fbpx
Wikipedia

Overspeed

Overspeed is a condition in which an engine is allowed or forced to turn beyond its design limit. The consequences of running an engine too fast vary by engine type and model and depend upon several factors, the most important of which are the duration of the overspeed and the speed attained. With some engines, a momentary overspeed can result in greatly reduced engine life or catastrophic failure.[1] The speed of an engine is typically measured in revolutions per minute (rpm).[2] [citation needed]

Examples of overspeed edit

  • In a propeller aircraft, an overspeed will occur if the propeller, usually connected directly to the engine, is forced to turn too fast by high-speed airflow while the aircraft is in a dive, moves to a flat blade pitch in cruising flight due to a governor failure or feathering failure, or becomes decoupled from the engine.[citation needed]
  • In a jet aircraft, an overspeed results when the axial compressor exceeds its maximal operating rotational speed. This often leads to the mechanical failure of turbine blades, flameout and destruction of the engine.[citation needed]
  • In a ground vehicle, an engine can be forced to turn too quickly by changing to an inappropriately low gear.[citation needed]
  • Most unregulated engines will overspeed if power is applied with no or little load.[citation needed]
  • In the event of diesel engine runaway (caused by excessive intake of combustibles), a diesel engine will overspeed if the condition is not quickly rectified.[citation needed] An example is a diesel engine powering equipment at an oil well head. Suppose the operators hit a pocket of natural gas. In that case, it will come to the surface and the engine will take in the flammable gas and rapidly increase speed until the engine is destroyed, unless the air intake is shut off, starving the engine of fuel and oxygen.

Overspeed protection edit

Sometimes a regulator or governor is fitted to make engine overspeed impossible or less likely. For example:

  • Many steam engines use a centrifugal governor, which closes a throttle at high rpm to restrict steam flow as engine speed increases.[citation needed]
  • In motor vehicles, automatic transmissions will change gear to prevent the engine from turning too quickly. Additionally, almost all modern vehicles are fitted with an electronic rev limiter device that will cut fuel supply or sparks to the engine to prevent overspeed.[citation needed]
  • Some aircraft have constant-speed units that automatically change propeller pitch to keep the engine running at the optimal speed.[citation needed]
  • Large diesel engines are sometimes fitted with a secondary protection device that actuates if the governor fails.[3] This consists of a flap valve in the air intake. If the engine overspeeds, the airflow through the intake will rise to an abnormal level. This causes the flap valve to snap shut, starving the engine of air and shutting it down.[citation needed]

Different overspeed occurrences and prevention edit

Internal combustion engines edit

An excerpt presented by the San Francisco Maritime National Park Association illustrates the types of overspeed systems with governor and engine control.[4] Overspeed governors are either centrifugal or hydraulic.[4] Centrifugal governors depend on the revolving force created by its own weight.[4] Hydraulic governors use the centrifugal force but drive a medium to accomplish the same task.[4] The overspeed governor is implemented on most marine diesel engines.[4] The governor is a safety measure that acts when the engine is approaching overspeed and will trip the engine off if the regulator governor fails.[4] It trips off the engine by cutting off fuel injection by having the centrifugal force act on levers linked to the governor collar.[4]

Turbines edit

Overspeeds for power plant turbines can be catastrophic, resulting in failure due to the turbines' shafts and blades being off balance and potentially throwing their blades and other metal parts at very high speeds.[5] Different safeguards exist, which include a mechanical and electrical protection system.[6]

Mechanical overspeed protection is in the form of sensors.[6] The system relies on the centripetal force of the shaft, a spring, and a weight.[6] At the designed point of overspeed, the balance point of the weight is shifted, causing the lever to release a valve that makes the trip oil header to lose pressure due to draining.[6] This loss of oil affects the pressure, and moves a trip mechanism to then trip the system off.[6]

An electrical overspeed detection system involves a gear with teeth and probes.[6] These probes detect how fast the teeth are moving, and if they are moving beyond the designated rpm, it relays that to the logic solver (overspeed detection). The logic solver trips the system by sending the overspeed to the trip relay, which is connected to a solenoid-operated valve.[6]

Mechanical vs. electrical governors on turbines edit

In turbines and many other mechanical devices used for power generation, it is critical that the response times for overspeed prevention systems be as precise as possible.[7] If the response is off by even a fraction of a second, it can lead to turbines and its driven load (i.e. compressor, generator, pump, etc..) suffering catastrophic damage and put people at risk.[7]

Mechanical edit

Mechanical overspeed systems on turbines rely on an equilibrium between the centripetal force of the rotating shaft imparted on a weight attached to the end of a turbine blade.[7] At the specified trip point, this weight makes physical contact with a lever that releases the trip oil header, which directly moves a trip bolt and/or a hydraulic circuit to activate stop valves to close.[7] Because the contact with the lever occurs over a relatively limited angle, there is a maximum trip response time of 15 ms (i.e. 0.015 sec).[7] The issue with these devices has less to do with response time as it does with response latency and variability in the trip point due to systems sticking.[7] Some systems add two trip bolts for redundancy, which enables response latency to be reduced by half.[7]

Electrical edit

Electrical overspeed systems on turbines rely on a multitude of probes that sense speed through measuring the passages of the teeth of a spur gear.[7] Using a digital logic solver, the overspeed system determines the propeller shaft rpm given the ratio of the gear to the shaft.[7] If the shaft rpm is too high, it outputs a trip command which de-energizes a trip relay.[7] Overspeed response varies from system to system, so it is key to check the original equipment manufacturer's specification to set the Overspeed trip time accordingly.[7] Typically, unless specified otherwise, the response time to change the output relay will be 40 ms.[7] This time includes the time required for the probes to detect speed, compare it to an overspeed set-point, calculate results, and finally output the trip command.[7]

Overview of overspeed detection system edit

When configuring, testing, and running any overspeed systems on turbines or diesel engines, one factor considered is timing.[4] This is because the response to overspeed is usually too fast for people to notice.

There is a strong argument to instrument the trip systems in such a way that the total system response can be measured. This way during a test a change in the response could indicate a degradation that might compromise system protection or point out a failing component.

— Scott, 2009, p.161[6]

The responsibility of calibrating the correct overspeed response for a specific system falls on the manufacturer. However, variability is always present, and it is important for the owner/operator to understand the system in the event of maintenance, replacement, or retrofitting of outdated or worn out parts.[6] After overspeed has occurred, it is essential to check all machinery parts for stress.[8] The first place to start for impulse turbines is the rotor.[8] At the rotor, there are balance holes[9] that equalise the pressure difference between turbines, and if warped, would require the replacement of the entire rotor.[8]

See also edit

References edit

  1. ^ || Google Patents: Engine overspeed shutdown systems and methods
  2. ^ || OBP: ISO 7000 — Graphical symbols for use on equipment
  3. ^ AMOT Products.
  4. ^ a b c d e f g h "Submarine Main Propulsion Diesels - Chapter 10". maritime.org. Retrieved 2019-04-02.
  5. ^ Perez, R. X. (2016). Operators guide to general purpose steam turbines: An overview of operating principles, construction, best practices, and troubleshooting. Hoboken, NJ: John Wiley & Sons.
  6. ^ a b c d e f g h i Taylor, Scott (June 2009). (PDF). Semantic scholat. S2CID 15076138. Archived from the original (PDF) on 2019-03-04. Retrieved March 14, 2019.
  7. ^ a b c d e f g h i j k l m Smith, Sheldon S.; Taylor, Scott L. (2009). "Turbine Overspeed Systems And Required Response Times". Turbomachinery and Pump Symposia. doi:10.21423/R19W7P.
  8. ^ a b c National Marine Engineers' Beneficial Association (U.S.). District 1. Modern marine engineering. MEBA. OCLC 28049257.{{cite book}}: CS1 maint: numeric names: authors list (link)
  9. ^ Mrózek, Lukáš; Tajč, Ladislav; Hoznedl, Michal; Miczán, Martin (28 March 2016). Application of the balancing holes on the turbine stage discs with higher root reaction (PDF). EFM15 – Experimental Fluid Mechanics 2015. EPJ Web of Conferences. Vol. 114. doi:10.1051/epjconf/201611402080.

overspeed, aircraft, flight, condition, aeronautics, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, needs, additional, citations, verification, please, . For the aircraft flight condition see Overspeed aeronautics This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Overspeed news newspapers books scholar JSTOR May 2020 Learn how and when to remove this template message This article needs attention from an expert in Engineering The specific problem is layout and cohesion WikiProject Engineering may be able to help recruit an expert May 2020 Learn how and when to remove this template message Overspeed is a condition in which an engine is allowed or forced to turn beyond its design limit The consequences of running an engine too fast vary by engine type and model and depend upon several factors the most important of which are the duration of the overspeed and the speed attained With some engines a momentary overspeed can result in greatly reduced engine life or catastrophic failure 1 The speed of an engine is typically measured in revolutions per minute rpm 2 citation needed Contents 1 Examples of overspeed 2 Overspeed protection 3 Different overspeed occurrences and prevention 3 1 Internal combustion engines 3 2 Turbines 4 Mechanical vs electrical governors on turbines 4 1 Mechanical 4 2 Electrical 5 Overview of overspeed detection system 6 See also 7 ReferencesExamples of overspeed editIn a propeller aircraft an overspeed will occur if the propeller usually connected directly to the engine is forced to turn too fast by high speed airflow while the aircraft is in a dive moves to a flat blade pitch in cruising flight due to a governor failure or feathering failure or becomes decoupled from the engine citation needed In a jet aircraft an overspeed results when the axial compressor exceeds its maximal operating rotational speed This often leads to the mechanical failure of turbine blades flameout and destruction of the engine citation needed In a ground vehicle an engine can be forced to turn too quickly by changing to an inappropriately low gear citation needed Most unregulated engines will overspeed if power is applied with no or little load citation needed In the event of diesel engine runaway caused by excessive intake of combustibles a diesel engine will overspeed if the condition is not quickly rectified citation needed An example is a diesel engine powering equipment at an oil well head Suppose the operators hit a pocket of natural gas In that case it will come to the surface and the engine will take in the flammable gas and rapidly increase speed until the engine is destroyed unless the air intake is shut off starving the engine of fuel and oxygen Overspeed protection editSometimes a regulator or governor is fitted to make engine overspeed impossible or less likely For example Many steam engines use a centrifugal governor which closes a throttle at high rpm to restrict steam flow as engine speed increases citation needed In motor vehicles automatic transmissions will change gear to prevent the engine from turning too quickly Additionally almost all modern vehicles are fitted with an electronic rev limiter device that will cut fuel supply or sparks to the engine to prevent overspeed citation needed Some aircraft have constant speed units that automatically change propeller pitch to keep the engine running at the optimal speed citation needed Large diesel engines are sometimes fitted with a secondary protection device that actuates if the governor fails 3 This consists of a flap valve in the air intake If the engine overspeeds the airflow through the intake will rise to an abnormal level This causes the flap valve to snap shut starving the engine of air and shutting it down citation needed Different overspeed occurrences and prevention editInternal combustion engines edit An excerpt presented by the San Francisco Maritime National Park Association illustrates the types of overspeed systems with governor and engine control 4 Overspeed governors are either centrifugal or hydraulic 4 Centrifugal governors depend on the revolving force created by its own weight 4 Hydraulic governors use the centrifugal force but drive a medium to accomplish the same task 4 The overspeed governor is implemented on most marine diesel engines 4 The governor is a safety measure that acts when the engine is approaching overspeed and will trip the engine off if the regulator governor fails 4 It trips off the engine by cutting off fuel injection by having the centrifugal force act on levers linked to the governor collar 4 Turbines edit Overspeeds for power plant turbines can be catastrophic resulting in failure due to the turbines shafts and blades being off balance and potentially throwing their blades and other metal parts at very high speeds 5 Different safeguards exist which include a mechanical and electrical protection system 6 Mechanical overspeed protection is in the form of sensors 6 The system relies on the centripetal force of the shaft a spring and a weight 6 At the designed point of overspeed the balance point of the weight is shifted causing the lever to release a valve that makes the trip oil header to lose pressure due to draining 6 This loss of oil affects the pressure and moves a trip mechanism to then trip the system off 6 An electrical overspeed detection system involves a gear with teeth and probes 6 These probes detect how fast the teeth are moving and if they are moving beyond the designated rpm it relays that to the logic solver overspeed detection The logic solver trips the system by sending the overspeed to the trip relay which is connected to a solenoid operated valve 6 Mechanical vs electrical governors on turbines editIn turbines and many other mechanical devices used for power generation it is critical that the response times for overspeed prevention systems be as precise as possible 7 If the response is off by even a fraction of a second it can lead to turbines and its driven load i e compressor generator pump etc suffering catastrophic damage and put people at risk 7 Mechanical edit Mechanical overspeed systems on turbines rely on an equilibrium between the centripetal force of the rotating shaft imparted on a weight attached to the end of a turbine blade 7 At the specified trip point this weight makes physical contact with a lever that releases the trip oil header which directly moves a trip bolt and or a hydraulic circuit to activate stop valves to close 7 Because the contact with the lever occurs over a relatively limited angle there is a maximum trip response time of 15 ms i e 0 015 sec 7 The issue with these devices has less to do with response time as it does with response latency and variability in the trip point due to systems sticking 7 Some systems add two trip bolts for redundancy which enables response latency to be reduced by half 7 Electrical edit Electrical overspeed systems on turbines rely on a multitude of probes that sense speed through measuring the passages of the teeth of a spur gear 7 Using a digital logic solver the overspeed system determines the propeller shaft rpm given the ratio of the gear to the shaft 7 If the shaft rpm is too high it outputs a trip command which de energizes a trip relay 7 Overspeed response varies from system to system so it is key to check the original equipment manufacturer s specification to set the Overspeed trip time accordingly 7 Typically unless specified otherwise the response time to change the output relay will be 40 ms 7 This time includes the time required for the probes to detect speed compare it to an overspeed set point calculate results and finally output the trip command 7 Overview of overspeed detection system editWhen configuring testing and running any overspeed systems on turbines or diesel engines one factor considered is timing 4 This is because the response to overspeed is usually too fast for people to notice There is a strong argument to instrument the trip systems in such a way that the total system response can be measured This way during a test a change in the response could indicate a degradation that might compromise system protection or point out a failing component Scott 2009 p 161 6 The responsibility of calibrating the correct overspeed response for a specific system falls on the manufacturer However variability is always present and it is important for the owner operator to understand the system in the event of maintenance replacement or retrofitting of outdated or worn out parts 6 After overspeed has occurred it is essential to check all machinery parts for stress 8 The first place to start for impulse turbines is the rotor 8 At the rotor there are balance holes 9 that equalise the pressure difference between turbines and if warped would require the replacement of the entire rotor 8 See also editAirlines PNG Flight 1600 OverclockingReferences edit Google Patents Engine overspeed shutdown systems and methods OBP ISO 7000 Graphical symbols for use on equipment AMOT Products a b c d e f g h Submarine Main Propulsion Diesels Chapter 10 maritime org Retrieved 2019 04 02 Perez R X 2016 Operators guide to general purpose steam turbines An overview of operating principles construction best practices and troubleshooting Hoboken NJ John Wiley amp Sons a b c d e f g h i Taylor Scott June 2009 Turbine Overspeed Systems and Required Response PDF Semantic scholat S2CID 15076138 Archived from the original PDF on 2019 03 04 Retrieved March 14 2019 a b c d e f g h i j k l m Smith Sheldon S Taylor Scott L 2009 Turbine Overspeed Systems And Required Response Times Turbomachinery and Pump Symposia doi 10 21423 R19W7P a b c National Marine Engineers Beneficial Association U S District 1 Modern marine engineering MEBA OCLC 28049257 a href Template Cite book html title Template Cite book cite book a CS1 maint numeric names authors list link Mrozek Lukas Tajc Ladislav Hoznedl Michal Miczan Martin 28 March 2016 Application of the balancing holes on the turbine stage discs with higher root reaction PDF EFM15 Experimental Fluid Mechanics 2015 EPJ Web of Conferences Vol 114 doi 10 1051 epjconf 201611402080 Retrieved from https en wikipedia org w index php title Overspeed amp oldid 1214133993, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.