fbpx
Wikipedia

Nyquist rate

In signal processing, the Nyquist rate, named after Harry Nyquist, is a value (in units of samples per second[1] or hertz, Hz) equal to twice the highest frequency (bandwidth) of a given function or signal. When the function is digitized at a higher sample rate (see § Critical frequency), the resulting discrete-time sequence is said to be free of the distortion known as aliasing. Conversely, for a given sample-rate the corresponding Nyquist frequency in Hz is one-half the sample-rate. Note that the Nyquist rate is a property of a continuous-time signal, whereas Nyquist frequency is a property of a discrete-time system.

Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth).

The term Nyquist rate is also used in a different context with units of symbols per second, which is actually the field in which Harry Nyquist was working. In that context it is an upper bound for the symbol rate across a bandwidth-limited baseband channel such as a telegraph line[2] or passband channel such as a limited radio frequency band or a frequency division multiplex channel.

Relative to sampling edit

 
Fig 2: Fourier transform of a bandlimited function (amplitude vs frequency)

When a continuous function,   is sampled at a constant rate,   samples/second, there is always an unlimited number of other continuous functions that fit the same set of samples. But only one of them is bandlimited to   cycles/second (hertz),[A] which means that its Fourier transform,   is   for all    The mathematical algorithms that are typically used to recreate a continuous function from samples create arbitrarily good approximations to this theoretical, but infinitely long, function. It follows that if the original function,   is bandlimited to   which is called the Nyquist criterion, then it is the one unique function the interpolation algorithms are approximating. In terms of a function's own bandwidth   as depicted here, the Nyquist criterion is often stated as    And   is called the Nyquist rate for functions with bandwidth   When the Nyquist criterion is not met  say,   a condition called aliasing occurs, which results in some inevitable differences between   and a reconstructed function that has less bandwidth. In most cases, the differences are viewed as distortion.

 
Fig 3: The top 2 graphs depict Fourier transforms of 2 different functions that produce the same results when sampled at a particular rate. The baseband function is sampled faster than its Nyquist rate, and the bandpass function is undersampled, effectively converting it to baseband. The lower graphs indicate how identical spectral results are created by the aliases of the sampling process.

Intentional aliasing edit

Figure 3 depicts a type of function called baseband or lowpass, because its positive-frequency range of significant energy is [0, B). When instead, the frequency range is (AA+B), for some A > B, it is called bandpass, and a common desire (for various reasons) is to convert it to baseband. One way to do that is frequency-mixing (heterodyne) the bandpass function down to the frequency range (0, B). One of the possible reasons is to reduce the Nyquist rate for more efficient storage. And it turns out that one can directly achieve the same result by sampling the bandpass function at a sub-Nyquist sample-rate that is the smallest integer-sub-multiple of frequency A that meets the baseband Nyquist criterion:  fs > 2B. For a more general discussion, see bandpass sampling.

Relative to signaling edit

Long before Harry Nyquist had his name associated with sampling, the term Nyquist rate was used differently, with a meaning closer to what Nyquist actually studied. Quoting Harold S. Black's 1953 book Modulation Theory, in the section Nyquist Interval of the opening chapter Historical Background:

"If the essential frequency range is limited to B cycles per second, 2B was given by Nyquist as the maximum number of code elements per second that could be unambiguously resolved, assuming the peak interference is less than half a quantum step. This rate is generally referred to as signaling at the Nyquist rate and 1/(2B) has been termed a Nyquist interval." (bold added for emphasis; italics from the original)

According to the OED, Black's statement regarding 2B may be the origin of the term Nyquist rate.[3]

Nyquist's famous 1928 paper was a study on how many pulses (code elements) could be transmitted per second, and recovered, through a channel of limited bandwidth.[4]Signaling at the Nyquist rate meant putting as many code pulses through a telegraph channel as its bandwidth would allow. Shannon used Nyquist's approach when he proved the sampling theorem in 1948, but Nyquist did not work on sampling per se.

Black's later chapter on "The Sampling Principle" does give Nyquist some of the credit for some relevant math:

"Nyquist (1928) pointed out that, if the function is substantially limited to the time interval T, 2BT values are sufficient to specify the function, basing his conclusions on a Fourier series representation of the function over the time interval T."

See also edit

Notes edit

  1. ^ The factor of   has the units cycles/sample (see Sampling and Sampling theorem).

References edit

  1. ^ Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p. 140. ISBN 0-13-754920-2. T is the sampling period, and its reciprocal, fs=1/T, is the sampling frequency, in samples per second.
  2. ^ Roger L. Freeman (2004). Telecommunication System Engineering. John Wiley & Sons. p. 399. ISBN 0-471-45133-9.
  3. ^ Black, H. S., Modulation Theory, v. 65, 1953, cited in OED
  4. ^ Nyquist, Harry. "Certain topics in telegraph transmission theory", Trans. AIEE, vol. 47, pp. 617–644, Apr. 1928 .

nyquist, rate, confused, with, nyquist, frequency, signal, processing, named, after, harry, nyquist, value, units, samples, second, hertz, equal, twice, highest, frequency, bandwidth, given, function, signal, when, function, digitized, higher, sample, rate, cr. Not to be confused with Nyquist frequency In signal processing the Nyquist rate named after Harry Nyquist is a value in units of samples per second 1 or hertz Hz equal to twice the highest frequency bandwidth of a given function or signal When the function is digitized at a higher sample rate see Critical frequency the resulting discrete time sequence is said to be free of the distortion known as aliasing Conversely for a given sample rate the corresponding Nyquist frequency in Hz is one half the sample rate Note that the Nyquist rate is a property of a continuous time signal whereas Nyquist frequency is a property of a discrete time system Fig 1 Typical example of Nyquist frequency and rate They are rarely equal because that would require over sampling by a factor of 2 i e 4 times the bandwidth The term Nyquist rate is also used in a different context with units of symbols per second which is actually the field in which Harry Nyquist was working In that context it is an upper bound for the symbol rate across a bandwidth limited baseband channel such as a telegraph line 2 or passband channel such as a limited radio frequency band or a frequency division multiplex channel Contents 1 Relative to sampling 1 1 Intentional aliasing 2 Relative to signaling 3 See also 4 Notes 5 ReferencesRelative to sampling edit nbsp Fig 2 Fourier transform of a bandlimited function amplitude vs frequency When a continuous function x t displaystyle x t nbsp is sampled at a constant rate f s displaystyle f s nbsp samples second there is always an unlimited number of other continuous functions that fit the same set of samples But only one of them is bandlimited to 1 2 f s displaystyle tfrac 1 2 f s nbsp cycles second hertz A which means that its Fourier transform X f displaystyle X f nbsp is 0 displaystyle 0 nbsp for all f 1 2 f s displaystyle f geq tfrac 1 2 f s nbsp The mathematical algorithms that are typically used to recreate a continuous function from samples create arbitrarily good approximations to this theoretical but infinitely long function It follows that if the original function x t displaystyle x t nbsp is bandlimited to 1 2 f s displaystyle tfrac 1 2 f s nbsp which is called the Nyquist criterion then it is the one unique function the interpolation algorithms are approximating In terms of a function s own bandwidth B displaystyle B nbsp as depicted here the Nyquist criterion is often stated as f s gt 2 B displaystyle f s gt 2B nbsp And 2 B displaystyle 2B nbsp is called the Nyquist rate for functions with bandwidth B displaystyle B nbsp When the Nyquist criterion is not met displaystyle nbsp say B gt 1 2 f s displaystyle B gt tfrac 1 2 f s nbsp a condition called aliasing occurs which results in some inevitable differences between x t displaystyle x t nbsp and a reconstructed function that has less bandwidth In most cases the differences are viewed as distortion nbsp Fig 3 The top 2 graphs depict Fourier transforms of 2 different functions that produce the same results when sampled at a particular rate The baseband function is sampled faster than its Nyquist rate and the bandpass function is undersampled effectively converting it to baseband The lower graphs indicate how identical spectral results are created by the aliases of the sampling process Intentional aliasing edit Main article Undersampling Figure 3 depicts a type of function called baseband or lowpass because its positive frequency range of significant energy is 0 B When instead the frequency range is A A B for some A gt B it is called bandpass and a common desire for various reasons is to convert it to baseband One way to do that is frequency mixing heterodyne the bandpass function down to the frequency range 0 B One of the possible reasons is to reduce the Nyquist rate for more efficient storage And it turns out that one can directly achieve the same result by sampling the bandpass function at a sub Nyquist sample rate that is the smallest integer sub multiple of frequency A that meets the baseband Nyquist criterion fs gt 2B For a more general discussion see bandpass sampling Relative to signaling editLong before Harry Nyquist had his name associated with sampling the term Nyquist rate was used differently with a meaning closer to what Nyquist actually studied Quoting Harold S Black s 1953 book Modulation Theory in the section Nyquist Interval of the opening chapter Historical Background If the essential frequency range is limited to B cycles per second 2B was given by Nyquist as the maximum number of code elements per second that could be unambiguously resolved assuming the peak interference is less than half a quantum step This rate is generally referred to as signaling at the Nyquist rate and 1 2B has been termed a Nyquist interval bold added for emphasis italics from the original According to the OED Black s statement regarding 2B may be the origin of the term Nyquist rate 3 Nyquist s famous 1928 paper was a study on how many pulses code elements could be transmitted per second and recovered through a channel of limited bandwidth 4 Signaling at the Nyquist rate meant putting as many code pulses through a telegraph channel as its bandwidth would allow Shannon used Nyquist s approach when he proved the sampling theorem in 1948 but Nyquist did not work on sampling per se Black s later chapter on The Sampling Principle does give Nyquist some of the credit for some relevant math Nyquist 1928 pointed out that if the function is substantially limited to the time interval T 2BT values are sufficient to specify the function basing his conclusions on a Fourier series representation of the function over the time interval T See also editNyquist frequency Nyquist ISI criterion Nyquist Shannon sampling theorem Sampling signal processing Notes edit The factor of 1 2 displaystyle tfrac 1 2 nbsp has the units cycles sample see Sampling and Sampling theorem References edit Oppenheim Alan V Schafer Ronald W Buck John R 1999 Discrete time signal processing 2nd ed Upper Saddle River N J Prentice Hall p 140 ISBN 0 13 754920 2 T is the sampling period and its reciprocal fs 1 T is the sampling frequency in samples per second Roger L Freeman 2004 Telecommunication System Engineering John Wiley amp Sons p 399 ISBN 0 471 45133 9 Black H S Modulation Theory v 65 1953 cited in OED Nyquist Harry Certain topics in telegraph transmission theory Trans AIEE vol 47 pp 617 644 Apr 1928 Reprint as classic paper in Proc IEEE Vol 90 No 2 Feb 2002 Retrieved from https en wikipedia org w index php title Nyquist rate amp oldid 1182211039, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.