fbpx
Wikipedia

Multiscale turbulence

Multiscale turbulence is a class of turbulent flows in which the chaotic motion of the fluid is forced at different length and/or time scales.[1][2] This is usually achieved by immersing in a moving fluid a body with a multiscale, often fractal-like, arrangement of length scales. This arrangement of scales can be either passive[3][4] or active[5]

Three examples of multiscale turbulence generators. From left to right, a fractal cross grid, a fractal square grid and a fractal I grid. See on YouTube the manufacturing of a fractal grid.

As turbulent flows contain eddies with a wide range of scales, exciting the turbulence at particular scales (or range of scales) allows one to fine-tune the properties of that flow. Multiscale turbulent flows have been successfully applied in different fields.,[6] such as:


Multiscale turbulence has also played an important role into probing the internal structure of turbulence.[15] This sort of turbulence allowed researchers to unveil a novel dissipation law in which the parameter in

is not constant, as required by the Richardson-Kolmogorov energy cascade. This new law[15] can be expressed as , with , where and are Reynolds numbers based, respectively, on initial/global conditions (such as free-stream velocity and the object's length scale) and local conditions (such as the rms velocity and integral length scale). This new dissipation law characterises non-equilibrium turbulence apparently universally in various flows (not just multiscale turbulence) and results from non-equilibrium unsteady energy cascade. This imbalance implies that new mean flow scalings exist for free shear turbulent flows, as already observed in axisymmetric wakes[15][16]

References edit

  1. ^ Laizet, S.; Vassilicos, J. C. (January 2009). "Multiscale Generation of Turbulence". Journal of Multiscale Modelling. 01 (1): 177–196. doi:10.1142/S1756973709000098.
  2. ^ Mazzi, B.; Vassilicos, J. C. (10 March 2004). "Fractal-generated turbulence". Journal of Fluid Mechanics. 502: 65–87. Bibcode:2004JFM...502...65M. CiteSeerX 10.1.1.475.2171. doi:10.1017/S0022112003007249. S2CID 58933525.
  3. ^ Hurst, D.; Vassilicos, J. C. (2007). "Scalings and decay of fractal-generated turbulence". Physics of Fluids. 19 (3): 035103–035103–31. Bibcode:2007PhFl...19c5103H. doi:10.1063/1.2676448.
  4. ^ Nagata, K.; Sakai, Y.; Inaba, T.; Suzuki, H.; Terashima, O.; Suzuki, H. (2013). "Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence". Physics of Fluids. 25 (6): 065102–065102–26. Bibcode:2013PhFl...25f5102N. doi:10.1063/1.4811402.
  5. ^ Thormann, A.; Meneveau, C. (February 2014). "Decay of homogeneous, nearly isotropic turbulence behind active fractal grids". Physics of Fluids. 26 (2): 025112. Bibcode:2014PhFl...26b5112T. doi:10.1063/1.4865232.
  6. ^ Laizet, Sylvain; Sakai, Yasuhiko; Christos Vassilicos, J. (1 December 2013). "Special issue of selected papers from the second UK–Japan bilateral Workshop and First ERCOFTAC Workshop on Turbulent Flows Generated/Designed in Multiscale/Fractal Ways, London, March 2012". Fluid Dynamics Research. 45 (6): 061001. Bibcode:2013FlDyR..45f1001L. doi:10.1088/0169-5983/45/6/061001.
  7. ^ Nedić, J., B. Ganapathisubramani, J. C. Vassilicos, J. Boree, L. E. Brizzi, A. Spohn. "Aeroacoustic performance of fractal spoilers". AIAA journal 2012.
  8. ^ Cafiero, G.; Discetti, S.; Astarita, T. (August 2014). "Heat transfer enhancement of impinging jets with fractal-generated turbulence". International Journal of Heat and Mass Transfer. 75: 173–183. doi:10.1016/j.ijheatmasstransfer.2014.03.049.
  9. ^ Nedić, J.; Ganapathisubramani, B.; Vassilicos, J. C. (1 December 2013). "Drag and near wake characteristics of flat plates normal to the flow with fractal edge geometries". Fluid Dynamics Research. 45 (6): 061406. Bibcode:2013FlDyR..45f1406N. doi:10.1088/0169-5983/45/6/061406. S2CID 119569184.
  10. ^ Laizet, S.; Vassilicos, J. C. (23 December 2014). "Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient". Journal of Fluid Mechanics. 764: 52–75. Bibcode:2015JFM...764...52L. doi:10.1017/jfm.2014.695. hdl:10044/1/21530. S2CID 122885256.
  11. ^ Suzuki, H.; Nagata, K.; Sakai, Y.; Hayase, T. (1 December 2010). "Direct numerical simulation of turbulent mixing in regular and fractal grid turbulence". Physica Scripta. T142: 014065. Bibcode:2010PhST..142a4065S. doi:10.1088/0031-8949/2010/T142/014065. S2CID 120566583.
  12. ^ Manshoor, B.; Nicolleau, F. C. G. A.; Beck, S. B. M. (June 2011). "The fractal flow conditioner for orifice plate flow meters". Flow Measurement and Instrumentation. 22 (3): 208–214. doi:10.1016/j.flowmeasinst.2011.02.003.
  13. ^ Verbeek, A. A.; Bouten, T. W. F. M.; Stoffels, G. G. M.; Geurts, B. J.; van der Meer, T. H. (January 2015). "Fractal turbulence enhancing low-swirl combustion". Combustion and Flame. 162 (1): 129–143. doi:10.1016/j.combustflame.2014.07.003.
  14. ^ Goh, K. H. H.; Geipel, P.; Lindstedt, R. P. (September 2014). "Lean premixed opposed jet flames in fractal grid generated multiscale turbulence". Combustion and Flame. 161 (9): 2419–2434. doi:10.1016/j.combustflame.2014.03.010. hdl:10044/1/26010. S2CID 93650086.
  15. ^ a b c Vassilicos, J. C. (2015). "Dissipation in Turbulent Flows". Annual Review of Fluid Mechanics. 47 (1): 95–114. Bibcode:2015AnRFM..47...95V. doi:10.1146/annurev-fluid-010814-014637.
  16. ^ Castro, Ian P. (2016). "Dissipative distinctions". Journal of Fluid Mechanics. 788: 1–4. Bibcode:2016JFM...788....1C. doi:10.1017/jfm.2015.630. ISSN 0022-1120.

multiscale, turbulence, class, turbulent, flows, which, chaotic, motion, fluid, forced, different, length, time, scales, this, usually, achieved, immersing, moving, fluid, body, with, multiscale, often, fractal, like, arrangement, length, scales, this, arrange. Multiscale turbulence is a class of turbulent flows in which the chaotic motion of the fluid is forced at different length and or time scales 1 2 This is usually achieved by immersing in a moving fluid a body with a multiscale often fractal like arrangement of length scales This arrangement of scales can be either passive 3 4 or active 5 Three examples of multiscale turbulence generators From left to right a fractal cross grid a fractal square grid and a fractal I grid See on YouTube the manufacturing of a fractal grid As turbulent flows contain eddies with a wide range of scales exciting the turbulence at particular scales or range of scales allows one to fine tune the properties of that flow Multiscale turbulent flows have been successfully applied in different fields 6 such as Reducing acoustic noise from wings by modifying the geometry of spoilers 7 Enhancing heat transfer from impinging jets passing through grids 8 Reducing the vortex shedding intensity of flows past normal plates without changing the shedding frequency 9 Enhancing mixing by energy efficient stirring 10 11 Improving flow metering and flow conditioning in pipes 12 Improving combustion 13 14 Multiscale turbulence has also played an important role into probing the internal structure of turbulence 15 This sort of turbulence allowed researchers to unveil a novel dissipation law in which the parameter C ϵ displaystyle C epsilon in e C e U 3 L displaystyle varepsilon C varepsilon frac mathcal U 3 mathcal L is not constant as required by the Richardson Kolmogorov energy cascade This new law 15 can be expressed as C ϵ R e I m R e L n displaystyle C epsilon propto frac Re I m Re L n with m 1 n displaystyle m approx 1 approx n where R e I displaystyle Re I and R e L displaystyle Re L are Reynolds numbers based respectively on initial global conditions such as free stream velocity and the object s length scale and local conditions such as the rms velocity and integral length scale This new dissipation law characterises non equilibrium turbulence apparently universally in various flows not just multiscale turbulence and results from non equilibrium unsteady energy cascade This imbalance implies that new mean flow scalings exist for free shear turbulent flows as already observed in axisymmetric wakes 15 16 References edit Laizet S Vassilicos J C January 2009 Multiscale Generation of Turbulence Journal of Multiscale Modelling 01 1 177 196 doi 10 1142 S1756973709000098 Mazzi B Vassilicos J C 10 March 2004 Fractal generated turbulence Journal of Fluid Mechanics 502 65 87 Bibcode 2004JFM 502 65M CiteSeerX 10 1 1 475 2171 doi 10 1017 S0022112003007249 S2CID 58933525 Hurst D Vassilicos J C 2007 Scalings and decay of fractal generated turbulence Physics of Fluids 19 3 035103 035103 31 Bibcode 2007PhFl 19c5103H doi 10 1063 1 2676448 Nagata K Sakai Y Inaba T Suzuki H Terashima O Suzuki H 2013 Turbulence structure and turbulence kinetic energy transport in multiscale fractal generated turbulence Physics of Fluids 25 6 065102 065102 26 Bibcode 2013PhFl 25f5102N doi 10 1063 1 4811402 Thormann A Meneveau C February 2014 Decay of homogeneous nearly isotropic turbulence behind active fractal grids Physics of Fluids 26 2 025112 Bibcode 2014PhFl 26b5112T doi 10 1063 1 4865232 Laizet Sylvain Sakai Yasuhiko Christos Vassilicos J 1 December 2013 Special issue of selected papers from the second UK Japan bilateral Workshop and First ERCOFTAC Workshop on Turbulent Flows Generated Designed in Multiscale Fractal Ways London March 2012 Fluid Dynamics Research 45 6 061001 Bibcode 2013FlDyR 45f1001L doi 10 1088 0169 5983 45 6 061001 Nedic J B Ganapathisubramani J C Vassilicos J Boree L E Brizzi A Spohn Aeroacoustic performance of fractal spoilers AIAA journal 2012 Cafiero G Discetti S Astarita T August 2014 Heat transfer enhancement of impinging jets with fractal generated turbulence International Journal of Heat and Mass Transfer 75 173 183 doi 10 1016 j ijheatmasstransfer 2014 03 049 Nedic J Ganapathisubramani B Vassilicos J C 1 December 2013 Drag and near wake characteristics of flat plates normal to the flow with fractal edge geometries Fluid Dynamics Research 45 6 061406 Bibcode 2013FlDyR 45f1406N doi 10 1088 0169 5983 45 6 061406 S2CID 119569184 Laizet S Vassilicos J C 23 December 2014 Stirring and scalar transfer by grid generated turbulence in the presence of a mean scalar gradient Journal of Fluid Mechanics 764 52 75 Bibcode 2015JFM 764 52L doi 10 1017 jfm 2014 695 hdl 10044 1 21530 S2CID 122885256 Suzuki H Nagata K Sakai Y Hayase T 1 December 2010 Direct numerical simulation of turbulent mixing in regular and fractal grid turbulence Physica Scripta T142 014065 Bibcode 2010PhST 142a4065S doi 10 1088 0031 8949 2010 T142 014065 S2CID 120566583 Manshoor B Nicolleau F C G A Beck S B M June 2011 The fractal flow conditioner for orifice plate flow meters Flow Measurement and Instrumentation 22 3 208 214 doi 10 1016 j flowmeasinst 2011 02 003 Verbeek A A Bouten T W F M Stoffels G G M Geurts B J van der Meer T H January 2015 Fractal turbulence enhancing low swirl combustion Combustion and Flame 162 1 129 143 doi 10 1016 j combustflame 2014 07 003 Goh K H H Geipel P Lindstedt R P September 2014 Lean premixed opposed jet flames in fractal grid generated multiscale turbulence Combustion and Flame 161 9 2419 2434 doi 10 1016 j combustflame 2014 03 010 hdl 10044 1 26010 S2CID 93650086 a b c Vassilicos J C 2015 Dissipation in Turbulent Flows Annual Review of Fluid Mechanics 47 1 95 114 Bibcode 2015AnRFM 47 95V doi 10 1146 annurev fluid 010814 014637 Castro Ian P 2016 Dissipative distinctions Journal of Fluid Mechanics 788 1 4 Bibcode 2016JFM 788 1C doi 10 1017 jfm 2015 630 ISSN 0022 1120 Retrieved from https en wikipedia org w index php title Multiscale turbulence amp oldid 1170063132, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.