fbpx
Wikipedia

Newtonian potential

In mathematics, the Newtonian potential or Newton potential is an operator in vector calculus that acts as the inverse to the negative Laplacian, on functions that are smooth and decay rapidly enough at infinity. As such, it is a fundamental object of study in potential theory. In its general nature, it is a singular integral operator, defined by convolution with a function having a mathematical singularity at the origin, the Newtonian kernel Γ which is the fundamental solution of the Laplace equation. It is named for Isaac Newton, who first discovered it and proved that it was a harmonic function in the special case of three variables, where it served as the fundamental gravitational potential in Newton's law of universal gravitation. In modern potential theory, the Newtonian potential is instead thought of as an electrostatic potential.

The Newtonian potential of a compactly supported integrable function f is defined as the convolution

where the Newtonian kernel Γ in dimension d is defined by

Here ωd is the volume of the unit d-ball (sometimes sign conventions may vary; compare (Evans 1998) and (Gilbarg & Trudinger 1983)). For example, for we have

The Newtonian potential w of f is a solution of the Poisson equation

which is to say that the operation of taking the Newtonian potential of a function is a partial inverse to the Laplace operator. Then w will be a classical solution, that is twice differentiable, if f is bounded and locally Hölder continuous as shown by Otto Hölder. It was an open question whether continuity alone is also sufficient. This was shown to be wrong by Henrik Petrini who gave an example of a continuous f for which w is not twice differentiable. The solution is not unique, since addition of any harmonic function to w will not affect the equation. This fact can be used to prove existence and uniqueness of solutions to the Dirichlet problem for the Poisson equation in suitably regular domains, and for suitably well-behaved functions f: one first applies a Newtonian potential to obtain a solution, and then adjusts by adding a harmonic function to get the correct boundary data.

The Newtonian potential is defined more broadly as the convolution

when μ is a compactly supported Radon measure. It satisfies the Poisson equation
in the sense of distributions. Moreover, when the measure is positive, the Newtonian potential is subharmonic on Rd.

If f is a compactly supported continuous function (or, more generally, a finite measure) that is rotationally invariant, then the convolution of f with Γ satisfies for x outside the support of f

In dimension d = 3, this reduces to Newton's theorem that the potential energy of a small mass outside a much larger spherically symmetric mass distribution is the same as if all of the mass of the larger object were concentrated at its center.

When the measure μ is associated to a mass distribution on a sufficiently smooth hypersurface S (a Lyapunov surface of Hölder class C1,α) that divides Rd into two regions D+ and D, then the Newtonian potential of μ is referred to as a simple layer potential. Simple layer potentials are continuous and solve the Laplace equation except on S. They appear naturally in the study of electrostatics in the context of the electrostatic potential associated to a charge distribution on a closed surface. If dμ = f dH is the product of a continuous function on S with the (d − 1)-dimensional Hausdorff measure, then at a point y of S, the normal derivative undergoes a jump discontinuity f(y) when crossing the layer. Furthermore, the normal derivative of w is a well-defined continuous function on S. This makes simple layers particularly suited to the study of the Neumann problem for the Laplace equation.

See also edit

References edit

  • Evans, L.C. (1998), Partial Differential Equations, Providence: American Mathematical Society, ISBN 0-8218-0772-2.
  • Gilbarg, D.; Trudinger, Neil (1983), Elliptic Partial Differential Equations of Second Order, New York: Springer, ISBN 3-540-41160-7.
  • Solomentsev, E.D. (2001) [1994], "Newton potential", Encyclopedia of Mathematics, EMS Press
  • Solomentsev, E.D. (2001) [1994], "Simple-layer potential", Encyclopedia of Mathematics, EMS Press
  • Solomentsev, E.D. (2001) [1994], "Surface potential", Encyclopedia of Mathematics, EMS Press

newtonian, potential, mathematics, newton, potential, operator, vector, calculus, that, acts, inverse, negative, laplacian, functions, that, smooth, decay, rapidly, enough, infinity, such, fundamental, object, study, potential, theory, general, nature, singula. In mathematics the Newtonian potential or Newton potential is an operator in vector calculus that acts as the inverse to the negative Laplacian on functions that are smooth and decay rapidly enough at infinity As such it is a fundamental object of study in potential theory In its general nature it is a singular integral operator defined by convolution with a function having a mathematical singularity at the origin the Newtonian kernel G which is the fundamental solution of the Laplace equation It is named for Isaac Newton who first discovered it and proved that it was a harmonic function in the special case of three variables where it served as the fundamental gravitational potential in Newton s law of universal gravitation In modern potential theory the Newtonian potential is instead thought of as an electrostatic potential The Newtonian potential of a compactly supported integrable function f is defined as the convolutionu x G f x R d G x y f y d y displaystyle u x Gamma f x int mathbb R d Gamma x y f y dy where the Newtonian kernel G in dimension d is defined by G x 1 2 p log x d 2 1 d 2 d w d x 2 d d 2 displaystyle Gamma x begin cases frac 1 2 pi log x amp d 2 frac 1 d 2 d omega d x 2 d amp d neq 2 end cases Here wd is the volume of the unit d ball sometimes sign conventions may vary compare Evans 1998 and Gilbarg amp Trudinger 1983 For example for d 3 displaystyle d 3 we have G x 1 4 p x displaystyle Gamma x 1 4 pi x The Newtonian potential w of f is a solution of the Poisson equationD w f displaystyle Delta w f which is to say that the operation of taking the Newtonian potential of a function is a partial inverse to the Laplace operator Then w will be a classical solution that is twice differentiable if f is bounded and locally Holder continuous as shown by Otto Holder It was an open question whether continuity alone is also sufficient This was shown to be wrong by Henrik Petrini who gave an example of a continuous f for which w is not twice differentiable The solution is not unique since addition of any harmonic function to w will not affect the equation This fact can be used to prove existence and uniqueness of solutions to the Dirichlet problem for the Poisson equation in suitably regular domains and for suitably well behaved functions f one first applies a Newtonian potential to obtain a solution and then adjusts by adding a harmonic function to get the correct boundary data The Newtonian potential is defined more broadly as the convolutionG m x R d G x y d m y displaystyle Gamma mu x int mathbb R d Gamma x y d mu y when m is a compactly supported Radon measure It satisfies the Poisson equation D w m displaystyle Delta w mu in the sense of distributions Moreover when the measure is positive the Newtonian potential is subharmonic on Rd If f is a compactly supported continuous function or more generally a finite measure that is rotationally invariant then the convolution of f with G satisfies for x outside the support of ff G x l G x l R d f y d y displaystyle f Gamma x lambda Gamma x quad lambda int mathbb R d f y dy In dimension d 3 this reduces to Newton s theorem that the potential energy of a small mass outside a much larger spherically symmetric mass distribution is the same as if all of the mass of the larger object were concentrated at its center When the measure m is associated to a mass distribution on a sufficiently smooth hypersurface S a Lyapunov surface of Holder class C1 a that divides Rd into two regions D and D then the Newtonian potential of m is referred to as a simple layer potential Simple layer potentials are continuous and solve the Laplace equation except on S They appear naturally in the study of electrostatics in the context of the electrostatic potential associated to a charge distribution on a closed surface If dm f dH is the product of a continuous function on S with the d 1 dimensional Hausdorff measure then at a point y of S the normal derivative undergoes a jump discontinuity f y when crossing the layer Furthermore the normal derivative of w is a well defined continuous function on S This makes simple layers particularly suited to the study of the Neumann problem for the Laplace equation See also editDouble layer potential Green s function Riesz potential Green s function for the three variable Laplace equationReferences editEvans L C 1998 Partial Differential Equations Providence American Mathematical Society ISBN 0 8218 0772 2 Gilbarg D Trudinger Neil 1983 Elliptic Partial Differential Equations of Second Order New York Springer ISBN 3 540 41160 7 Solomentsev E D 2001 1994 Newton potential Encyclopedia of Mathematics EMS Press Solomentsev E D 2001 1994 Simple layer potential Encyclopedia of Mathematics EMS Press Solomentsev E D 2001 1994 Surface potential Encyclopedia of Mathematics EMS Press Retrieved from https en wikipedia org w index php title Newtonian potential amp oldid 1173987138, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.