fbpx
Wikipedia

Order-4 apeirogonal tiling

Order-4 apeirogonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 4
Schläfli symbol {∞,4}
r{∞,∞}
t(∞,∞,∞)
t0,1,2,3(∞,∞,∞,∞)
Wythoff symbol 4 | ∞ 2
2 | ∞ ∞
∞ ∞ | ∞
Coxeter diagram

Symmetry group [∞,4], (*∞42)
[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)
(*∞∞∞∞)
Dual Infinite-order square tiling
Properties Vertex-transitive, edge-transitive, face-transitive edge-transitive

In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.

Symmetry edit

This tiling represents the mirror lines of *2 symmetry. It dual to this tiling represents the fundamental domains of orbifold notation *∞∞∞∞ symmetry, a square domain with four ideal vertices.

 

Uniform colorings edit

Like the Euclidean square tiling there are 9 uniform colorings for this tiling, with 3 uniform colorings generated by triangle reflective domains. A fourth can be constructed from an infinite square symmetry (*∞∞∞∞) with 4 colors around a vertex. The checker board, r{∞,∞}, coloring defines the fundamental domains of [(∞,4,4)], (*∞44) symmetry, usually shown as black and white domains of reflective orientations.

1 color 2 color 3 and 2 colors 4, 3 and 2 colors
[∞,4], (*∞42) [∞,∞], (*∞∞2) [(∞,∞,∞)], (*∞∞∞) (*∞∞∞∞)
{∞,4} r{∞,∞}
= {∞,4}12
t0,2(∞,∞,∞)
= r{∞,∞}12
t0,1,2,3(∞,∞,∞,∞)
= r{∞,∞}14 = {∞,4}18
 
(1111)
 
(1212)
 
(1213)
 
(1112)
 
(1234)
 
(1123)
 
(1122)
          =            =      
      =     
      =       =      

Related polyhedra and tiling edit

This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram      , with n progressing to infinity.

*n42 symmetry mutation of regular tilings: {n,4}
Spherical Euclidean Hyperbolic tilings
               
24 34 44 54 64 74 84 ...4
Paracompact uniform tilings in [∞,4] family
                                         
             
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
                                         
             
V∞4 V4.∞.∞ V(4.∞)2 V8.8.∞ V4 V43.∞ V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)
     
=    
                       
=    
           
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
       
Alternation duals
                                         
   
V(∞.4)4 V3.(3.∞)2 V(4.∞.4)2 V3.∞.(3.4)2 V∞ V∞.44 V3.3.4.3.∞
Paracompact uniform tilings in [∞,∞] family
     
=      
=     
     
=      
=     
     
=      
=     
     
=      
=     
     
=      
=     
     
=      
     
=      
             
{∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
Dual tilings
                                         
             
V∞ V∞.∞.∞ V(∞.∞)2 V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
Alternations
[1+,∞,∞]
(*∞∞2)
[∞+,∞]
(∞*∞)
[∞,1+,∞]
(*∞∞∞∞)
[∞,∞+]
(∞*∞)
[∞,∞,1+]
(*∞∞2)
[(∞,∞,2+)]
(2*∞∞)
[∞,∞]+
(2∞∞)
                                         
           
h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
Alternation duals
                                         
       
V(∞.∞) V(3.∞)3 V(∞.4)4 V(3.∞)3 V∞ V(4.∞.4)2 V3.3.∞.3.∞
Paracompact uniform tilings in [(∞,∞,∞)] family
                                  
                                         
             
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
r{∞,∞}
t(∞,∞,∞)
t{∞,∞}
Dual tilings
             
V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞.∞.∞
Alternations
[(1+,∞,∞,∞)]
(*∞∞∞∞)
[∞+,∞,∞)]
(∞*∞)
[∞,1+,∞,∞)]
(*∞∞∞∞)
[∞,∞+,∞)]
(∞*∞)
[(∞,∞,∞,1+)]
(*∞∞∞∞)
[(∞,∞,∞+)]
(∞*∞)
[∞,∞,∞)]+
(∞∞∞)
                                  
             
Alternation duals
           
V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V3.∞.3.∞.3.∞

See also edit

References edit

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links edit

  • Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
  • Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch

order, apeirogonal, tiling, this, article, technical, most, readers, understand, please, help, improve, make, understandable, experts, without, removing, technical, details, july, 2013, learn, when, remove, this, template, message, poincaré, disk, model, hyper. This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details July 2013 Learn how and when to remove this template message Order 4 apeirogonal tilingPoincare disk model of the hyperbolic planeType Hyperbolic regular tilingVertex configuration 4Schlafli symbol 4 r t t0 1 2 3 Wythoff symbol 4 22 Coxeter diagramSymmetry group 4 42 2 Dual Infinite order square tilingProperties Vertex transitive edge transitive face transitive edge transitiveIn geometry the order 4 apeirogonal tiling is a regular tiling of the hyperbolic plane It has Schlafli symbol of 4 Contents 1 Symmetry 2 Uniform colorings 3 Related polyhedra and tiling 4 See also 5 References 6 External linksSymmetry editThis tiling represents the mirror lines of 2 symmetry It dual to this tiling represents the fundamental domains of orbifold notation symmetry a square domain with four ideal vertices nbsp Uniform colorings editLike the Euclidean square tiling there are 9 uniform colorings for this tiling with 3 uniform colorings generated by triangle reflective domains A fourth can be constructed from an infinite square symmetry with 4 colors around a vertex The checker board r coloring defines the fundamental domains of 4 4 44 symmetry usually shown as black and white domains of reflective orientations 1 color 2 color 3 and 2 colors 4 3 and 2 colors 4 42 2 4 r 4 1 2 t0 2 r 1 2 t0 1 2 3 r 1 4 4 1 8 nbsp 1111 nbsp 1212 nbsp 1213 nbsp 1112 nbsp 1234 nbsp 1123 nbsp 1122 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp Related polyhedra and tiling editThis tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex starting with the octahedron with Schlafli symbol n 4 and Coxeter diagram nbsp nbsp nbsp nbsp nbsp with n progressing to infinity n42 symmetry mutation of regular tilings n 4 vteSpherical Euclidean Hyperbolic tilings nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 24 34 44 54 64 74 84 4Paracompact uniform tilings in 4 family vte nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 4 t 4 r 4 2t 4 t 4 2r 4 4 rr 4 tr 4 Dual figures nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp V 4 V4 V 4 2 V8 8 V4 V43 V4 8 Alternations 1 4 44 4 2 1 4 2 2 4 4 4 1 2 4 2 2 2 4 42 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp h 4 s 4 hr 4 s 4 h 4 hrr 4 s 4 nbsp nbsp nbsp nbsp Alternation duals nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp V 4 4 V3 3 2 V 4 4 2 V3 3 4 2 V V 44 V3 3 4 3 Paracompact uniform tilings in family vte nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp t r 2t t 2r rr tr Dual tilings nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp V V V 2 V V V4 4 V4 4 Alternations 1 2 1 1 2 2 2 2 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp h s hr s h2 hrr sr Alternation duals nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp V V 3 3 V 4 4 V 3 3 V V 4 4 2 V3 3 3 Paracompact uniform tilings in family vte nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp h r h2 h r h2 h r r t t Dual tilings nbsp nbsp nbsp nbsp nbsp nbsp nbsp V V V V V V V Alternations 1 1 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp Alternation duals nbsp nbsp nbsp nbsp nbsp nbsp V V 4 4 V V 4 4 V V 4 4 V3 3 3 See also edit nbsp Wikimedia Commons has media related to Order 4 apeirogonal tiling Tilings of regular polygons List of uniform planar tilings List of regular polytopesReferences editJohn H Conway Heidi Burgiel Chaim Goodman Strass The Symmetries of Things 2008 ISBN 978 1 56881 220 5 Chapter 19 The Hyperbolic Archimedean Tessellations Chapter 10 Regular honeycombs in hyperbolic space The Beauty of Geometry Twelve Essays Dover Publications 1999 ISBN 0 486 40919 8 LCCN 99035678 External links editWeisstein Eric W Hyperbolic tiling MathWorld Weisstein Eric W Poincare hyperbolic disk MathWorld Hyperbolic and Spherical Tiling Gallery KaleidoTile 3 Educational software to create spherical planar and hyperbolic tilings Hyperbolic Planar Tessellations Don Hatch Retrieved from https en wikipedia org w index php title Order 4 apeirogonal tiling amp oldid 890374655, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.