mitochondria to activate Parkin". PLOS Biology. 8 (1): e1000298. doi:10.1371/journal.pbio.1000298. PMC 2811155. PMID 20126261.
  8. ^ Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013). "PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding". Journal of Cell Biology. 200 (2): 163–172. doi:10.1083/jcb.201210111. PMC 3549971. PMID 23319602.
  9. ^ Dagda RK, Pien I, Wang R, Zhu J, Wang KZ, Callio J, Banerjee TD, Dagda RY, Chu CT (2013). "Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through protein kinase A". J Neurochem. 128 (6): 864–877. doi:10.1111/jnc.12494. PMC 3951661. PMID 24151868.
  10. ^ "Entrez Gene: PINK1 PTEN induced putative kinase 1".
  11. ^ Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011). "PINK1 cleavage at position A103 by the mitochondrial protease PARL". Hum. Mol. Genet. 20 (5): 867–869. doi:10.1093/hmg/ddq526. PMC 3033179. PMID 21138942.
  12. ^ Springer W, Kahle PJ (March 2011). "Regulation of PINK1-Parkin-mediated mitophagy". Autophagy. 7 (3): 266–78. doi:10.4161/auto.7.3.14348. PMID 21187721. S2CID 31612944.
  13. ^ Schubert AF, Gladkova C, Pardon E, Wagstaff JL, Freund SM, Steyaert J, Maslen SL, Komander D (2017-10-30). "Structure of PINK1 in complex with its substrate ubiquitin". Nature. 552 (7683): 51–56. Bibcode:2017Natur.552...51S. doi:10.1038/nature24645. ISSN 1476-4687. PMC 6020998. PMID 29160309.
  14. ^ Youle RJ, van der Bliek AM (2012). "Mitochondrial fission, fusion, and stress". Science. 337 (6098): 1062–1065. Bibcode:2012Sci...337.1062Y. doi:10.1126/science.1219855. PMC 4762028. PMID 22936770.
  15. ^ Narendra D, Walker JE, Youle R (2012). "Mitochondrail quality control mediated by PINK1 and Parkin: links to parkinsonism". Cold Spring Harbor Perspectives in Biology. 4 (11): a011338. doi:10.1101/cshperspect.a011338. PMC 3536340. PMID 23125018.
  16. ^ Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008). "Fission and selective fusion govern mitochondrial segregation and elimination by autophagy". The EMBO Journal. 27 (2): 433–446. doi:10.1038/sj.emboj.7601963. PMC 2234339. PMID 18200046.
  17. ^ Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010). "PINK1-dependent recruitment of Parkin to mitochondria in mitophagy". Proceedings of the National Academy of Sciences of the United States of America. 107 (1): 378–83. Bibcode:2010PNAS..107..378V. doi:10.1073/pnas.0911187107. PMC 2806779. PMID 19966284.
  18. ^ Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008). "The PINK1/Parkin pathway regulates mitochondrial mitophagy". Proceedings of the National Academy of Sciences of the United States of America. 105 (5): 1638–43. doi:10.1073/pnas.0709336105. PMC 2234197. PMID 18230723.
  19. ^ Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2012). "Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria". PLOS Genetics. 8 (3): e102537. doi:10.1371/journal.pgen.1002537. PMC 3291531. PMID 22396657.
  20. ^ McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA (2014). "Parkin and PINK 1 function in a vesicular trafficking pathway regulating mitochondrial quality control". The EMBO Journal. 33 (4): 282–295. doi:10.1002/embj.201385902. PMC 3989637. PMID 24446486.
  21. ^ Pimenta de Castro I, Costa AC, Lam D, Tufi R, Fedele V, Moisoi N, Dinsdale D, Deas E, Loh SH, Martins LM (2012). "Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster". Cell Death & Differentiation. 19 (8): 1308–16. doi:10.1038/cdd.2012.5. PMC 3392634. PMID 22301916.
  22. ^ Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004). "Hereditary early-onset Parkinson's disease caused by mutations in PINK1". Science. 304 (5674): 1158–60. Bibcode:2004Sci...304.1158V. doi:10.1126/science.1096284. PMID 15087508. S2CID 33630092.
  23. ^ Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, Shokat KM (2013). "A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1". Cell. 154 (4): 737–47. doi:10.1016/j.cell.2013.07.030. PMC 3950538. PMID 23953109.
  24. ^ Osgerby L, Lai YC, Thornton PJ, Amalfitano J, Le Duff CS, Jabeen I, Kadri H, Miccoli A, Tucker JH, Muqit M, Mehellou Y (2017). "Kinetin Riboside and Its ProTides Activate the Parkinson's Disease Associated PTEN-Induced Putative Kinase 1 (PINK1) Independent of Mitochondrial Depolarization". J. Med. Chem. 60 (8): 3518–24. doi:10.1021/acs.jmedchem.6b01897. PMC 5410652. PMID 28323427.
  25. ^ Osgerby L, Lai YC, Thornton PJ, Amalfitano J, Le Duff CS, Jabeen I, Kadri H, Miccoli A, Tucker JH, Muqit M, Mehellou Y (2017). "Kinetin Riboside and Its ProTides Activate the Parkinson's Disease Associated PTEN-Induced Putative Kinase 1 (PINK1) Independent of Mitochondrial Depolarization". J. Med. Chem. 60 (8): 3518–24. doi:10.1021/acs.jmedchem.6b01897. PMC 5410652. PMID 28323427.
  26. ^ Barini E, Miccoli A, Tinarelli F, Mulholand K, Kadri H, Khanim F, Stojanovski L, Read KD, Burness K, Blow JJ, Mehellou Y, Muqit M (2017). "The Anthelmintic Drug Niclosamide and its Analogues Activate the Parkinson's Disease Associated Protein Kinase PINK1". ChemBioChem. 19 (5): 425–429. doi:10.1002/cbic.201700500. PMC 5901409. PMID 29226533.

Further reading edit

  • Heutink P (2006). "PINK-1 and DJ-1 — new genes for autosomal recessive Parkinson's disease". Parkinson's Disease and Related Disorders. Journal of Neural Transmission. Supplementa. Vol. 70. pp. 215–9. doi:10.1007/978-3-211-45295-0_33. ISBN 978-3-211-28927-3. PMID 17017532. {{cite book}}: |journal= ignored (help)
  • Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW (2001). "Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, PARK6, on Human Chromosome 1p35-p36". Am. J. Hum. Genet. 68 (4): 895–900. doi:10.1086/319522. PMC 1275643. PMID 11254447.
  • Khan NL, Valente EM, Bentivoglio AR, Wood NW, Albanese A, Brooks DJ, Piccini P (2002). "Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study". Ann. Neurol. 52 (6): 849–53. doi:10.1002/ana.10417. PMID 12447943. S2CID 9275470.
  • Bonifati V, Dekker MC, Vanacore N, Fabbrini G, Squitieri F, Marconi R, Antonini A, Brustenghi P, Dalla Libera A, De Mari M, Stocchi F, Montagna P, Gallai V, Rizzu P, van Swieten JC, Oostra B, van Duijn CM, Meco G, Heutink P (2003). "Autosomal recessive early onset parkinsonism is linked to three loci: PARK2, PARK6, and PARK7". Neurol. Sci. 23 (Suppl 2): S59–60. doi:10.1007/s100720200069. PMID 12548343. S2CID 13625056.
  • Valente EM, Brancati F, Caputo V, Graham EA, Davis MB, Ferraris A, Breteler MM, Gasser T, Bonifati V, Bentivoglio AR, De Michele G, Dürr A, Cortelli P, Filla A, Meco G, Oostra BA, Brice A, Albanese A, Dallapiccola B, Wood NW (2003). "PARK6 is a common cause of familial parkinsonism". Neurol. Sci. 23 (Suppl 2): S117–8. doi:10.1007/s100720200097. PMID 12548371. S2CID 21061495.
  • Nakajima A, Kataoka K, Hong M, Sakaguchi M, Huh NH (2004). "BRPK, a novel protein kinase showing increased expression in mouse cancer cell lines with higher metastatic potential". Cancer Lett. 201 (2): 195–201. doi:10.1016/S0304-3835(03)00443-9. PMID 14607334.
  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004). "Hereditary early-onset Parkinson's disease caused by mutations in PINK1". Science. 304 (5674): 1158–60. Bibcode:2004Sci...304.1158V. doi:10.1126/science.1096284. PMID 15087508. S2CID 33630092.
  • Healy DG, Abou-Sleiman PM, Ahmadi KR, Muqit MM, Bhatia KP, Quinn NP, Lees AJ, Latchmann DS, Goldstein DB, Wood NW (2004). "The gene responsible for PARK6 Parkinson's disease, PINK1, does not influence common forms of parkinsonism". Ann. Neurol. 56 (3): 329–35. doi:10.1002/ana.20206. PMID 15349859. S2CID 1235813.
  • Hatano Y, Li Y, Sato K, Asakawa S, Yamamura Y, Tomiyama H, Yoshino H, Asahina M, Kobayashi S, Hassin-Baer S, Lu CS, Ng AR, Rosales RL, Shimizu N, Toda T, Mizuno Y, Hattori N (2004). "Novel PINK1 mutations in early-onset parkinsonism". Ann. Neurol. 56 (3): 424–7. doi:10.1002/ana.20251. PMID 15349870. S2CID 10853835.
  • Hatano Y, Sato K, Elibol B, Yoshino H, Yamamura Y, Bonifati V, Shinotoh H, Asahina M, Kobayashi S, Ng AR, Rosales RL, Hassin-Baer S, Shinar Y, Lu CS, Chang HC, Wu-Chou YH, Ataç FB, Kobayashi T, Toda T, Mizuno Y, Hattori N (2004). "PARK6-linked autosomal recessive early-onset parkinsonism in Asian populations". Neurology. 63 (8): 1482–5. doi:10.1212/01.wnl.0000142258.29304.fe. PMID 15505170. S2CID 13480500.
  • Healy DG, Abou-Sleiman PM, Gibson JM, Ross OA, Jain S, Gandhi S, Gosal D, Muqit MM, Wood NW, Lynch T (2006). "PINK1 (PARK6) associated Parkinson disease in Ireland". Neurology. 63 (8): 1486–8. doi:10.1212/01.wnl.0000142089.38301.8e. PMID 15505171. S2CID 24418905.
  • Rogaeva E, Johnson J, Lang AE, Gulick C, Gwinn-Hardy K, Kawarai T, Sato C, Morgan A, Werner J, Nussbaum R, Petit A, Okun MS, McInerney A, Mandel R, Groen JL, Fernandez HH, Postuma R, Foote KD, Salehi-Rad S, Liang Y, Reimsnider S, Tandon A, Hardy J, St George-Hyslop P, Singleton AB (2005). "Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease". Archives of Neurology. 61 (12): 1898–904. doi:10.1001/archneur.61.12.1898. PMID 15596610.
  • Beilina A, Van Der Brug M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR (2005). "Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability". Proc. Natl. Acad. Sci. U.S.A. 102 (16): 5703–8. Bibcode:2005PNAS..102.5703B. doi:10.1073/pnas.0500617102. PMC 556294. PMID 15824318.
  • Deng H, Le WD, Zhang X, Pan TH, Jankovic J (2005). "G309D and W437OPA PINK1 mutations in Caucasian Parkinson's disease patients". Acta Neurol. Scand. 111 (6): 351–2. doi:10.1111/j.1600-0404.2005.00383.x. PMID 15876334. S2CID 10669009.
  • Li Y, Tomiyama H, Sato K, Hatano Y, Yoshino H, Atsumi M, Kitaguchi M, Sasaki S, Kawaguchi S, Miyajima H, Toda T, Mizuno Y, Hattori N (2005). "Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism". Neurology. 64 (11): 1955–7. doi:10.1212/01.WNL.0000164009.36740.4E. PMID 15955953. S2CID 46024206.


External links edit

  • GeneReviews/NCBI/NIH/UW entry on PINK1 Type of Young-Onset Parkinson Disease

pink1, pten, induced, kinase, mitochondrial, serine, threonine, protein, kinase, encoded, gene, identifiersaliases, brpk, park6, pten, induced, putative, kinase, pten, induced, kinase, 1external, idsomim, 608309, 1916193, homologene, 32672, genecards, gene, lo. PTEN induced kinase 1 PINK1 is a mitochondrial serine threonine protein kinase encoded by the PINK1 gene 5 6 PINK1IdentifiersAliasesPINK1 BRPK PARK6 PTEN induced putative kinase 1 PTEN induced kinase 1External IDsOMIM 608309 MGI 1916193 HomoloGene 32672 GeneCards PINK1Gene location Human Chr Chromosome 1 human 1 Band1p36 12Start20 633 458 bp 1 End20 651 511 bp 1 Gene location Mouse Chr Chromosome 4 mouse 2 Band4 4 D3Start138 040 720 bp 2 End138 053 618 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed ingastrocnemius muscleprefrontal cortexamygdalaputamennucleus accumbensBrodmann area 9cingulate gyrustriceps brachii musclecaudate nucleusinternal globus pallidusTop expressed inmyocardium of ventricleintercostal musclesciatic nervedigastric muscletriceps brachii muscleanklesternocleidomastoid muscletemporal muscleextraocular muscleinterventricular septumMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionC3HC4 type RING finger domain binding kinase activity ATP binding protein kinase activity metal ion binding protein serine threonine kinase activity calcium dependent protein kinase activity peptidase activator activity magnesium ion binding transferase activity protease binding protein binding nucleotide binding protein kinase B binding ubiquitin protein ligase bindingCellular componentcytoplasm cytosol membrane mitochondrial intermembrane space mitochondrion perinuclear region of cytoplasm cytoskeleton nucleus Lewy body integral component of mitochondrial outer membrane mitochondrial outer membrane chromatin TORC2 complex integral component of membrane ubiquitin ligase complex mitochondrial outer membrane translocase complex astrocyte projection axon cell body mitochondrial inner membrane growth coneBiological processnegative regulation of neuron apoptotic process positive regulation of mitophagy in response to mitochondrial depolarization positive regulation of free ubiquitin chain polymerization regulation of protein ubiquitination cellular response to toxic substance positive regulation of catecholamine secretion regulation of synaptic vesicle transport positive regulation of translation protein phosphorylation positive regulation of dopamine secretion macroautophagy regulation of protein containing complex assembly cellular response to hypoxia negative regulation of autophagosome assembly positive regulation of protein kinase B signaling positive regulation of protein dephosphorylation ubiquitin dependent protein catabolic process peptidyl serine autophosphorylation regulation of neuron apoptotic process response to oxidative stress negative regulation of gene expression positive regulation of peptidyl serine phosphorylation negative regulation of mitochondrial fission positive regulation of mitochondrial electron transport NADH to ubiquinone positive regulation of macroautophagy regulation of autophagy of mitochondrion positive regulation of ubiquitin protein transferase activity negative regulation of hydrogen peroxide induced neuron intrinsic apoptotic signaling pathway protein ubiquitination negative regulation of oxidative stress induced cell death negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide positive regulation of synaptic transmission dopaminergic negative regulation of hypoxia induced intrinsic apoptotic signaling pathway regulation of oxidative phosphorylation regulation of mitochondrion organization regulation of hydrogen peroxide metabolic process negative regulation of oxidative stress induced neuron death protein stabilization mitochondrion organization positive regulation of DNA binding transcription factor activity negative regulation of autophagy of mitochondrion regulation of reactive oxygen species metabolic process positive regulation of ATP biosynthetic process maintenance of protein location in mitochondrion regulation of protein targeting to mitochondrion positive regulation of release of cytochrome c from mitochondria respiratory electron transport chain positive regulation of protein ubiquitination regulation of proteasomal protein catabolic process activation of protein kinase B activity intracellular signal transduction negative regulation of macroautophagy positive regulation of protein targeting to mitochondrion positive regulation of cristae formation positive regulation of peptidase activity TORC2 signaling regulation of mitochondrial membrane potential autophagy negative regulation of JNK cascade establishment of protein localization to mitochondrion autophagy of mitochondrion peptidyl serine phosphorylation positive regulation of I kappaB kinase NF kappaB signaling cellular response to oxidative stress negative regulation of reactive oxygen species metabolic process negative regulation of apoptotic process positive regulation of protein phosphorylation positive regulation of histone deacetylase activity mitochondrion to lysosome transport regulation of cellular response to oxidative stress response to ischemia positive regulation of mitochondrial fission positive regulation of autophagy of mitochondrion in response to mitochondrial depolarization cellular response to hydrogen sulfide phosphorylation negative regulation of neuron death positive regulation of NMDA glutamate receptor activity negative regulation of intrinsic apoptotic signaling pathwaySources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez6501868943EnsemblENSG00000158828ENSMUSG00000028756UniProtQ9BXM7Q99MQ3RefSeq mRNA NM 032409NM 026880RefSeq protein NP 115785NP 081156Location UCSC Chr 1 20 63 20 65 MbChr 4 138 04 138 05 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse It is thought to protect cells from stress induced mitochondrial dysfunction PINK1 activity causes the parkin protein to bind to depolarized mitochondria to induce autophagy of those mitochondria 7 8 PINK1 is processed by healthy mitochondria and released to trigger neuron differentiation 9 Mutations in this gene cause one form of autosomal recessive early onset Parkinson s disease 10 Contents 1 Structure 2 Function 3 Disease relevance 4 Pharmacological manipulation 5 References 6 Further reading 7 External linksStructure editPINK1 is synthesized as a 63000 Da protein which is often cleaved by PARL between the 103 Alanine and the 104 Phenylalanine residues into a 53000 Da fragment 11 PINK1 contains an N terminal mitochondrial localization sequence a putative transmembrane sequence a Ser Thr kinase domain and a C terminal regulatory sequence The protein has been found to localize to the outer membrane of mitochondria but can also be found throughout the cytosol Experiments suggest the Ser Thr kinase domain faces outward toward the cytosol indicating a possible point of interaction with parkin 12 The structure of PINK1 has been solved and shows how the protein binds and phosphorylates its substrate ubiquitin 13 Function editPINK1 is intimately involved with mitochondrial quality control by identifying damaged mitochondria and targeting specific mitochondria for degradation Healthy mitochondria maintain a membrane potential that can be used to import PINK1 into the inner membrane where it is cleaved by PARL and cleared from the outer membrane Severely damaged mitochondria lack sufficient membrane potential to import PINK1 which then accumulates on the outer membrane PINK1 then recruits parkin to target the damaged mitochondria for degradation through autophagy 14 Due to the presence of PINK1 throughout the cytoplasm it has been suggested that PINK1 functions as a scout to probe for damaged mitochondria 15 nbsp Damaged mitochondria is being recognized by PINK1 PINK1 builds up on the outer membrane of the mitochondria and recruits parkin The PINK1 parkin pathway then designates the mitochondria for degradation by lysosomes nbsp Healthy mitochondria can import PINK1 where it is subsequently cleaved by PARL This prevents any buildup of PINK1 and parkin is not recruited to the mitochondria PINK1 may also control mitochondria quality through mitochondrial fission Through mitochondrial fission a number of daughter mitochondria are created often with an uneven distribution in membrane potential Mitochondria with a strong healthy membrane potential were more likely to undergo fusion than mitochondria with low membrane potential Interference with the mitochondrial fission pathway led to an increase in oxidized proteins and a decrease in respiration 16 Without PINK1 parkin cannot efficiently localize to damaged mitochondria while an over expression of PINK1 causes parkin to localize to even healthy mitochondria 17 Furthermore mutations in both Drp1 a mitochondrial fission factor and PINK1 were fatal in Drosophila models However an over expression of Drp1 could rescue subjects deficient in PINK1 or parkin suggesting mitochondrial fission initiated by Drp1 recreates the same effects of the PINK1 parkin pathway 18 In addition to mitochondrial fission PINK1 has been implicated in mitochondrial motility The accumulation of PINK1 and recruitment of parkin targets a mitochondrion for degradation and PINK1 may serve to enhance degradation rates by arresting mitochondrial motility Over expression of PINK1 produced similar effects to silencing Miro a protein closely associated with mitochondrial migration 19 Another mechanism of mitochondrial quality control may arise through mitochondria derived vesicles Oxidative stress in mitochondria can produce potentially harmful compounds including improperly folded proteins or reactive oxygen species PINK1 has been shown to facilitate the creation of mitochondria derived vesicles which can separate reactive oxygen species and shuttle them toward lysosomes for degradation 20 Disease relevance editParkinson s disease is often characterized by the degeneration of dopaminergic neurons and associated with the build up of improperly folded proteins and Lewy bodies Mutations in the PINK1 protein have been shown to lead to a build up of such improperly folded proteins in the mitochondria of both fly and human cells 21 Specifically mutations in the serine threonine kinase domain have been found in a number of Parkinson s patients where PINK1 fails to protect against stress induced mitochondrial dysfunction and apoptosis 22 Pharmacological manipulation editTo date there have been few reports of small molecules that activate PINK1 and their promise as potential treatments for Parkinson s disease The first report appeared in 2013 when Kevan Shokat and his team from UCSF identified a nucleobase called kinetin as an activator of PINK1 23 Subsequently it was shown by others that the nucleoside derivative of kinetin i e kinetin riboside exhibited significant activation of PINK1 in cells 24 Additionally the monophosphate prodrugs of kinetin riboside ProTides also showed activation of PINK1 25 In December 2017 niclosamide an anthelmintic drug was identified as a potent activator of PINK1 in cells and in neurons 26 References edit a b c GRCh38 Ensembl release 89 ENSG00000158828 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000028756 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Unoki M Nakamura Y Aug 2001 Growth suppressive effects of BPOZ and EGR2 two genes involved in the PTEN signaling pathway Oncogene 20 33 4457 65 doi 10 1038 sj onc 1204608 PMID 11494141 Valente EM Salvi S Ialongo T Marongiu R Elia AE Caputo V Romito L Albanese A Dallapiccola B Bentivoglio AR Sep 2004 PINK1 mutations are associated with sporadic early onset parkinsonism Ann Neurol 56 3 336 41 doi 10 1002 ana 20256 PMID 15349860 S2CID 11049051 Narendra DP Jin SM Tanaka A Suen DF Gautier CA Shen J Cookson MR Youle RJ 2010 PINK1 is selectively stabilized on impaired mitochondria to activate Parkin PLOS Biology 8 1 e1000298 doi 10 1371 journal pbio 1000298 PMC 2811155 PMID 20126261 Lazarou M Narendra DP Jin SM Tekle E Banerjee S Youle RJ 2013 PINK1 drives Parkin self association and HECT like E3 activity upstream of mitochondrial binding Journal of Cell Biology 200 2 163 172 doi 10 1083 jcb 201210111 PMC 3549971 PMID 23319602 Dagda RK Pien I Wang R Zhu J Wang KZ Callio J Banerjee TD Dagda RY Chu CT 2013 Beyond the mitochondrion cytosolic PINK1 remodels dendrites through protein kinase A J Neurochem 128 6 864 877 doi 10 1111 jnc 12494 PMC 3951661 PMID 24151868 Entrez Gene PINK1 PTEN induced putative kinase 1 Deas E Plun Favreau H Gandhi S Desmond H Kjaer S Loh SH Renton AE Harvey RJ Whitworth AJ Martins LM Abramov AY Wood NW 2011 PINK1 cleavage at position A103 by the mitochondrial protease PARL Hum Mol Genet 20 5 867 869 doi 10 1093 hmg ddq526 PMC 3033179 PMID 21138942 Springer W Kahle PJ March 2011 Regulation of PINK1 Parkin mediated mitophagy Autophagy 7 3 266 78 doi 10 4161 auto 7 3 14348 PMID 21187721 S2CID 31612944 Schubert AF Gladkova C Pardon E Wagstaff JL Freund SM Steyaert J Maslen SL Komander D 2017 10 30 Structure of PINK1 in complex with its substrate ubiquitin Nature 552 7683 51 56 Bibcode 2017Natur 552 51S doi 10 1038 nature24645 ISSN 1476 4687 PMC 6020998 PMID 29160309 Youle RJ van der Bliek AM 2012 Mitochondrial fission fusion and stress Science 337 6098 1062 1065 Bibcode 2012Sci 337 1062Y doi 10 1126 science 1219855 PMC 4762028 PMID 22936770 Narendra D Walker JE Youle R 2012 Mitochondrail quality control mediated by PINK1 and Parkin links to parkinsonism Cold Spring Harbor Perspectives in Biology 4 11 a011338 doi 10 1101 cshperspect a011338 PMC 3536340 PMID 23125018 Twig G Elorza A Molina AJ Mohamed H Wikstrom JD Walzer G Stiles L Haigh SE Katz S Las G Alroy J Wu M Py BF Yuan J Deeney JT Corkey BE Shirihai OS 2008 Fission and selective fusion govern mitochondrial segregation and elimination by autophagy The EMBO Journal 27 2 433 446 doi 10 1038 sj emboj 7601963 PMC 2234339 PMID 18200046 Vives Bauza C Zhou C Huang Y Cui M de Vries RL Kim J May J Tocilescu MA Liu W Ko HS Magrane J Moore DJ Dawson VL Grailhe R Dawson TM Li C Tieu K Przedborski S 2010 PINK1 dependent recruitment of Parkin to mitochondria in mitophagy Proceedings of the National Academy of Sciences of the United States of America 107 1 378 83 Bibcode 2010PNAS 107 378V doi 10 1073 pnas 0911187107 PMC 2806779 PMID 19966284 Poole AC Thomas RE Andrews LA McBride HM Whitworth AJ Pallanck LJ 2008 The PINK1 Parkin pathway regulates mitochondrial mitophagy Proceedings of the National Academy of Sciences of the United States of America 105 5 1638 43 doi 10 1073 pnas 0709336105 PMC 2234197 PMID 18230723 Liu S Sawada T Lee S Yu W Silverio G Alapatt P Millan I Shen A Saxton W Kanao T Takahashi R Hattori N Imai Y Lu B 2012 Parkinson s disease associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria PLOS Genetics 8 3 e102537 doi 10 1371 journal pgen 1002537 PMC 3291531 PMID 22396657 McLelland GL Soubannier V Chen CX McBride HM Fon EA 2014 Parkin and PINK 1 function in a vesicular trafficking pathway regulating mitochondrial quality control The EMBO Journal 33 4 282 295 doi 10 1002 embj 201385902 PMC 3989637 PMID 24446486 Pimenta de Castro I Costa AC Lam D Tufi R Fedele V Moisoi N Dinsdale D Deas E Loh SH Martins LM 2012 Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster Cell Death amp Differentiation 19 8 1308 16 doi 10 1038 cdd 2012 5 PMC 3392634 PMID 22301916 Valente EM Abou Sleiman PM Caputo V Muqit MM Harvey K Gispert S Ali Z Del Turco D Bentivoglio AR Healy DG Albanese A Nussbaum R Gonzalez Maldonado R Deller T Salvi S Cortelli P Gilks WP Latchman DS Harvey RJ Dallapiccola B Auburger G Wood NW 2004 Hereditary early onset Parkinson s disease caused by mutations in PINK1 Science 304 5674 1158 60 Bibcode 2004Sci 304 1158V doi 10 1126 science 1096284 PMID 15087508 S2CID 33630092 Hertz NT Berthet A Sos ML Thorn KS Burlingame AL Nakamura K Shokat KM 2013 A neo substrate that amplifies catalytic activity of parkinson s disease related kinase PINK1 Cell 154 4 737 47 doi 10 1016 j cell 2013 07 030 PMC 3950538 PMID 23953109 Osgerby L Lai YC Thornton PJ Amalfitano J Le Duff CS Jabeen I Kadri H Miccoli A Tucker JH Muqit M Mehellou Y 2017 Kinetin Riboside and Its ProTides Activate the Parkinson s Disease Associated PTEN Induced Putative Kinase 1 PINK1 Independent of Mitochondrial Depolarization J Med Chem 60 8 3518 24 doi 10 1021 acs jmedchem 6b01897 PMC 5410652 PMID 28323427 Osgerby L Lai YC Thornton PJ Amalfitano J Le Duff CS Jabeen I Kadri H Miccoli A Tucker JH Muqit M Mehellou Y 2017 Kinetin Riboside and Its ProTides Activate the Parkinson s Disease Associated PTEN Induced Putative Kinase 1 PINK1 Independent of Mitochondrial Depolarization J Med Chem 60 8 3518 24 doi 10 1021 acs jmedchem 6b01897 PMC 5410652 PMID 28323427 Barini E Miccoli A Tinarelli F Mulholand K Kadri H Khanim F Stojanovski L Read KD Burness K Blow JJ Mehellou Y Muqit M 2017 The Anthelmintic Drug Niclosamide and its Analogues Activate the Parkinson s Disease Associated Protein Kinase PINK1 ChemBioChem 19 5 425 429 doi 10 1002 cbic 201700500 PMC 5901409 PMID 29226533 Further reading editHeutink P 2006 PINK 1 and DJ 1 new genes for autosomal recessive Parkinson s disease Parkinson s Disease and Related Disorders Journal of Neural Transmission Supplementa Vol 70 pp 215 9 doi 10 1007 978 3 211 45295 0 33 ISBN 978 3 211 28927 3 PMID 17017532 a href Template Cite book html title Template Cite book cite book a journal ignored help Valente EM Bentivoglio AR Dixon PH Ferraris A Ialongo T Frontali M Albanese A Wood NW 2001 Localization of a Novel Locus for Autosomal Recessive Early Onset Parkinsonism PARK6 on Human Chromosome 1p35 p36 Am J Hum Genet 68 4 895 900 doi 10 1086 319522 PMC 1275643 PMID 11254447 Khan NL Valente EM Bentivoglio AR Wood NW Albanese A Brooks DJ Piccini P 2002 Clinical and subclinical dopaminergic dysfunction in PARK6 linked parkinsonism an 18F dopa PET study Ann Neurol 52 6 849 53 doi 10 1002 ana 10417 PMID 12447943 S2CID 9275470 Bonifati V Dekker MC Vanacore N Fabbrini G Squitieri F Marconi R Antonini A Brustenghi P Dalla Libera A De Mari M Stocchi F Montagna P Gallai V Rizzu P van Swieten JC Oostra B van Duijn CM Meco G Heutink P 2003 Autosomal recessive early onset parkinsonism is linked to three loci PARK2 PARK6 and PARK7 Neurol Sci 23 Suppl 2 S59 60 doi 10 1007 s100720200069 PMID 12548343 S2CID 13625056 Valente EM Brancati F Caputo V Graham EA Davis MB Ferraris A Breteler MM Gasser T Bonifati V Bentivoglio AR De Michele G Durr A Cortelli P Filla A Meco G Oostra BA Brice A Albanese A Dallapiccola B Wood NW 2003 PARK6 is a common cause of familial parkinsonism Neurol Sci 23 Suppl 2 S117 8 doi 10 1007 s100720200097 PMID 12548371 S2CID 21061495 Nakajima A Kataoka K Hong M Sakaguchi M Huh NH 2004 BRPK a novel protein kinase showing increased expression in mouse cancer cell lines with higher metastatic potential Cancer Lett 201 2 195 201 doi 10 1016 S0304 3835 03 00443 9 PMID 14607334 Valente EM Abou Sleiman PM Caputo V Muqit MM Harvey K Gispert S Ali Z Del Turco D Bentivoglio AR Healy DG Albanese A Nussbaum R Gonzalez Maldonado R Deller T Salvi S Cortelli P Gilks WP Latchman DS Harvey RJ Dallapiccola B Auburger G Wood NW 2004 Hereditary early onset Parkinson s disease caused by mutations in PINK1 Science 304 5674 1158 60 Bibcode 2004Sci 304 1158V doi 10 1126 science 1096284 PMID 15087508 S2CID 33630092 Healy DG Abou Sleiman PM Ahmadi KR Muqit MM Bhatia KP Quinn NP Lees AJ Latchmann DS Goldstein DB Wood NW 2004 The gene responsible for PARK6 Parkinson s disease PINK1 does not influence common forms of parkinsonism Ann Neurol 56 3 329 35 doi 10 1002 ana 20206 PMID 15349859 S2CID 1235813 Hatano Y Li Y Sato K Asakawa S Yamamura Y Tomiyama H Yoshino H Asahina M Kobayashi S Hassin Baer S Lu CS Ng AR Rosales RL Shimizu N Toda T Mizuno Y Hattori N 2004 Novel PINK1 mutations in early onset parkinsonism Ann Neurol 56 3 424 7 doi 10 1002 ana 20251 PMID 15349870 S2CID 10853835 Hatano Y Sato K Elibol B Yoshino H Yamamura Y Bonifati V Shinotoh H Asahina M Kobayashi S Ng AR Rosales RL Hassin Baer S Shinar Y Lu CS Chang HC Wu Chou YH Atac FB Kobayashi T Toda T Mizuno Y Hattori N 2004 PARK6 linked autosomal recessive early onset parkinsonism in Asian populations Neurology 63 8 1482 5 doi 10 1212 01 wnl 0000142258 29304 fe PMID 15505170 S2CID 13480500 Healy DG Abou Sleiman PM Gibson JM Ross OA Jain S Gandhi S Gosal D Muqit MM Wood NW Lynch T 2006 PINK1 PARK6 associated Parkinson disease in Ireland Neurology 63 8 1486 8 doi 10 1212 01 wnl 0000142089 38301 8e PMID 15505171 S2CID 24418905 Rogaeva E Johnson J Lang AE Gulick C Gwinn Hardy K Kawarai T Sato C Morgan A Werner J Nussbaum R Petit A Okun MS McInerney A Mandel R Groen JL Fernandez HH Postuma R Foote KD Salehi Rad S Liang Y Reimsnider S Tandon A Hardy J St George Hyslop P Singleton AB 2005 Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease Archives of Neurology 61 12 1898 904 doi 10 1001 archneur 61 12 1898 PMID 15596610 Beilina A Van Der Brug M Ahmad R Kesavapany S Miller DW Petsko GA Cookson MR 2005 Mutations in PTEN induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability Proc Natl Acad Sci U S A 102 16 5703 8 Bibcode 2005PNAS 102 5703B doi 10 1073 pnas 0500617102 PMC 556294 PMID 15824318 Deng H Le WD Zhang X Pan TH Jankovic J 2005 G309D and W437OPA PINK1 mutations in Caucasian Parkinson s disease patients Acta Neurol Scand 111 6 351 2 doi 10 1111 j 1600 0404 2005 00383 x PMID 15876334 S2CID 10669009 Li Y Tomiyama H Sato K Hatano Y Yoshino H Atsumi M Kitaguchi M Sasaki S Kawaguchi S Miyajima H Toda T Mizuno Y Hattori N 2005 Clinicogenetic study of PINK1 mutations in autosomal recessive early onset parkinsonism Neurology 64 11 1955 7 doi 10 1212 01 WNL 0000164009 36740 4E PMID 15955953 S2CID 46024206 External links editGeneReviews NCBI NIH UW entry on PINK1 Type of Young Onset Parkinson Disease Retrieved from https en wikipedia org w index php title PINK1 amp oldid 1193527336, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.