fbpx
Wikipedia

Eddy (fluid dynamics)

In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime.[2] The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.

A vortex street around a cylinder. This can occur around cylinders and spheres, for any fluid, cylinder size and fluid speed, provided that the flow has a Reynolds number in the range ~40 to ~1000.[1]

An eddy is a movement of fluid that deviates from the general flow of the fluid. An example for an eddy is a vortex which produces such deviation. However, there are other types of eddies that are not simple vortices. For example, a Rossby wave is an eddy[3] which is an undulation that is a deviation from mean flow, but does not have the local closed streamlines of a vortex.

Swirl and eddies in engineering Edit

The propensity of a fluid to swirl is used to promote good fuel/air mixing in internal combustion engines.

In fluid mechanics and transport phenomena, an eddy is not a property of the fluid, but a violent swirling motion caused by the position and direction of turbulent flow.[4]

 
A diagram showing the velocity distribution of a fluid moving through a circular pipe, for laminar flow (left), time-averaged (center), and turbulent flow, instantaneous depiction (right)

Reynolds number and turbulence Edit

 
Reynolds Experiment (1883). Osborne Reynolds standing beside his apparatus.

In 1883, scientist Osborne Reynolds conducted a fluid dynamics experiment involving water and dye, where he adjusted the velocities of the fluids and observed the transition from laminar to turbulent flow, characterized by the formation of eddies and vortices.[5] Turbulent flow is defined as the flow in which the system's inertial forces are dominant over the viscous forces. This phenomenon is described by Reynolds number, a unit-less number used to determine when turbulent flow will occur. Conceptually, the Reynolds number is the ratio between inertial forces and viscous forces.[6]

 
Schlieren photograph showing the thermal convection plume rising from an ordinary candle in still air. The plume is initially laminar, but transition to turbulence occurs in the upper third of the image. The image was made by Gary Settles using a one-meter-diameter schlieren mirror.

The general form for the Reynolds number flowing through a tube of radius r (or diameter d):

 

where v is the velocity of the fluid, ρ is its density, r is the radius of the tube, and μ is the viscosity of the fluid. A turbulent flow in a fluid is defined by the critical Reynolds number, for a closed pipe this works out to approximately

 

In terms of the critical Reynolds number, the critical velocity is represented as

 

Research and development Edit

Computational fluid dynamics Edit

These are turbulence models in which the Reynolds stresses, as obtained from a Reynolds averaging of the Navier–Stokes equations, are modelled by a linear constitutive relationship with the mean flow straining field, as:

 

where

  •   is the coefficient termed turbulence "viscosity" (also called the eddy viscosity)
  •   is the mean turbulent kinetic energy
  •   is the mean strain rate
Note that that inclusion of   in the linear constitutive relation is required by tensorial algebra purposes when solving for two-equation turbulence models (or any other turbulence model that solves a transport equation for   .[7]

Hemodynamics Edit

Hemodynamics is the study of blood flow in the circulatory system. Blood flow in straight sections of the arterial tree are typically laminar (high, directed wall stress), but branches and curvatures in the system cause turbulent flow.[2] Turbulent flow in the arterial tree can cause a number of concerning effects, including atherosclerotic lesions, postsurgical neointimal hyperplasia, in-stent restenosis, vein bypass graft failure, transplant vasculopathy, and aortic valve calcification.

Industrial processes Edit

Lift and drag properties of golf balls are customized by the manipulation of dimples along the surface of the ball, allowing for the golf ball to travel further and faster in the air.[8][9] The data from turbulent-flow phenomena has been used to model different transitions in fluid flow regimes, which are used to thoroughly mix fluids and increase reaction rates within industrial processes.[10]

Fluid currents and pollution control Edit

Oceanic and atmospheric currents transfer particles, debris, and organisms all across the globe. While the transport of organisms, such as phytoplankton, are essential for the preservation of ecosystems, oil and other pollutants are also mixed in the current flow and can carry pollution far from its origin.[11][12] Eddy formations circulate trash and other pollutants into concentrated areas which researchers are tracking to improve clean-up and pollution prevention. The distribution and motion of plastics caused by eddy formations in natural water bodies can be predicted using Lagrangian transport models.[13] Mesoscale ocean eddies play crucial roles in transferring heat poleward, as well as maintaining heat gradients at different depths.[14]

Environmental flows Edit

Modeling eddy development, as it relates to turbulence and fate transport phenomena, is vital in grasping an understanding of environmental systems. By understanding the transport of both particulate and dissolved solids in environmental flows, scientists and engineers will be able to efficiently formulate remediation strategies for pollution events. Eddy formations play a vital role in the fate and transport of solutes and particles in environmental flows such as in rivers, lakes, oceans, and the atmosphere. Upwelling in stratified coastal estuaries warrant the formation of dynamic eddies which distribute nutrients out from beneath the boundary layer to form plumes.[15] Shallow waters, such as those along the coast, play a complex role in the transport of nutrients and pollutants due to the proximity of the upper-boundary driven by the wind and the lower-boundary near the bottom of the water body.[16]


Mesoscale ocean eddies Edit

 
Downwind of obstacles, in this case, the Madeira and the Canary Islands off the west African coast, eddies create turbulent patterns called vortex streets.

Eddies are common in the ocean, and range in diameter from centimeters to hundreds of kilometers. The smallest scale eddies may last for a matter of seconds, while the larger features may persist for months to years.

Eddies that are between about 10 and 500 km (6 and 300 miles) in diameter and persist for periods of days to months are known in oceanography as mesoscale eddies.[17]

Mesoscale eddies can be split into two categories: static eddies, caused by flow around an obstacle (see animation)[clarification needed], and transient eddies, caused by baroclinic instability.

When the ocean contains a sea surface height gradient this creates a jet or current, such as the Antarctic Circumpolar Current. This current as part of a baroclinically unstable system meanders and creates eddies (in much the same way as a meandering river forms an oxbow lake). These types of mesoscale eddies have been observed in many major ocean currents, including the Gulf Stream, the Agulhas Current, the Kuroshio Current, and the Antarctic Circumpolar Current, amongst others.

Mesoscale ocean eddies are characterized by currents that flow in a roughly circular motion around the center of the eddy. The sense of rotation of these currents may either be cyclonic or anticyclonic (such as Haida Eddies). Oceanic eddies are also usually made of water masses that are different from those outside the eddy. That is, the water within an eddy usually has different temperature and salinity characteristics to the water outside the eddy. There is a direct link between the water mass properties of an eddy and its rotation. Warm eddies rotate anti-cyclonically, while cold eddies rotate cyclonically.

Because eddies may have a vigorous circulation associated with them, they are of concern to naval and commercial operations at sea. Further, because eddies transport anomalously warm or cold water as they move, they have an important influence on heat transport in certain parts of the ocean.[18]

Influences on apex predators Edit

The sub-tropical Northern Atlantic is known to have both cyclonic and anticyclonic eddies that are associated with high surface chlorophyll and low surface chlorophyll, respectively. The presence of chlorophyll and higher levels of chlorophyll allows this region to support higher biomass of phytoplankton, as well as, supported by areas of increased vertical nutrient fluxes and transportation of biological communities. This area of the Atlantic is also thought to be an ocean desert, which creates an interesting paradox due to it hosting a variety of large pelagic fish populations and apex predators [19] [20] [21]

These mesoscale eddies have shown to be beneficial in further creating ecosystem-based management for food web models to better understand the utilization of these eddies by both the apex predators and their prey. Gaube et al. (2018), used “Smart” Position or Temperature Transmitting tags (SPOT) and Pop-Up Satellite Archival Transmitting tags (PSAT) to track the movement and diving behavior of two female white sharks (Carcharodon carcharias) within the eddies. The eddies were defined using sea surface height (SSH) and contours using the horizontal speed-based radius scale. This study found that the white sharks dove in both cyclones but favored the anticyclone which had three times more dives as the cyclonic eddies. Additionally, in the Gulf Stream eddies, the anticyclonic eddies were 57% more common and had more dives and deeper dives than the open ocean eddies and Gulf Stream cyclonic eddies.[22]

Within these anticyclonic eddies, the isotherm was displaced 50 meters downward allowing for the warmer water to penetrate deeper in the water column. This warmer water displacement may allow for the white sharks to make longer dives without the added energetic cost from thermal regulation in the cooler cyclones. Even though these anticyclonic eddies resulted in lower levels of chlorophyll in comparison to the cyclonic eddies, the warmer waters at deeper depths may allow for a deeper mixed layer and higher concentration of diatoms which in turn result in higher rates of primary productivity.[23][24] Furthermore, the prey populations could be distributed more within these eddies attracting these larger female sharks to forage in this mesopelagic zone. This diving pattern may follow a diel vertical migration but without more evidence on the biomass of their prey within this zone, these conclusions cannot be made only using this circumstantial evidence.[25]

The biomass in the mesopelagic zone is still understudied leading to the biomass of fish within this layer to potentially be underestimated. A more accurate measurement on this biomass may serve to benefit the commercial fishing industry providing them with additional fishing grounds within this region. Moreover, further understanding this region in the open ocean and how the removal of fish in this region may impact this pelagic food web is crucial for the fish populations and apex predators that may rely on this food source in addition to making better ecosystem-based management plans.[26]

See also Edit

References Edit

  1. ^ Tansley, Claire E.; Marshall, David P. (2001). "Flow past a Cylinder on a Plane, with Application to Gulf Stream Separation and the Antarctic Circumpolar Current" (PDF). Journal of Physical Oceanography. 31 (11): 3274–3283. Bibcode:2001JPO....31.3274T. doi:10.1175/1520-0485(2001)031<3274:FPACOA>2.0.CO;2. Archived from the original (PDF) on 2011-04-01.
  2. ^ a b Chiu, Jeng-Jiann; Chien, Shu (2011-01-01). "Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives". Physiological Reviews. 91 (1): 327–387. doi:10.1152/physrev.00047.2009. ISSN 0031-9333. PMC 3844671. PMID 21248169.
  3. ^ Encyclopedia Britannica eddy (fluid-mechanics)
  4. ^ Lightfoot, R. Byron Bird ; Warren E. Stewart ; Edwin N. (2002). Transport phenomena (2. ed.). New York, NY [u.a.]: Wiley. ISBN 0-471-41077-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ Kambe, Tsutomu (2007). Elementary Fluid Mechanics. World Scientific Publishing Co. Pte. Ltd. pp. 240. ISBN 978-981-256-416-0.
  6. ^ "Pressure". hyperphysics.phy-astr.gsu.edu. Retrieved 2017-02-12.
  7. ^ "Linear eddy viscosity models -- CFD-Wiki, the free CFD reference". www.cfd-online.com. Retrieved 2017-02-12.
  8. ^ Arnold, Douglas. "The Flight of a Golf Ball" (PDF).
  9. ^ "Why are Golf Balls Dimpled?". math.ucr.edu. Retrieved 2017-02-12.
  10. ^ Dimotakis, Paul. "The Mixing Transition in Turbulent Flows" (PDF). California Institute of Technology Information Tech Services.
  11. ^ "Ocean currents push phytoplankton, and pollution, around the globe faster than thought". Science Daily. 16 April 2016. Retrieved 2017-02-12.
  12. ^ "Ocean Pollution". National Oceanic and Atmospheric Administration.
  13. ^ Daily, Juliette; Hoffman, Matthew J. (2020-05-01). "Modeling the three-dimensional transport and distribution of multiple microplastic polymer types in Lake Erie". Marine Pollution Bulletin. 154: 111024. doi:10.1016/j.marpolbul.2020.111024. ISSN 0025-326X. PMID 32319887.
  14. ^ "Ocean Mesoscale Eddies – Geophysical Fluid Dynamics Laboratory". www.gfdl.noaa.gov. Retrieved 2017-02-12.
  15. ^ Chen, Zhaoyun; Jiang, Yuwu; Wang, Jia; Gong, Wenping (2019-07-23). "Influence of a River Plume on Coastal Upwelling Dynamics: Importance of Stratification". Journal of Physical Oceanography. 49 (9): 2345–2363. Bibcode:2019JPO....49.2345C. doi:10.1175/JPO-D-18-0215.1. ISSN 0022-3670.
  16. ^ Roman, F.; Stipcich, G.; Armenio, V.; Inghilesi, R.; Corsini, S. (2010-06-01). "Large eddy simulation of mixing in coastal areas". International Journal of Heat and Fluid Flow. Sixth International Symposium on Turbulence and Shear Flow Phenomena. 31 (3): 327–341. doi:10.1016/j.ijheatfluidflow.2010.02.006. ISSN 0142-727X. S2CID 123151803.
  17. ^ Tansley, Claire E.; Marshall, David P. (2001). "Flow past a Cylinder on a β Plane, with Application to Gulf Stream Separation and the Antarctic Circumpolar Current". Journal of Physical Oceanography. 31 (11): 3274–3283. Bibcode:2001JPO....31.3274T. doi:10.1175/1520-0485(2001)031<3274:FPACOA>2.0.CO;2. ISSN 1520-0485. S2CID 130455873.
  18. ^ "Ocean Mesoscale Eddies". Geophysical Fluid Dynamics Laboratory. NOAA. Retrieved 2021-06-10.
  19. ^ Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., & Samelson, R. M. (2011). The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054). https://doi.org/10.1126/science.1208897
  20. ^ Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., & Strutton, P. G. (2014). Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. Journal of Geophysical Research: Oceans, 119(12). https://doi.org/10.1002/2014JC010111
  21. ^ Gaube, P., Braun, C. D., Lawson, G. L., McGillicuddy, D. J., Penna, A. della, Skomal, G. B., Fischer, C., & Thorrold, S. R. (2018). Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-25565-8
  22. ^ Gaube, P., Braun, C. D., Lawson, G. L., McGillicuddy, D. J., Penna, A. della, Skomal, G. B., Fischer, C., & Thorrold, S. R. (2018). Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-25565-8
  23. ^ Gaube, P., Braun, C. D., Lawson, G. L., McGillicuddy, D. J., Penna, A. della, Skomal, G. B., Fischer, C., & Thorrold, S. R. (2018). Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-25565-8
  24. ^ McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., & Steinberg, D. K. (2007). Eddy/Wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316(5827). https://doi.org/10.1126/science.1136256
  25. ^ Gaube, P., Braun, C. D., Lawson, G. L., McGillicuddy, D. J., Penna, A. della, Skomal, G. B., Fischer, C., & Thorrold, S. R. (2018). Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-25565-8
  26. ^ Gaube, P., Braun, C. D., Lawson, G. L., McGillicuddy, D. J., Penna, A. della, Skomal, G. B., Fischer, C., & Thorrold, S. R. (2018). Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-25565-8

eddy, fluid, dynamics, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, eddy, fluid, dynamics, news, newspapers, book. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Eddy fluid dynamics news newspapers books scholar JSTOR July 2013 Learn how and when to remove this template message In fluid dynamics an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime 2 The moving fluid creates a space devoid of downstream flowing fluid on the downstream side of the object Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle followed by a short reverse flow of fluid behind the obstacle flowing upstream toward the back of the obstacle This phenomenon is naturally observed behind large emergent rocks in swift flowing rivers A vortex street around a cylinder This can occur around cylinders and spheres for any fluid cylinder size and fluid speed provided that the flow has a Reynolds number in the range 40 to 1000 1 An eddy is a movement of fluid that deviates from the general flow of the fluid An example for an eddy is a vortex which produces such deviation However there are other types of eddies that are not simple vortices For example a Rossby wave is an eddy 3 which is an undulation that is a deviation from mean flow but does not have the local closed streamlines of a vortex Contents 1 Swirl and eddies in engineering 2 Reynolds number and turbulence 3 Research and development 3 1 Computational fluid dynamics 3 2 Hemodynamics 3 3 Industrial processes 3 4 Fluid currents and pollution control 3 5 Environmental flows 4 Mesoscale ocean eddies 4 1 Influences on apex predators 5 See also 6 ReferencesSwirl and eddies in engineering EditThe propensity of a fluid to swirl is used to promote good fuel air mixing in internal combustion engines In fluid mechanics and transport phenomena an eddy is not a property of the fluid but a violent swirling motion caused by the position and direction of turbulent flow 4 nbsp A diagram showing the velocity distribution of a fluid moving through a circular pipe for laminar flow left time averaged center and turbulent flow instantaneous depiction right Reynolds number and turbulence Edit nbsp Reynolds Experiment 1883 Osborne Reynolds standing beside his apparatus In 1883 scientist Osborne Reynolds conducted a fluid dynamics experiment involving water and dye where he adjusted the velocities of the fluids and observed the transition from laminar to turbulent flow characterized by the formation of eddies and vortices 5 Turbulent flow is defined as the flow in which the system s inertial forces are dominant over the viscous forces This phenomenon is described by Reynolds number a unit less number used to determine when turbulent flow will occur Conceptually the Reynolds number is the ratio between inertial forces and viscous forces 6 nbsp Schlieren photograph showing the thermal convection plume rising from an ordinary candle in still air The plume is initially laminar but transition to turbulence occurs in the upper third of the image The image was made by Gary Settles using a one meter diameter schlieren mirror The general form for the Reynolds number flowing through a tube of radius r or diameter d R e 2 v r r m r v d m displaystyle mathrm Re frac 2v rho r mu frac rho vd mu nbsp where v is the velocity of the fluid r is its density r is the radius of the tube and m is the viscosity of the fluid A turbulent flow in a fluid is defined by the critical Reynolds number for a closed pipe this works out to approximately R e c 2000 displaystyle mathrm Re text c approx 2000 nbsp In terms of the critical Reynolds number the critical velocity is represented as v c R e c m r d displaystyle v text c frac mathrm Re text c mu rho d nbsp Research and development EditComputational fluid dynamics Edit These are turbulence models in which the Reynolds stresses as obtained from a Reynolds averaging of the Navier Stokes equations are modelled by a linear constitutive relationship with the mean flow straining field as r u i u j 2 m t S i j 2 3 r k d i j displaystyle rho langle u i u j rangle 2 mu t S i j tfrac 2 3 rho kappa delta i j nbsp where m t displaystyle mu t nbsp is the coefficient termed turbulence viscosity also called the eddy viscosity k 1 2 u 1 u 1 u 2 u 2 u 3 u 3 displaystyle kappa tfrac 1 2 bigl langle u 1 u 1 rangle langle u 2 u 2 rangle langle u 3 u 3 rangle bigr nbsp is the mean turbulent kinetic energy S i j displaystyle S i j nbsp is the mean strain rateNote that that inclusion of 2 3 r k d i j displaystyle tfrac 2 3 rho kappa delta i j nbsp in the linear constitutive relation is required by tensorial algebra purposes when solving for two equation turbulence models or any other turbulence model that solves a transport equation for k displaystyle kappa nbsp 7 Hemodynamics Edit Hemodynamics is the study of blood flow in the circulatory system Blood flow in straight sections of the arterial tree are typically laminar high directed wall stress but branches and curvatures in the system cause turbulent flow 2 Turbulent flow in the arterial tree can cause a number of concerning effects including atherosclerotic lesions postsurgical neointimal hyperplasia in stent restenosis vein bypass graft failure transplant vasculopathy and aortic valve calcification Industrial processes Edit Lift and drag properties of golf balls are customized by the manipulation of dimples along the surface of the ball allowing for the golf ball to travel further and faster in the air 8 9 The data from turbulent flow phenomena has been used to model different transitions in fluid flow regimes which are used to thoroughly mix fluids and increase reaction rates within industrial processes 10 Fluid currents and pollution control Edit Oceanic and atmospheric currents transfer particles debris and organisms all across the globe While the transport of organisms such as phytoplankton are essential for the preservation of ecosystems oil and other pollutants are also mixed in the current flow and can carry pollution far from its origin 11 12 Eddy formations circulate trash and other pollutants into concentrated areas which researchers are tracking to improve clean up and pollution prevention The distribution and motion of plastics caused by eddy formations in natural water bodies can be predicted using Lagrangian transport models 13 Mesoscale ocean eddies play crucial roles in transferring heat poleward as well as maintaining heat gradients at different depths 14 Environmental flows Edit Modeling eddy development as it relates to turbulence and fate transport phenomena is vital in grasping an understanding of environmental systems By understanding the transport of both particulate and dissolved solids in environmental flows scientists and engineers will be able to efficiently formulate remediation strategies for pollution events Eddy formations play a vital role in the fate and transport of solutes and particles in environmental flows such as in rivers lakes oceans and the atmosphere Upwelling in stratified coastal estuaries warrant the formation of dynamic eddies which distribute nutrients out from beneath the boundary layer to form plumes 15 Shallow waters such as those along the coast play a complex role in the transport of nutrients and pollutants due to the proximity of the upper boundary driven by the wind and the lower boundary near the bottom of the water body 16 Mesoscale ocean eddies Edit nbsp Downwind of obstacles in this case the Madeira and the Canary Islands off the west African coast eddies create turbulent patterns called vortex streets Eddies are common in the ocean and range in diameter from centimeters to hundreds of kilometers The smallest scale eddies may last for a matter of seconds while the larger features may persist for months to years Eddies that are between about 10 and 500 km 6 and 300 miles in diameter and persist for periods of days to months are known in oceanography as mesoscale eddies 17 Mesoscale eddies can be split into two categories static eddies caused by flow around an obstacle see animation clarification needed and transient eddies caused by baroclinic instability When the ocean contains a sea surface height gradient this creates a jet or current such as the Antarctic Circumpolar Current This current as part of a baroclinically unstable system meanders and creates eddies in much the same way as a meandering river forms an oxbow lake These types of mesoscale eddies have been observed in many major ocean currents including the Gulf Stream the Agulhas Current the Kuroshio Current and the Antarctic Circumpolar Current amongst others Mesoscale ocean eddies are characterized by currents that flow in a roughly circular motion around the center of the eddy The sense of rotation of these currents may either be cyclonic or anticyclonic such as Haida Eddies Oceanic eddies are also usually made of water masses that are different from those outside the eddy That is the water within an eddy usually has different temperature and salinity characteristics to the water outside the eddy There is a direct link between the water mass properties of an eddy and its rotation Warm eddies rotate anti cyclonically while cold eddies rotate cyclonically Because eddies may have a vigorous circulation associated with them they are of concern to naval and commercial operations at sea Further because eddies transport anomalously warm or cold water as they move they have an important influence on heat transport in certain parts of the ocean 18 Influences on apex predators Edit The sub tropical Northern Atlantic is known to have both cyclonic and anticyclonic eddies that are associated with high surface chlorophyll and low surface chlorophyll respectively The presence of chlorophyll and higher levels of chlorophyll allows this region to support higher biomass of phytoplankton as well as supported by areas of increased vertical nutrient fluxes and transportation of biological communities This area of the Atlantic is also thought to be an ocean desert which creates an interesting paradox due to it hosting a variety of large pelagic fish populations and apex predators 19 20 21 These mesoscale eddies have shown to be beneficial in further creating ecosystem based management for food web models to better understand the utilization of these eddies by both the apex predators and their prey Gaube et al 2018 used Smart Position or Temperature Transmitting tags SPOT and Pop Up Satellite Archival Transmitting tags PSAT to track the movement and diving behavior of two female white sharks Carcharodon carcharias within the eddies The eddies were defined using sea surface height SSH and contours using the horizontal speed based radius scale This study found that the white sharks dove in both cyclones but favored the anticyclone which had three times more dives as the cyclonic eddies Additionally in the Gulf Stream eddies the anticyclonic eddies were 57 more common and had more dives and deeper dives than the open ocean eddies and Gulf Stream cyclonic eddies 22 Within these anticyclonic eddies the isotherm was displaced 50 meters downward allowing for the warmer water to penetrate deeper in the water column This warmer water displacement may allow for the white sharks to make longer dives without the added energetic cost from thermal regulation in the cooler cyclones Even though these anticyclonic eddies resulted in lower levels of chlorophyll in comparison to the cyclonic eddies the warmer waters at deeper depths may allow for a deeper mixed layer and higher concentration of diatoms which in turn result in higher rates of primary productivity 23 24 Furthermore the prey populations could be distributed more within these eddies attracting these larger female sharks to forage in this mesopelagic zone This diving pattern may follow a diel vertical migration but without more evidence on the biomass of their prey within this zone these conclusions cannot be made only using this circumstantial evidence 25 The biomass in the mesopelagic zone is still understudied leading to the biomass of fish within this layer to potentially be underestimated A more accurate measurement on this biomass may serve to benefit the commercial fishing industry providing them with additional fishing grounds within this region Moreover further understanding this region in the open ocean and how the removal of fish in this region may impact this pelagic food web is crucial for the fish populations and apex predators that may rely on this food source in addition to making better ecosystem based management plans 26 See also EditVortex Eddy pumping component of vertical motion in eddies relevant for biology and biogeochemistry Eddy diffusion Haida Eddies Irminger Rings Reynolds number a dimensionless constant used to predict the onset of turbulent flow Reynolds experiment Karman vortex street Whirlpool Whirlwind River eddies in whitewater Wake turbulence Computational fluid dynamics Laminar flow Hemodynamics Modons or dipole eddy pairs References Edit Tansley Claire E Marshall David P 2001 Flow past a Cylinder on a Plane with Application to Gulf Stream Separation and the Antarctic Circumpolar Current PDF Journal of Physical Oceanography 31 11 3274 3283 Bibcode 2001JPO 31 3274T doi 10 1175 1520 0485 2001 031 lt 3274 FPACOA gt 2 0 CO 2 Archived from the original PDF on 2011 04 01 a b Chiu Jeng Jiann Chien Shu 2011 01 01 Effects of Disturbed Flow on Vascular Endothelium Pathophysiological Basis and Clinical Perspectives Physiological Reviews 91 1 327 387 doi 10 1152 physrev 00047 2009 ISSN 0031 9333 PMC 3844671 PMID 21248169 Encyclopedia Britannica eddy fluid mechanics Lightfoot R Byron Bird Warren E Stewart Edwin N 2002 Transport phenomena 2 ed New York NY u a Wiley ISBN 0 471 41077 2 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Kambe Tsutomu 2007 Elementary Fluid Mechanics World Scientific Publishing Co Pte Ltd pp 240 ISBN 978 981 256 416 0 Pressure hyperphysics phy astr gsu edu Retrieved 2017 02 12 Linear eddy viscosity models CFD Wiki the free CFD reference www cfd online com Retrieved 2017 02 12 Arnold Douglas The Flight of a Golf Ball PDF Why are Golf Balls Dimpled math ucr edu Retrieved 2017 02 12 Dimotakis Paul The Mixing Transition in Turbulent Flows PDF California Institute of Technology Information Tech Services Ocean currents push phytoplankton and pollution around the globe faster than thought Science Daily 16 April 2016 Retrieved 2017 02 12 Ocean Pollution National Oceanic and Atmospheric Administration Daily Juliette Hoffman Matthew J 2020 05 01 Modeling the three dimensional transport and distribution of multiple microplastic polymer types in Lake Erie Marine Pollution Bulletin 154 111024 doi 10 1016 j marpolbul 2020 111024 ISSN 0025 326X PMID 32319887 Ocean Mesoscale Eddies Geophysical Fluid Dynamics Laboratory www gfdl noaa gov Retrieved 2017 02 12 Chen Zhaoyun Jiang Yuwu Wang Jia Gong Wenping 2019 07 23 Influence of a River Plume on Coastal Upwelling Dynamics Importance of Stratification Journal of Physical Oceanography 49 9 2345 2363 Bibcode 2019JPO 49 2345C doi 10 1175 JPO D 18 0215 1 ISSN 0022 3670 Roman F Stipcich G Armenio V Inghilesi R Corsini S 2010 06 01 Large eddy simulation of mixing in coastal areas International Journal of Heat and Fluid Flow Sixth International Symposium on Turbulence and Shear Flow Phenomena 31 3 327 341 doi 10 1016 j ijheatfluidflow 2010 02 006 ISSN 0142 727X S2CID 123151803 Tansley Claire E Marshall David P 2001 Flow past a Cylinder on a b Plane with Application to Gulf Stream Separation and the Antarctic Circumpolar Current Journal of Physical Oceanography 31 11 3274 3283 Bibcode 2001JPO 31 3274T doi 10 1175 1520 0485 2001 031 lt 3274 FPACOA gt 2 0 CO 2 ISSN 1520 0485 S2CID 130455873 Ocean Mesoscale Eddies Geophysical Fluid Dynamics Laboratory NOAA Retrieved 2021 06 10 Chelton D B Gaube P Schlax M G Early J J amp Samelson R M 2011 The influence of nonlinear mesoscale eddies on near surface oceanic chlorophyll Science 334 6054 https doi org 10 1126 science 1208897 Gaube P McGillicuddy D J Chelton D B Behrenfeld M J amp Strutton P G 2014 Regional variations in the influence of mesoscale eddies on near surface chlorophyll Journal of Geophysical Research Oceans 119 12 https doi org 10 1002 2014JC010111 Gaube P Braun C D Lawson G L McGillicuddy D J Penna A della Skomal G B Fischer C amp Thorrold S R 2018 Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea Scientific Reports 8 1 https doi org 10 1038 S41598 018 25565 8 Gaube P Braun C D Lawson G L McGillicuddy D J Penna A della Skomal G B Fischer C amp Thorrold S R 2018 Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea Scientific Reports 8 1 https doi org 10 1038 S41598 018 25565 8 Gaube P Braun C D Lawson G L McGillicuddy D J Penna A della Skomal G B Fischer C amp Thorrold S R 2018 Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea Scientific Reports 8 1 https doi org 10 1038 S41598 018 25565 8 McGillicuddy D J Anderson L A Bates N R Bibby T Buesseler K O Carlson C A Davis C S Ewart C Falkowski P G Goldthwait S A Hansell D A Jenkins W J Johnson R Kosnyrev V K Ledwell J R Li Q P Siegel D A amp Steinberg D K 2007 Eddy Wind interactions stimulate extraordinary mid ocean plankton blooms Science 316 5827 https doi org 10 1126 science 1136256 Gaube P Braun C D Lawson G L McGillicuddy D J Penna A della Skomal G B Fischer C amp Thorrold S R 2018 Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea Scientific Reports 8 1 https doi org 10 1038 S41598 018 25565 8 Gaube P Braun C D Lawson G L McGillicuddy D J Penna A della Skomal G B Fischer C amp Thorrold S R 2018 Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea Scientific Reports 8 1 https doi org 10 1038 S41598 018 25565 8 Retrieved from https en wikipedia org w index php title Eddy fluid dynamics amp oldid 1169863830, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.