fbpx
Wikipedia

Narrow-gap semiconductor

Narrow-gap semiconductors are semiconducting materials with a magnitude of bandgap that is smaller than 0.5 eV, which corresponds to an infrared absorption cut-off wavelength over 2.5 micron. A more extended definition includes all semiconductors with bandgaps smaller than silicon (1.1 eV).[1][2] Modern terahertz,[3] infrared,[4] and thermographic[5] technologies are all based on this class of semiconductors.

Narrow-gap materials made it possible to realize satellite remote sensing,[6] photonic integrated circuits for telecommunications,[7][8][9] and unmanned vehicle Li-Fi systems,[10] in the regime of Infrared detector and infrared vision.[11][12] They are also the materials basis for terahertz technology, including security surveillance of concealed weapon uncovering,[13][14][15] safe medical and industrial imaging with terahertz tomography,[16][17][18] as well as dielectric wakefield accelerators.[19][20][21] Besides, thermophotovoltaics embedded with narrow-gap semiconductors can potentially use the traditionally wasted portion of solar energy that takes up ~49% of the sun light spectrum.[22][23] Space crafts, deep ocean instruments, and vacuum physics setups use narrow-gap semiconductors to achieve cryogenic cooling.[24][25]

List of narrow-gap semiconductors edit

Name Chemical formula Groups Band gap (300 K)
Mercury cadmium telluride Hg1−xCdxTe II-VI 0 to 1.5 eV
Mercury zinc telluride Hg1−xZnxTe II-VI 0.15 to 2.25 eV
Lead selenide PbSe IV-VI 0.27 eV
Lead(II) sulfide PbS IV-VI 0.37 eV
Lead telluride PbTe IV-VI 0.32 eV
Indium arsenide InAs III-V 0.354 eV
Indium antimonide InSb III-V 0.17 eV
Gallium antimonide GaSb III-V 0.67 eV
Cadmium arsenide Cd3As2 II-V 0.5 to 0.6 eV
Bismuth telluride Bi2Te3 0.21 eV
Tin telluride SnTe IV-VI 0.18 eV
Tin selenide SnSe IV-VI 0.9 eV
Silver(I) selenide Ag2Se 0.07 eV
Magnesium silicide Mg2Si II-IV 0.79 eV[26]

See also edit

References edit

  1. ^ Li, Xiao-Hui (2022). "Narrow-Bandgap Materials for Optoelectronics Applications". Frontiers of Physics. 17 (1): 13304. Bibcode:2022FrPhy..1713304L. doi:10.1007/s11467-021-1055-z. S2CID 237652629.
  2. ^ Chu, Junhao; Sher, Arden (2008). Physics and Properties of Narrow Gap Semiconductors. Springer. doi:10.1007/978-0-387-74801-6. ISBN 978-0-387-74743-9.
  3. ^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2007). National Association of Broadcasters Engineering Handbook. Taylor and Francis. p. 7. ISBN 978-1-136-03410-7.
  4. ^ Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. (2022). "Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS". Micromachines. 13 (5): 703. doi:10.3390/mi13050703. PMC 9145132. PMID 35630174.
  5. ^ Hapke B (19 January 2012). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press. p. 416. ISBN 978-0-521-88349-8.
  6. ^ Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
  7. ^ Inside Telecom Staff (30 July 2022). "How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?". Inside Telecom. Retrieved 20 September 2022.
  8. ^ Awad, Ehab (October 2018). "Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides". IEEE Access. 6 (1): 55937. doi:10.1109/ACCESS.2018.2873278. S2CID 53043619.
  9. ^ Vergyris, Panagiotis (16 June 2022). "Integrated photonics for quantum applications". Laser Focus World. Retrieved 20 September 2022.
  10. ^ "Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research". www.lifi.eng.ed.ac.uk. Retrieved 2018-01-16.
  11. ^ . Spitzer Space Telescope. NASA / JPL / Caltech. Archived from the original on 13 June 2010. Retrieved 13 January 2017.
  12. ^ Szondy, David (28 August 2016). "Spitzer goes "Beyond" for final mission". New Atlas. Retrieved 13 January 2017.
  13. ^ "Space in Images – 2002–06 – Meeting the team".
  14. ^ "Space camera blazes new terahertz trails". Times Higher Education (THE). 2003-02-12. Retrieved 2023-08-04.
  15. ^ . epsrc.ac.uk. 27 February 2004
  16. ^ Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. (2014). "Review of Terahertz Tomography Techniques". Journal of Infrared, Millimeter, and Terahertz Waves. 35 (4): 382–411. Bibcode:2014JIMTW..35..382G. CiteSeerX 10.1.1.480.4173. doi:10.1007/s10762-014-0057-0. S2CID 120535020.
  17. ^ Mittleman, Daniel M.; Hunsche, Stefan; Boivin, Luc; Nuss, Martin C. (1997). "T-ray tomography". Optics Letters. 22 (12): 904–906. Bibcode:1997OptL...22..904M. doi:10.1364/OL.22.000904. ISSN 1539-4794. PMID 18185701.
  18. ^ Katayama, I.; Akai, R.; Bito, M.; Shimosato, H.; Miyamoto, K.; Ito, H.; Ashida, M. (2010). "Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals". Applied Physics Letters. 97 (2): 021105. Bibcode:2010ApPhL..97b1105K. doi:10.1063/1.3463452. ISSN 0003-6951.
  19. ^ Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno (2010-10-25). "Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures". Applied Physics Letters. 97 (17): 171501. Bibcode:2010ApPhL..97q1501D. doi:10.1063/1.3505339.
  20. ^ Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. (2015-10-06). "Terahertz-driven linear electron acceleration". Nature Communications. 6 (1): 8486. arXiv:1411.4709. Bibcode:2015NatCo...6.8486N. doi:10.1038/ncomms9486. PMC 4600735. PMID 26439410.
  21. ^ Jing, Chunguang (2016). "Dielectric Wakefield Accelerators". Reviews of Accelerator Science and Technology. 09 (6): 127–149. Bibcode:2016RvAST...9..127J. doi:10.1142/s1793626816300061.
  22. ^ Poortmans, Jef. . Archived from the original on 2007-10-13. Retrieved 2008-02-17.
  23. ^ "A new heat engine with no moving parts is as efficient as a steam turbine". MIT News | Massachusetts Institute of Technology. 13 April 2022. Retrieved 2022-04-13.
  24. ^ Radebaugh, Ray (2009-03-31). "Cryocoolers: the state of the art and recent developments". Journal of Physics: Condensed Matter. 21 (16): 164219. Bibcode:2009JPCM...21p4219R. doi:10.1088/0953-8984/21/16/164219. ISSN 0953-8984. PMID 21825399. S2CID 22695540.
  25. ^ Cooper, Bernard E; Hadfield, Robert H (2022-06-28). "Viewpoint: Compact cryogenics for superconducting photon detectors". Superconductor Science and Technology. 35 (8): 080501. Bibcode:2022SuScT..35h0501C. doi:10.1088/1361-6668/ac76e9. ISSN 0953-2048. S2CID 249534834.
  26. ^ Nelson, James T. (1955). "Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2Si". American Journal of Physics. 23 (6). American Association of Physics Teachers (AAPT): 390. doi:10.1119/1.1934018. ISSN 0002-9505.
  • Dornhaus, R., Nimtz, G., Schlicht, B. (1983). Narrow-Gap Semiconductors. Springer Tracts in Modern Physics 98, ISBN 978-3-540-12091-9 (print) ISBN 978-3-540-39531-7 (online)
  • Nimtz, Günter (1980). "Recombination in narrow-gap semiconductors". Physics Reports. 63 (5). Elsevier BV: 265–300. Bibcode:1980PhR....63..265N. doi:10.1016/0370-1573(80)90113-1. ISSN 0370-1573.


narrow, semiconductor, semiconducting, materials, with, magnitude, bandgap, that, smaller, than, which, corresponds, infrared, absorption, wavelength, over, micron, more, extended, definition, includes, semiconductors, with, bandgaps, smaller, than, silicon, m. Narrow gap semiconductors are semiconducting materials with a magnitude of bandgap that is smaller than 0 5 eV which corresponds to an infrared absorption cut off wavelength over 2 5 micron A more extended definition includes all semiconductors with bandgaps smaller than silicon 1 1 eV 1 2 Modern terahertz 3 infrared 4 and thermographic 5 technologies are all based on this class of semiconductors Narrow gap materials made it possible to realize satellite remote sensing 6 photonic integrated circuits for telecommunications 7 8 9 and unmanned vehicle Li Fi systems 10 in the regime of Infrared detector and infrared vision 11 12 They are also the materials basis for terahertz technology including security surveillance of concealed weapon uncovering 13 14 15 safe medical and industrial imaging with terahertz tomography 16 17 18 as well as dielectric wakefield accelerators 19 20 21 Besides thermophotovoltaics embedded with narrow gap semiconductors can potentially use the traditionally wasted portion of solar energy that takes up 49 of the sun light spectrum 22 23 Space crafts deep ocean instruments and vacuum physics setups use narrow gap semiconductors to achieve cryogenic cooling 24 25 List of narrow gap semiconductors editThis list is incomplete you can help by adding missing items February 2019 Name Chemical formula Groups Band gap 300 K Mercury cadmium telluride Hg1 xCdxTe II VI 0 to 1 5 eV Mercury zinc telluride Hg1 xZnxTe II VI 0 15 to 2 25 eV Lead selenide PbSe IV VI 0 27 eV Lead II sulfide PbS IV VI 0 37 eV Lead telluride PbTe IV VI 0 32 eV Indium arsenide InAs III V 0 354 eV Indium antimonide InSb III V 0 17 eV Gallium antimonide GaSb III V 0 67 eV Cadmium arsenide Cd3As2 II V 0 5 to 0 6 eV Bismuth telluride Bi2Te3 0 21 eV Tin telluride SnTe IV VI 0 18 eV Tin selenide SnSe IV VI 0 9 eV Silver I selenide Ag2Se 0 07 eV Magnesium silicide Mg2Si II IV 0 79 eV 26 See also editList of semiconductor materials Wide bandgap semiconductorReferences edit Li Xiao Hui 2022 Narrow Bandgap Materials for Optoelectronics Applications Frontiers of Physics 17 1 13304 Bibcode 2022FrPhy 1713304L doi 10 1007 s11467 021 1055 z S2CID 237652629 Chu Junhao Sher Arden 2008 Physics and Properties of Narrow Gap Semiconductors Springer doi 10 1007 978 0 387 74801 6 ISBN 978 0 387 74743 9 Jones Graham A Layer David H Osenkowsky Thomas G 2007 National Association of Broadcasters Engineering Handbook Taylor and Francis p 7 ISBN 978 1 136 03410 7 Avraham M Nemirovsky J Blank T Golan G Nemirovsky Y 2022 Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS Micromachines 13 5 703 doi 10 3390 mi13050703 PMC 9145132 PMID 35630174 Hapke B 19 January 2012 Theory of Reflectance and Emittance Spectroscopy Cambridge University Press p 416 ISBN 978 0 521 88349 8 Lovett D R Semimetals and narrow bandgap semiconductors Pion Limited London 1977 Chapter 7 Inside Telecom Staff 30 July 2022 How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure Inside Telecom Retrieved 20 September 2022 Awad Ehab October 2018 Bidirectional Mode Slicing and Re Combining for Mode Conversion in Planar Waveguides IEEE Access 6 1 55937 doi 10 1109 ACCESS 2018 2873278 S2CID 53043619 Vergyris Panagiotis 16 June 2022 Integrated photonics for quantum applications Laser Focus World Retrieved 20 September 2022 Comprehensive Summary of Modulation Techniques for LiFi LiFi Research www lifi eng ed ac uk Retrieved 2018 01 16 The Infrared Array Camera IRAC Spitzer Space Telescope NASA JPL Caltech Archived from the original on 13 June 2010 Retrieved 13 January 2017 Szondy David 28 August 2016 Spitzer goes Beyond for final mission New Atlas Retrieved 13 January 2017 Space in Images 2002 06 Meeting the team Space camera blazes new terahertz trails Times Higher Education THE 2003 02 12 Retrieved 2023 08 04 Winner of the 2003 04 Research Councils Business Plan Competition 24 February 2004 epsrc ac uk 27 February 2004 Guillet J P Recur B Frederique L Bousquet B Canioni L Manek Honninger I Desbarats P Mounaix P 2014 Review of Terahertz Tomography Techniques Journal of Infrared Millimeter and Terahertz Waves 35 4 382 411 Bibcode 2014JIMTW 35 382G CiteSeerX 10 1 1 480 4173 doi 10 1007 s10762 014 0057 0 S2CID 120535020 Mittleman Daniel M Hunsche Stefan Boivin Luc Nuss Martin C 1997 T ray tomography Optics Letters 22 12 904 906 Bibcode 1997OptL 22 904M doi 10 1364 OL 22 000904 ISSN 1539 4794 PMID 18185701 Katayama I Akai R Bito M Shimosato H Miyamoto K Ito H Ashida M 2010 Ultrabroadband terahertz generation using 4 N N dimethylamino 4 N methyl stilbazolium tosylate single crystals Applied Physics Letters 97 2 021105 Bibcode 2010ApPhL 97b1105K doi 10 1063 1 3463452 ISSN 0003 6951 Dolgashev Valery Tantawi Sami Higashi Yasuo Spataro Bruno 2010 10 25 Geometric dependence of radio frequency breakdown in normal conducting accelerating structures Applied Physics Letters 97 17 171501 Bibcode 2010ApPhL 97q1501D doi 10 1063 1 3505339 Nanni Emilio A Huang Wenqian R Hong Kyung Han Ravi Koustuban Fallahi Arya Moriena Gustavo Dwayne Miller R J Kartner Franz X 2015 10 06 Terahertz driven linear electron acceleration Nature Communications 6 1 8486 arXiv 1411 4709 Bibcode 2015NatCo 6 8486N doi 10 1038 ncomms9486 PMC 4600735 PMID 26439410 Jing Chunguang 2016 Dielectric Wakefield Accelerators Reviews of Accelerator Science and Technology 09 6 127 149 Bibcode 2016RvAST 9 127J doi 10 1142 s1793626816300061 Poortmans Jef IMEC website Photovoltaic Stacks Archived from the original on 2007 10 13 Retrieved 2008 02 17 A new heat engine with no moving parts is as efficient as a steam turbine MIT News Massachusetts Institute of Technology 13 April 2022 Retrieved 2022 04 13 Radebaugh Ray 2009 03 31 Cryocoolers the state of the art and recent developments Journal of Physics Condensed Matter 21 16 164219 Bibcode 2009JPCM 21p4219R doi 10 1088 0953 8984 21 16 164219 ISSN 0953 8984 PMID 21825399 S2CID 22695540 Cooper Bernard E Hadfield Robert H 2022 06 28 Viewpoint Compact cryogenics for superconducting photon detectors Superconductor Science and Technology 35 8 080501 Bibcode 2022SuScT 35h0501C doi 10 1088 1361 6668 ac76e9 ISSN 0953 2048 S2CID 249534834 Nelson James T 1955 Chicago Section 1 Electrical and optical properties of MgPSn and Mg2Si American Journal of Physics 23 6 American Association of Physics Teachers AAPT 390 doi 10 1119 1 1934018 ISSN 0002 9505 Dornhaus R Nimtz G Schlicht B 1983 Narrow Gap Semiconductors Springer Tracts in Modern Physics 98 ISBN 978 3 540 12091 9 print ISBN 978 3 540 39531 7 online Nimtz Gunter 1980 Recombination in narrow gap semiconductors Physics Reports 63 5 Elsevier BV 265 300 Bibcode 1980PhR 63 265N doi 10 1016 0370 1573 80 90113 1 ISSN 0370 1573 nbsp This condensed matter physics related article is a stub You can help Wikipedia by expanding it vte Retrieved from https en wikipedia org w index php title Narrow gap semiconductor amp oldid 1216257378, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.