fbpx
Wikipedia

Order-3 apeirogonal tiling

Order-3 apeirogonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 3
Schläfli symbol {∞,3}
t{∞,∞}
t(∞,∞,∞)
Wythoff symbol 3 | ∞ 2
2 ∞ | ∞
∞ ∞ ∞ |
Coxeter diagram

Symmetry group [∞,3], (*∞32)
[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)
Dual Infinite-order triangular tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-3 apeirogonal tiling is a regular tiling of the hyperbolic plane. It is represented by the Schläfli symbol {∞,3}, having three regular apeirogons around each vertex. Each apeirogon is inscribed in a horocycle.

The order-2 apeirogonal tiling represents an infinite dihedron in the Euclidean plane as {∞,2}.

Images edit

Each apeirogon face is circumscribed by a horocycle, which looks like a circle in a Poincaré disk model, internally tangent to the projective circle boundary.

 

Uniform colorings edit

Like the Euclidean hexagonal tiling, there are 3 uniform colorings of the order-3 apeirogonal tiling, each from different reflective triangle group domains:

Regular Truncations
 
{∞,3}
     
 
t0,1{∞,∞}
     
 
t1,2{∞,∞}
     
 
t{∞[3]}
    
Hyperbolic triangle groups
 
[∞,3]
 
[∞,∞]
 
[(∞,∞,∞)]

Symmetry edit

The dual to this tiling represents the fundamental domains of [(∞,∞,∞)] (*∞∞∞) symmetry. There are 15 small index subgroups (7 unique) constructed from [(∞,∞,∞)] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled as ∞∞2 symmetry by adding a mirror bisecting the fundamental domain. Dividing a fundamental domain by 3 mirrors creates a ∞32 symmetry.

A larger subgroup is constructed [(∞,∞,∞*)], index 8, as (∞*∞) with gyration points removed, becomes (*∞).

Related polyhedra and tilings edit

This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbol {n,3}.

*n32 symmetry mutation of regular tilings: {n,3}
Spherical Euclidean Compact hyperb. Paraco. Noncompact hyperbolic
                       
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}
Paracompact uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
                                                                 
     
=     
     
=     
     
=     
            =
     or     
      =
     or     
     
=     
                   
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
                                                           
                 
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞
Paracompact uniform tilings in [∞,∞] family
     
=      
=     
     
=      
=     
     
=      
=     
     
=      
=     
     
=      
=     
     
=      
     
=      
             
{∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
Dual tilings
                                         
             
V∞ V∞.∞.∞ V(∞.∞)2 V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
Alternations
[1+,∞,∞]
(*∞∞2)
[∞+,∞]
(∞*∞)
[∞,1+,∞]
(*∞∞∞∞)
[∞,∞+]
(∞*∞)
[∞,∞,1+]
(*∞∞2)
[(∞,∞,2+)]
(2*∞∞)
[∞,∞]+
(2∞∞)
                                         
           
h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
Alternation duals
                                         
       
V(∞.∞) V(3.∞)3 V(∞.4)4 V(3.∞)3 V∞ V(4.∞.4)2 V3.3.∞.3.∞
Paracompact uniform tilings in [(∞,∞,∞)] family
                                  
                                         
             
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
r{∞,∞}
t(∞,∞,∞)
t{∞,∞}
Dual tilings
             
V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞.∞.∞
Alternations
[(1+,∞,∞,∞)]
(*∞∞∞∞)
[∞+,∞,∞)]
(∞*∞)
[∞,1+,∞,∞)]
(*∞∞∞∞)
[∞,∞+,∞)]
(∞*∞)
[(∞,∞,∞,1+)]
(*∞∞∞∞)
[(∞,∞,∞+)]
(∞*∞)
[∞,∞,∞)]+
(∞∞∞)
                                  
             
Alternation duals
           
V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V3.∞.3.∞.3.∞

See also edit

References edit

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links edit

order, apeirogonal, tiling, poincaré, disk, model, hyperbolic, plane, type, hyperbolic, regular, tiling, vertex, configuration, schläfli, symbol, wythoff, symbol, coxeter, diagram, symmetry, group, dual, infinite, order, triangular, tiling, properties, vertex,. Order 3 apeirogonal tiling Poincare disk model of the hyperbolic plane Type Hyperbolic regular tiling Vertex configuration 3 Schlafli symbol 3 t t Wythoff symbol 3 22 Coxeter diagram Symmetry group 3 32 2 Dual Infinite order triangular tiling Properties Vertex transitive edge transitive face transitive In geometry the order 3 apeirogonal tiling is a regular tiling of the hyperbolic plane It is represented by the Schlafli symbol 3 having three regular apeirogons around each vertex Each apeirogon is inscribed in a horocycle The order 2 apeirogonal tiling represents an infinite dihedron in the Euclidean plane as 2 Contents 1 Images 2 Uniform colorings 2 1 Symmetry 3 Related polyhedra and tilings 4 See also 5 References 6 External linksImages editEach apeirogon face is circumscribed by a horocycle which looks like a circle in a Poincare disk model internally tangent to the projective circle boundary nbsp Uniform colorings editLike the Euclidean hexagonal tiling there are 3 uniform colorings of the order 3 apeirogonal tiling each from different reflective triangle group domains Regular Truncations nbsp 3 nbsp nbsp nbsp nbsp nbsp nbsp t0 1 nbsp nbsp nbsp nbsp nbsp nbsp t1 2 nbsp nbsp nbsp nbsp nbsp nbsp t 3 nbsp nbsp nbsp nbsp Hyperbolic triangle groups nbsp 3 nbsp nbsp Symmetry edit The dual to this tiling represents the fundamental domains of symmetry There are 15 small index subgroups 7 unique constructed from by mirror removal and alternation Mirrors can be removed if its branch orders are all even and cuts neighboring branch orders in half Removing two mirrors leaves a half order gyration point where the removed mirrors met In these images fundamental domains are alternately colored black and white and mirrors exist on the boundaries between colors The symmetry can be doubled as 2 symmetry by adding a mirror bisecting the fundamental domain Dividing a fundamental domain by 3 mirrors creates a 32 symmetry A larger subgroup is constructed index 8 as with gyration points removed becomes Subgroups of Index 1 2 4 Diagram nbsp nbsp nbsp nbsp nbsp nbsp Coxeter nbsp nbsp nbsp nbsp 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 1 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp Orbifold Diagram nbsp nbsp nbsp nbsp nbsp Coxeter nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 1 1 nbsp nbsp nbsp nbsp 1 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp Orbifold Direct subgroups Index 2 4 8 Diagram nbsp nbsp nbsp nbsp nbsp Coxeter nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 1 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp Orbifold Radical subgroups Index Diagram nbsp nbsp nbsp nbsp nbsp nbsp Coxeter Orbifold Related polyhedra and tilings editThis tiling is topologically related as a part of sequence of regular polyhedra with Schlafli symbol n 3 n32 symmetry mutation of regular tilings n 3 vte Spherical Euclidean Compact hyperb Paraco Noncompact hyperbolic nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 2 3 3 3 4 3 5 3 6 3 7 3 8 3 3 12i 3 9i 3 6i 3 3i 3 Paracompact uniform tilings in 3 family vte Symmetry 3 32 3 32 1 3 33 3 3 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp or nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp or nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp 3 t 3 r 3 t 3 3 rr 3 tr 3 sr 3 h 3 h2 3 s 3 Uniform duals nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp V 3 V3 V 3 2 V6 6 V3 V4 3 4 V4 6 V3 3 3 3 V 3 3 V3 3 3 3 3 Paracompact uniform tilings in family vte nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp t r 2t t 2r rr tr Dual tilings nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp V V V 2 V V V4 4 V4 4 Alternations 1 2 1 1 2 2 2 2 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp h s hr s h2 hrr sr Alternation duals nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp V V 3 3 V 4 4 V 3 3 V V 4 4 2 V3 3 3 Paracompact uniform tilings in family vte nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp h r h2 h r h2 h r r t t Dual tilings nbsp nbsp nbsp nbsp nbsp nbsp nbsp V V V V V V V Alternations 1 1 1 nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp nbsp Alternation duals nbsp nbsp nbsp nbsp nbsp nbsp V V 4 4 V V 4 4 V V 4 4 V3 3 3 See also edit nbsp Wikimedia Commons has media related to Order 3 apeirogonal tiling Tilings of regular polygons List of uniform planar tilings List of regular polytopes Hexagonal tiling honeycomb similar 6 3 3 honeycomb in H3 References editJohn H Conway Heidi Burgiel Chaim Goodman Strauss The Symmetries of Things 2008 ISBN 978 1 56881 220 5 Chapter 19 The Hyperbolic Archimedean Tessellations Chapter 10 Regular honeycombs in hyperbolic space The Beauty of Geometry Twelve Essays Dover Publications 1999 ISBN 0 486 40919 8 LCCN 99035678 External links editWeisstein Eric W Hyperbolic tiling MathWorld Weisstein Eric W Poincare hyperbolic disk MathWorld Retrieved from https en wikipedia org w index php title Order 3 apeirogonal tiling amp oldid 1189601611, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.