fbpx
Wikipedia

Noncototient

In number theory, a noncototient is a positive integer n that cannot be expressed as the difference between a positive integer m and the number of coprime integers below it. That is, mφ(m) = n, where φ stands for Euler's totient function, has no solution for m. The cototient of n is defined as nφ(n), so a noncototient is a number that is never a cototient.

It is conjectured that all noncototients are even. This follows from a modified form of the slightly stronger version of the Goldbach conjecture: if the even number n can be represented as a sum of two distinct primes p and q, then

It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 5 is a noncototient. The remaining odd numbers are covered by the observations 1 = 2 – φ(2), 3 = 9 – φ(9), and 5 = 25 – φ(25).

For even numbers, it can be shown

Thus, all even numbers n such that n + 2 can be written as (p + 1)(q + 1) with p, q primes are cototients.

The first few noncototients are

10, 26, 34, 50, 52, 58, 86, 100, 116, 122, 130, 134, 146, 154, 170, 172, 186, 202, 206, 218, 222, 232, 244, 260, 266, 268, 274, 290, 292, 298, 310, 326, 340, 344, 346, 362, 366, 372, 386, 394, 404, 412, 436, 466, 470, 474, 482, 490, ... (sequence A005278 in the OEIS)

The cototient of n are

0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, ... (sequence A051953 in the OEIS)

Least k such that the cototient of k is n are (start with n = 0, 0 if no such k exists)

1, 2, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36, 69, 0, 63, 52, 161, 42, 87, 48, 93, 0, 75, 54, 217, 74, 99, 76, 185, 82, 123, 60, 117, 66, 215, 72, 141, 0, ... (sequence A063507 in the OEIS)

Greatest k such that the cototient of k is n are (start with n = 0, 0 if no such k exists)

1, ∞, 4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, ... (sequence A063748 in the OEIS)

Number of ks such that kφ(k) is n are (start with n = 0)

1, ∞, 1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, ... (sequence A063740 in the OEIS)

Erdős (1913–1996) and Sierpinski (1882–1969) asked whether there exist infinitely many noncototients. This was finally answered in the affirmative by Browkin and Schinzel (1995), who showed every member of the infinite family is an example (See Riesel number). Since then other infinite families, of roughly the same form, have been given by Flammenkamp and Luca (2000).

Cototients of n from 1-144
n Numbers k such that kφ(k) = n
1 all primes
2 4
3 9
4 6, 8
5 25
6 10
7 15, 49
8 12, 14, 16
9 21, 27
10
11 35, 121
12 18, 20, 22
13 33, 169
14 26
15 39, 55
16 24, 28, 32
17 65, 77, 289
18 34
19 51, 91, 361
20 38
21 45, 57, 85
22 30
23 95, 119, 143, 529
24 36, 40, 44, 46
25 69, 125, 133
26
27 63, 81, 115, 187
28 52
29 161, 209, 221, 841
30 42, 50, 58
31 87, 247, 961
32 48, 56, 62, 64
33 93, 145, 253
34
35 75, 155, 203, 299, 323
36 54, 68
37 217, 1369
38 74
39 99, 111, 319, 391
40 76
41 185, 341, 377, 437, 1681
42 82
43 123, 259, 403, 1849
44 60, 86
45 117, 129, 205, 493
46 66, 70
47 215, 287, 407, 527, 551, 2209
48 72, 80, 88, 92, 94
49 141, 301, 343, 481, 589
50
51 235, 451, 667
52
53 329, 473, 533, 629, 713, 2809
54 78, 106
55 159, 175, 559, 703
56 98, 104
57 105, 153, 265, 517, 697
58
59 371, 611, 731, 779, 851, 899, 3481
60 84, 100, 116, 118
61 177, 817, 3721
62 122
63 135, 147, 171, 183, 295, 583, 799, 943
64 96, 112, 124, 128
65 305, 413, 689, 893, 989, 1073
66 90
67 427, 1147, 4489
68 134
69 201, 649, 901, 1081, 1189
70 102, 110
71 335, 671, 767, 1007, 1247, 1271, 5041
72 108, 136, 142
73 213, 469, 793, 1333, 5329
74 146
75 207, 219, 275, 355, 1003, 1219, 1363
76 148
77 245, 365, 497, 737, 1037, 1121, 1457, 1517
78 114
79 511, 871, 1159, 1591, 6241
80 152, 158
81 189, 237, 243, 781, 1357, 1537
82 130
83 395, 803, 923, 1139, 1403, 1643, 1739, 1763, 6889
84 164, 166
85 165, 249, 325, 553, 949, 1273
86
87 415, 1207, 1711, 1927
88 120, 172
89 581, 869, 1241, 1349, 1541, 1769, 1829, 1961, 2021, 7921
90 126, 178
91 267, 1027, 1387, 1891
92 132, 140
93 261, 445, 913, 1633, 2173
94 138, 154
95 623, 1079, 1343, 1679, 1943, 2183, 2279
96 144, 160, 176, 184, 188
97 1501, 2077, 2257, 9409
98 194
99 195, 279, 291, 979, 1411, 2059, 2419, 2491
100
101 485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201
102 202
103 303, 679, 2263, 2479, 2623, 10609
104 206
105 225, 309, 425, 505, 1513, 1909, 2773
106 170
107 515, 707, 1067, 1691, 2291, 2627, 2747, 2867, 11449
108 156, 162, 212, 214
109 321, 721, 1261, 2449, 2701, 2881, 11881
110 150, 182, 218
111 231, 327, 535, 1111, 2047, 2407, 2911, 3127
112 196, 208
113 545, 749, 1133, 1313, 1649, 2573, 2993, 3053, 3149, 3233, 12769
114 226
115 339, 475, 763, 1339, 1843, 2923, 3139
116
117 297, 333, 565, 1177, 1717, 2581, 3337
118 174, 190
119 539, 791, 1199, 1391, 1751, 1919, 2231, 2759, 3071, 3239, 3431, 3551, 3599
120 168, 200, 232, 236
121 1331, 1417, 1957, 3397
122
123 1243, 1819, 2323, 3403, 3763
124 244
125 625, 1469, 1853, 2033, 2369, 2813, 3293, 3569, 3713, 3869, 3953
126 186
127 255, 2071, 3007, 4087, 16129
128 192, 224, 248, 254, 256
129 273, 369, 381, 1921, 2461, 2929, 3649, 3901, 4189
130
131 635, 2147, 2507, 2987, 3131, 3827, 4187, 4307, 4331, 17161
132 180, 242, 262
133 393, 637, 889, 3193, 3589, 4453
134
135 351, 387, 575, 655, 2599, 3103, 4183, 4399
136 268
137 917, 1397, 3161, 3317, 3737, 3977, 4661, 4757, 18769
138 198, 274
139 411, 1651, 3379, 3811, 4171, 4819, 4891, 19321
140 204, 220, 278
141 285, 417, 685, 1441, 3277, 4141, 4717, 4897
142 230, 238
143 363, 695, 959, 1703, 2159, 3503, 3959, 4223, 4343, 4559, 5063, 5183
144 216, 272, 284

References edit

  • Browkin, J.; Schinzel, A. (1995). "On integers not of the form n-φ(n)". Colloq. Math. 68 (1): 55–58. doi:10.4064/cm-68-1-55-58. Zbl 0820.11003.
  • Flammenkamp, A.; Luca, F. (2000). "Infinite families of noncototients". Colloq. Math. 86 (1): 37–41. doi:10.4064/cm-86-1-37-41. Zbl 0965.11003.
  • Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. pp. 138–142. ISBN 978-0-387-20860-2. Zbl 1058.11001.

External links edit

  • Noncototient definition from MathWorld

noncototient, number, theory, noncototient, positive, integer, that, cannot, expressed, difference, between, positive, integer, number, coprime, integers, below, that, where, stands, euler, totient, function, solution, cototient, defined, noncototient, number,. In number theory a noncototient is a positive integer n that cannot be expressed as the difference between a positive integer m and the number of coprime integers below it That is m f m n where f stands for Euler s totient function has no solution for m The cototient of n is defined as n f n so a noncototient is a number that is never a cototient It is conjectured that all noncototients are even This follows from a modified form of the slightly stronger version of the Goldbach conjecture if the even number n can be represented as a sum of two distinct primes p and q thenp q f p q p q p 1 q 1 p q 1 n 1 displaystyle begin aligned pq varphi pq amp pq p 1 q 1 amp p q 1 amp n 1 end aligned It is expected that every even number larger than 6 is a sum of two distinct primes so probably no odd number larger than 5 is a noncototient The remaining odd numbers are covered by the observations 1 2 f 2 3 9 f 9 and 5 25 f 25 For even numbers it can be shown2 p q f 2 p q 2 p q p 1 q 1 p q p q 1 p 1 q 1 2 displaystyle begin aligned 2pq varphi 2pq amp 2pq p 1 q 1 amp pq p q 1 amp p 1 q 1 2 end aligned Thus all even numbers n such that n 2 can be written as p 1 q 1 with p q primes are cototients The first few noncototients are 10 26 34 50 52 58 86 100 116 122 130 134 146 154 170 172 186 202 206 218 222 232 244 260 266 268 274 290 292 298 310 326 340 344 346 362 366 372 386 394 404 412 436 466 470 474 482 490 sequence A005278 in the OEIS The cototient of n are 0 1 1 2 1 4 1 4 3 6 1 8 1 8 7 8 1 12 1 12 9 12 1 16 5 14 9 16 1 22 1 16 13 18 11 24 1 20 15 24 1 30 1 24 21 24 1 32 7 30 19 28 1 36 15 32 21 30 1 44 1 32 27 32 17 46 1 36 25 46 1 48 sequence A051953 in the OEIS Least k such that the cototient of k is n are start with n 0 0 if no such k exists 1 2 4 9 6 25 10 15 12 21 0 35 18 33 26 39 24 65 34 51 38 45 30 95 36 69 0 63 52 161 42 87 48 93 0 75 54 217 74 99 76 185 82 123 60 117 66 215 72 141 0 sequence A063507 in the OEIS Greatest k such that the cototient of k is n are start with n 0 0 if no such k exists 1 4 9 8 25 10 49 16 27 0 121 22 169 26 55 32 289 34 361 38 85 30 529 46 133 0 187 52 841 58 961 64 253 0 323 68 1369 74 391 76 1681 82 1849 86 493 70 2209 94 589 0 sequence A063748 in the OEIS Number of k s such that k f k is n are start with n 0 1 1 1 2 1 1 2 3 2 0 2 3 2 1 2 3 3 1 3 1 3 1 4 4 3 0 4 1 4 3 3 4 3 0 5 2 2 1 4 1 5 1 4 2 4 2 6 5 5 0 3 0 6 2 4 2 5 0 7 4 3 1 8 4 6 1 3 1 5 2 7 3 sequence A063740 in the OEIS Erdos 1913 1996 and Sierpinski 1882 1969 asked whether there exist infinitely many noncototients This was finally answered in the affirmative by Browkin and Schinzel 1995 who showed every member of the infinite family 2 k 509203 displaystyle 2 k cdot 509203 is an example See Riesel number Since then other infinite families of roughly the same form have been given by Flammenkamp and Luca 2000 Cototients of n from 1 144 n Numbers k such that k f k n 1 all primes 2 4 3 9 4 6 8 5 25 6 10 7 15 49 8 12 14 16 9 21 27 10 11 35 121 12 18 20 22 13 33 169 14 26 15 39 55 16 24 28 32 17 65 77 289 18 34 19 51 91 361 20 38 21 45 57 85 22 30 23 95 119 143 529 24 36 40 44 46 25 69 125 133 26 27 63 81 115 187 28 52 29 161 209 221 841 30 42 50 58 31 87 247 961 32 48 56 62 64 33 93 145 253 34 35 75 155 203 299 323 36 54 68 37 217 1369 38 74 39 99 111 319 391 40 76 41 185 341 377 437 1681 42 82 43 123 259 403 1849 44 60 86 45 117 129 205 493 46 66 70 47 215 287 407 527 551 2209 48 72 80 88 92 94 49 141 301 343 481 589 50 51 235 451 667 52 53 329 473 533 629 713 2809 54 78 106 55 159 175 559 703 56 98 104 57 105 153 265 517 697 58 59 371 611 731 779 851 899 3481 60 84 100 116 118 61 177 817 3721 62 122 63 135 147 171 183 295 583 799 943 64 96 112 124 128 65 305 413 689 893 989 1073 66 90 67 427 1147 4489 68 134 69 201 649 901 1081 1189 70 102 110 71 335 671 767 1007 1247 1271 5041 72 108 136 142 73 213 469 793 1333 5329 74 146 75 207 219 275 355 1003 1219 1363 76 148 77 245 365 497 737 1037 1121 1457 1517 78 114 79 511 871 1159 1591 6241 80 152 158 81 189 237 243 781 1357 1537 82 130 83 395 803 923 1139 1403 1643 1739 1763 6889 84 164 166 85 165 249 325 553 949 1273 86 87 415 1207 1711 1927 88 120 172 89 581 869 1241 1349 1541 1769 1829 1961 2021 7921 90 126 178 91 267 1027 1387 1891 92 132 140 93 261 445 913 1633 2173 94 138 154 95 623 1079 1343 1679 1943 2183 2279 96 144 160 176 184 188 97 1501 2077 2257 9409 98 194 99 195 279 291 979 1411 2059 2419 2491 100 101 485 1157 1577 1817 2117 2201 2501 2537 10201 102 202 103 303 679 2263 2479 2623 10609 104 206 105 225 309 425 505 1513 1909 2773 106 170 107 515 707 1067 1691 2291 2627 2747 2867 11449 108 156 162 212 214 109 321 721 1261 2449 2701 2881 11881 110 150 182 218 111 231 327 535 1111 2047 2407 2911 3127 112 196 208 113 545 749 1133 1313 1649 2573 2993 3053 3149 3233 12769 114 226 115 339 475 763 1339 1843 2923 3139 116 117 297 333 565 1177 1717 2581 3337 118 174 190 119 539 791 1199 1391 1751 1919 2231 2759 3071 3239 3431 3551 3599 120 168 200 232 236 121 1331 1417 1957 3397 122 123 1243 1819 2323 3403 3763 124 244 125 625 1469 1853 2033 2369 2813 3293 3569 3713 3869 3953 126 186 127 255 2071 3007 4087 16129 128 192 224 248 254 256 129 273 369 381 1921 2461 2929 3649 3901 4189 130 131 635 2147 2507 2987 3131 3827 4187 4307 4331 17161 132 180 242 262 133 393 637 889 3193 3589 4453 134 135 351 387 575 655 2599 3103 4183 4399 136 268 137 917 1397 3161 3317 3737 3977 4661 4757 18769 138 198 274 139 411 1651 3379 3811 4171 4819 4891 19321 140 204 220 278 141 285 417 685 1441 3277 4141 4717 4897 142 230 238 143 363 695 959 1703 2159 3503 3959 4223 4343 4559 5063 5183 144 216 272 284References editBrowkin J Schinzel A 1995 On integers not of the form n f n Colloq Math 68 1 55 58 doi 10 4064 cm 68 1 55 58 Zbl 0820 11003 Flammenkamp A Luca F 2000 Infinite families of noncototients Colloq Math 86 1 37 41 doi 10 4064 cm 86 1 37 41 Zbl 0965 11003 Guy Richard K 2004 Unsolved problems in number theory 3rd ed Springer Verlag pp 138 142 ISBN 978 0 387 20860 2 Zbl 1058 11001 External links editNoncototient definition from MathWorld Retrieved from https en wikipedia org w index php title Noncototient amp oldid 1221787543, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.