fbpx
Wikipedia

Radix

In a positional numeral system, the radix (pl.: radices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.

In any standard positional numeral system, a number is conventionally written as (x)y with x as the string of digits and y as its base, although for base ten the subscript is usually assumed (and omitted, together with the pair of parentheses), as it is the most common way to express value. For example, (100)10 is equivalent to 100 (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four.[1]

Etymology edit

Radix is a Latin word for "root". Root can be considered a synonym for base, in the arithmetical sense.

In numeral systems edit

Generally, in a system with radix b (b > 1), a string of digits d1 ... dn denotes the number d1bn−1 + d2bn−2 + … + dnb0, where 0 ≤ di < b.[1] In contrast to decimal, or radix 10, which has a ones' place, tens' place, hundreds' place, and so on, radix b would have a ones' place, then a b1s' place, a b2s' place, etc.[2]

For example, consider the system with radix 12. In this system, a string of digits such as 59A (where the letter "A" represents the value of ten) would represent the value 5 × 122 + 9 × 121 + 10 × 120 = 838 in base 10.

Commonly used numeral systems include:

Base/radix Name Description
2 Binary numeral system Used internally by nearly all computers. The two digits are "0" and "1", expressed from switches displaying OFF and ON, respectively. Used in most electric counters.
8 Octal system Used occasionally in computing. The eight digits are "0"–"7" and represent 3 bits (23).
10 Decimal system Used by humans in the vast majority of cultures. Its ten digits are "0"–"9". Used in most mechanical counters.
12 Duodecimal (dozenal) system Sometimes advocated due to divisibility by 2, 3, 4, and 6. It was traditionally used as part of quantities expressed in dozens and grosses.
16 Hexadecimal system Often used in computing as a more compact representation of binary (1 hex digit per 4 bits). The sixteen digits are "0"–"9" followed by "A"–"F" or "a"–"f".
20 Vigesimal system Traditional numeral system in several cultures, still used by some for counting. Historically also known as the score system in English, now most famous in the phrase "four score and seven years ago" in the Gettysburg Address.
36 Base36 Base36 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-36 representation. The choice of 36 is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z (the ISO basic Latin alphabet). Each base36 digit needs less than 6 bits of information to be represented.
60 Sexagesimal system Originally used in modified form in ancient Sumer and passed to the Babylonians.[3] Used today as the basis of modern circular coordinate system (degrees, minutes, and seconds) and time measuring (minutes, and seconds) by analogy to the rotation of the Earth.

The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 7816 is binary 11110002. Similarly, every octal digit corresponds to a unique sequence of three binary digits, since eight is the cube of two.

This representation is unique. Let b be a positive integer greater than 1. Then every positive integer a can be expressed uniquely in the form

 

where m is a nonnegative integer and the r's are integers such that

0 < rm < b and 0 ≤ ri < b for i = 0, 1, ... , m − 1.[4]

Radices are usually natural numbers. However, other positional systems are possible, for example, golden ratio base (whose radix is a non-integer algebraic number),[5] and negative base (whose radix is negative).[6] A negative base allows the representation of negative numbers without the use of a minus sign. For example, let b = −10. Then a string of digits such as 19 denotes the (decimal) number 1 × (−10)1 + 9 × (−10)0 = −1.

See also edit

Notes edit

  1. ^ a b Mano, M. Morris; Kime, Charles (2014). Logic and Computer Design Fundamentals (4th ed.). Harlow: Pearson. pp. 13–14. ISBN 978-1-292-02468-4.
  2. ^ "Binary". experimonkey.com. Retrieved 2023-05-14.
  3. ^ Bertman, Stephen (2005). Handbook to Life in Ancient Mesopotamia (Paperback ed.). Oxford [u.a.]: Oxford Univ. Press. p. 257. ISBN 978-019-518364-1.
  4. ^ McCoy (1968, p. 75)
  5. ^ Bergman, George (1957). "A Number System with an Irrational Base". Mathematics Magazine. 31 (2): 98–110. doi:10.2307/3029218. JSTOR 3029218.
  6. ^ William J. Gilbert (September 1979). "Negative Based Number Systems" (PDF). Mathematics Magazine. 52 (4): 240–244. doi:10.1080/0025570X.1979.11976792. Retrieved 7 February 2015.

References edit

  • McCoy, Neal H. (1968), Introduction To Modern Algebra, Revised Edition, Boston: Allyn and Bacon, LCCN 68015225

External links edit

  • MathWorld entry on base

radix, other, uses, disambiguation, positional, numeral, system, radix, radices, base, number, unique, digits, including, digit, zero, used, represent, numbers, example, decimal, system, most, common, system, today, radix, because, uses, digits, from, through,. For other uses see Radix disambiguation In a positional numeral system the radix pl radices or base is the number of unique digits including the digit zero used to represent numbers For example for the decimal system the most common system in use today the radix is ten because it uses the ten digits from 0 through 9 In any standard positional numeral system a number is conventionally written as x y with x as the string of digits and y as its base although for base ten the subscript is usually assumed and omitted together with the pair of parentheses as it is the most common way to express value For example 100 10 is equivalent to 100 the decimal system is implied in the latter and represents the number one hundred while 100 2 in the binary system with base 2 represents the number four 1 Contents 1 Etymology 2 In numeral systems 3 See also 4 Notes 5 References 6 External linksEtymology editRadix is a Latin word for root Root can be considered a synonym for base in the arithmetical sense In numeral systems editGenerally in a system with radix b b gt 1 a string of digits d1 dn denotes the number d1bn 1 d2bn 2 dnb0 where 0 di lt b 1 In contrast to decimal or radix 10 which has a ones place tens place hundreds place and so on radix b would have a ones place then a b1s place a b2s place etc 2 For example consider the system with radix 12 In this system a string of digits such as 59A where the letter A represents the value of ten would represent the value 5 122 9 121 10 120 838 in base 10 Commonly used numeral systems include Base radix Name Description 2 Binary numeral system Used internally by nearly all computers The two digits are 0 and 1 expressed from switches displaying OFF and ON respectively Used in most electric counters 8 Octal system Used occasionally in computing The eight digits are 0 7 and represent 3 bits 23 10 Decimal system Used by humans in the vast majority of cultures Its ten digits are 0 9 Used in most mechanical counters 12 Duodecimal dozenal system Sometimes advocated due to divisibility by 2 3 4 and 6 It was traditionally used as part of quantities expressed in dozens and grosses 16 Hexadecimal system Often used in computing as a more compact representation of binary 1 hex digit per 4 bits The sixteen digits are 0 9 followed by A F or a f 20 Vigesimal system Traditional numeral system in several cultures still used by some for counting Historically also known as the score system in English now most famous in the phrase four score and seven years ago in the Gettysburg Address 36 Base36 Base36 is a binary to text encoding scheme that represents binary data in an ASCII string format by translating it into a radix 36 representation The choice of 36 is convenient in that the digits can be represented using the Arabic numerals 0 9 and the Latin letters A Z the ISO basic Latin alphabet Each base36 digit needs less than 6 bits of information to be represented 60 Sexagesimal system Originally used in modified form in ancient Sumer and passed to the Babylonians 3 Used today as the basis of modern circular coordinate system degrees minutes and seconds and time measuring minutes and seconds by analogy to the rotation of the Earth For a larger list see List of numeral systems The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary Every hexadecimal digit corresponds to a sequence of four binary digits since sixteen is the fourth power of two for example hexadecimal 7816 is binary 1111000 2 Similarly every octal digit corresponds to a unique sequence of three binary digits since eight is the cube of two This representation is unique Let b be a positive integer greater than 1 Then every positive integer a can be expressed uniquely in the form a r m b m r m 1 b m 1 r 1 b r 0 displaystyle a r m b m r m 1 b m 1 dotsb r 1 b r 0 nbsp where m is a nonnegative integer and the r s are integers such that 0 lt rm lt b and 0 ri lt b for i 0 1 m 1 4 Radices are usually natural numbers However other positional systems are possible for example golden ratio base whose radix is a non integer algebraic number 5 and negative base whose radix is negative 6 A negative base allows the representation of negative numbers without the use of a minus sign For example let b 10 Then a string of digits such as 19 denotes the decimal number 1 10 1 9 10 0 1 See also editBase exponentiation Mixed radix Polynomial Radix economy Radix sort Non standard positional numeral systemsNotes edit a b Mano M Morris Kime Charles 2014 Logic and Computer Design Fundamentals 4th ed Harlow Pearson pp 13 14 ISBN 978 1 292 02468 4 Binary experimonkey com Retrieved 2023 05 14 Bertman Stephen 2005 Handbook to Life in Ancient Mesopotamia Paperback ed Oxford u a Oxford Univ Press p 257 ISBN 978 019 518364 1 McCoy 1968 p 75 Bergman George 1957 A Number System with an Irrational Base Mathematics Magazine 31 2 98 110 doi 10 2307 3029218 JSTOR 3029218 William J Gilbert September 1979 Negative Based Number Systems PDF Mathematics Magazine 52 4 240 244 doi 10 1080 0025570X 1979 11976792 Retrieved 7 February 2015 References editMcCoy Neal H 1968 Introduction To Modern Algebra Revised Edition Boston Allyn and Bacon LCCN 68015225External links edit nbsp Look up radix in Wiktionary the free dictionary MathWorld entry on base Retrieved from https en wikipedia org w index php title Radix amp oldid 1225205111, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.