fbpx
Wikipedia

Bandlimiting

Bandlimiting is the limiting of a signal's frequency domain representation or spectral density to zero above a certain finite frequency.

Spectrum of a bandlimited baseband signal as a function of frequency

A band-limited signal is one whose Fourier transform or spectral density has bounded support.

A bandlimited signal may be either random (stochastic) or non-random (deterministic).

In general, infinitely many terms are required in a continuous Fourier series representation of a signal, but if a finite number of Fourier series terms can be calculated from that signal, that signal is considered to be band-limited.

Sampling bandlimited signals

A bandlimited signal can be fully reconstructed from its samples, provided that the sampling rate exceeds twice the maximum frequency in the bandlimited signal. This minimum sampling rate is called the Nyquist rate. This result, usually attributed to Nyquist and Shannon, is known as the Nyquist–Shannon sampling theorem.

An example of a simple deterministic bandlimited signal is a sinusoid of the form  . If this signal is sampled at a rate   so that we have the samples  , for all integers  , we can recover   completely from these samples. Similarly, sums of sinusoids with different frequencies and phases are also bandlimited to the highest of their frequencies.

The signal whose Fourier transform is shown in the figure is also bandlimited. Suppose   is a signal whose Fourier transform is  , the magnitude of which is shown in the figure. The highest frequency component in   is  . As a result, the Nyquist rate is

 

or twice the highest frequency component in the signal, as shown in the figure. According to the sampling theorem, it is possible to reconstruct   completely and exactly using the samples

  for all integers   and  

as long as

 

The reconstruction of a signal from its samples can be accomplished using the Whittaker–Shannon interpolation formula.

Bandlimited versus timelimited

A bandlimited signal cannot be also timelimited. More precisely, a function and its Fourier transform cannot both have finite support unless it is identically zero. This fact can be proved using complex analysis and properties of the Fourier transform.

Proof: Assume that a signal f(t) which has finite support in both domains and is not identically zero exists. Let's sample it faster than the Nyquist frequency, and compute respective Fourier transform   and discrete-time Fourier transform  . According to properties of DTFT,  , where   is the frequency used for discretization. If f is bandlimited,   is zero outside of a certain interval, so with large enough  ,   will be zero in some intervals too, since individual supports of   in sum of   won't overlap. According to DTFT definition,   is a sum of trigonometric functions, and since f(t) is time-limited, this sum will be finite, so   will be actually a trigonometric polynomial. All trigonometric polynomials are holomorphic on a whole complex plane, and there is a simple theorem in complex analysis that says that all zeros of non-constant holomorphic function are isolated. But this contradicts our earlier finding that   has intervals full of zeros, because points in such intervals are not isolated. Thus the only time- and bandwidth-limited signal is a constant zero.

One important consequence of this result is that it is impossible to generate a truly bandlimited signal in any real-world situation, because a bandlimited signal would require infinite time to transmit. All real-world signals are, by necessity, timelimited, which means that they cannot be bandlimited. Nevertheless, the concept of a bandlimited signal is a useful idealization for theoretical and analytical purposes. Furthermore, it is possible to approximate a bandlimited signal to any arbitrary level of accuracy desired.

A similar relationship between duration in time and bandwidth in frequency also forms the mathematical basis for the uncertainty principle in quantum mechanics. In that setting, the "width" of the time domain and frequency domain functions are evaluated with a variance-like measure. Quantitatively, the uncertainty principle imposes the following condition on any real waveform:

 

where

  is a (suitably chosen) measure of bandwidth (in hertz), and
  is a (suitably chosen) measure of time duration (in seconds).

In time–frequency analysis, these limits are known as the Gabor limit, and are interpreted as a limit on the simultaneous time–frequency resolution one may achieve.

References

  • William McC. Siebert (1986). Circuits, Signals, and Systems. Cambridge, MA: MIT Press.

bandlimiting, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, technical, most, readers, understand, please, help, improve, make, understandable, experts,. This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details January 2013 Learn how and when to remove this template message This article or section may be written in a style that is too abstract to be readily understandable by general audiences Please improve it by defining technical terminology and by adding examples June 2015 This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Bandlimiting news newspapers books scholar JSTOR January 2011 Learn how and when to remove this template message This article includes a list of references related reading or external links but its sources remain unclear because it lacks inline citations Please help to improve this article by introducing more precise citations January 2011 Learn how and when to remove this template message Learn how and when to remove this template message Bandlimiting is the limiting of a signal s frequency domain representation or spectral density to zero above a certain finite frequency Spectrum of a bandlimited baseband signal as a function of frequency A band limited signal is one whose Fourier transform or spectral density has bounded support A bandlimited signal may be either random stochastic or non random deterministic In general infinitely many terms are required in a continuous Fourier series representation of a signal but if a finite number of Fourier series terms can be calculated from that signal that signal is considered to be band limited Sampling bandlimited signals EditA bandlimited signal can be fully reconstructed from its samples provided that the sampling rate exceeds twice the maximum frequency in the bandlimited signal This minimum sampling rate is called the Nyquist rate This result usually attributed to Nyquist and Shannon is known as the Nyquist Shannon sampling theorem An example of a simple deterministic bandlimited signal is a sinusoid of the form x t sin 2 p f t 8 displaystyle x t sin 2 pi ft theta If this signal is sampled at a rate f s 1 T gt 2 f displaystyle f s frac 1 T gt 2f so that we have the samples x n T displaystyle x nT for all integers n displaystyle n we can recover x t displaystyle x t completely from these samples Similarly sums of sinusoids with different frequencies and phases are also bandlimited to the highest of their frequencies The signal whose Fourier transform is shown in the figure is also bandlimited Suppose x t displaystyle x t is a signal whose Fourier transform is X f displaystyle X f the magnitude of which is shown in the figure The highest frequency component in x t displaystyle x t is B displaystyle B As a result the Nyquist rate is R N 2 B displaystyle R N 2B or twice the highest frequency component in the signal as shown in the figure According to the sampling theorem it is possible to reconstruct x t displaystyle x t completely and exactly using the samples x n d e f x n T x n f s displaystyle x n stackrel mathrm def x nT x left n over f s right for all integers n displaystyle n and T d e f 1 f s displaystyle T stackrel mathrm def 1 over f s as long as f s gt R N displaystyle f s gt R N The reconstruction of a signal from its samples can be accomplished using the Whittaker Shannon interpolation formula Bandlimited versus timelimited EditMain article Fourier transform Uncertainty principle A bandlimited signal cannot be also timelimited More precisely a function and its Fourier transform cannot both have finite support unless it is identically zero This fact can be proved using complex analysis and properties of the Fourier transform Proof Assume that a signal f t which has finite support in both domains and is not identically zero exists Let s sample it faster than the Nyquist frequency and compute respective Fourier transform F T f F 1 w displaystyle FT f F 1 w and discrete time Fourier transform D T F T f F 2 w displaystyle DTFT f F 2 w According to properties of DTFT F 2 w n F 1 w n f x displaystyle F 2 w sum n infty infty F 1 w nf x where f x displaystyle f x is the frequency used for discretization If f is bandlimited F 1 displaystyle F 1 is zero outside of a certain interval so with large enough f x displaystyle f x F 2 displaystyle F 2 will be zero in some intervals too since individual supports of F 1 displaystyle F 1 in sum of F 2 displaystyle F 2 won t overlap According to DTFT definition F 2 displaystyle F 2 is a sum of trigonometric functions and since f t is time limited this sum will be finite so F 2 displaystyle F 2 will be actually a trigonometric polynomial All trigonometric polynomials are holomorphic on a whole complex plane and there is a simple theorem in complex analysis that says that all zeros of non constant holomorphic function are isolated But this contradicts our earlier finding that F 2 displaystyle F 2 has intervals full of zeros because points in such intervals are not isolated Thus the only time and bandwidth limited signal is a constant zero One important consequence of this result is that it is impossible to generate a truly bandlimited signal in any real world situation because a bandlimited signal would require infinite time to transmit All real world signals are by necessity timelimited which means that they cannot be bandlimited Nevertheless the concept of a bandlimited signal is a useful idealization for theoretical and analytical purposes Furthermore it is possible to approximate a bandlimited signal to any arbitrary level of accuracy desired A similar relationship between duration in time and bandwidth in frequency also forms the mathematical basis for the uncertainty principle in quantum mechanics In that setting the width of the time domain and frequency domain functions are evaluated with a variance like measure Quantitatively the uncertainty principle imposes the following condition on any real waveform W B T D 1 displaystyle W B T D geq 1 where W B displaystyle W B is a suitably chosen measure of bandwidth in hertz andT D displaystyle T D is a suitably chosen measure of time duration in seconds In time frequency analysis these limits are known as the Gabor limit and are interpreted as a limit on the simultaneous time frequency resolution one may achieve References EditWilliam McC Siebert 1986 Circuits Signals and Systems Cambridge MA MIT Press Retrieved from https en wikipedia org w index php title Bandlimiting amp oldid 1046299119, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.