fbpx
Wikipedia

Multiomics

Multiomics, multi-omics, integrative omics, "panomics" or "pan-omics" is a biological analysis approach in which the data sets are multiple "omes", such as the genome, proteome, transcriptome, epigenome, metabolome, and microbiome (i.e., a meta-genome and/or meta-transcriptome, depending upon how it is sequenced);[1][2][3] in other words, the use of multiple omics technologies to study life in a concerted way. By combining these "omes", scientists can analyze complex biological big data to find novel associations between biological entities, pinpoint relevant biomarkers and build elaborate markers of disease and physiology. In doing so, multiomics integrates diverse omics data to find a coherently matching geno-pheno-envirotype relationship or association.[4] The OmicTools service lists more than 99 softwares related to multiomic data analysis, as well as more than 99 databases on the topic.

Number of citations of the terms "Multiomics" and "Multi-omics" in PubMed until the 31st December 2021.

Systems biology approaches are often based upon the use of panomic analysis data.[5][6] The American Society of Clinical Oncology (ASCO) defines panomics as referring to "the interaction of all biological functions within a cell and with other body functions, combining data collected by targeted tests ... and global assays (such as genome sequencing) with other patient-specific information."[7]

Single-cell multiomics edit

A branch of the field of multiomics is the analysis of multilevel single-cell data, called single-cell multiomics.[8][9] This approach gives us an unprecedent resolution to look at multilevel transitions in health and disease at the single cell level. An advantage in relation to bulk analysis is to mitigate confounding factors derived from cell to cell variation, allowing the uncovering of heterogeneous tissue architectures.[8]

Methods for parallel single-cell genomic and transcriptomic analysis can be based on simultaneous amplification[10] or physical separation of RNA and genomic DNA.[11] They allow insights that cannot be gathered solely from transcriptomic analysis, as RNA data do not contain non-coding genomic regions and information regarding copy-number variation, for example. An extension of this methodology is the integration of single-cell transcriptomes to single-cell methylomes, combining single-cell bisulfite sequencing[12][13] to single cell RNA-Seq.[14] Other techniques to query the epigenome, as single-cell ATAC-Seq[15] and single-cell Hi-C[16] also exist.

A different, but related, challenge is the integration of proteomic and transcriptomic data.[17][18] One approach to perform such measurement is to physically separate single-cell lysates in two, processing half for RNA, and half for proteins.[17] The protein content of lysates can be measured by proximity extension assays (PEA), for example, which use DNA-barcoded antibodies.[19] A different approach uses a combination of heavy-metal RNA probes and protein antibodies to adapt mass cytometry for multiomic analysis.[18]

Multiomics and machine learning edit

In parallel to the advances in highthroughput biology, machine learning applications to biomedical data analysis are flourishing. The integration of multi-omics data analysis and machine learning has led to the discovery of new biomarkers.[20][21][22] For example, one of the methods of the mixOmics project implements a method based on sparse Partial Least Squares regression for selection of features (putative biomarkers).[23] A unified and flexible statistical framewok for heterogeneous data integration called "Regularized Generalized Canonical Correlation Analysis" (RGCCA [24][25][26][27]) enables identifying such putative biomarkers. This framework is implemented and made freely avalaible within the RGCCA R package .

Multiomics in health and disease edit

 
Overview of phases 1 and 2 of the human microbiome project.

Multiomics currently holds a promise to fill gaps in the understanding of human health and disease, and many researchers are working on ways to generate and analyze disease-related data.[28] The applications range from understanding host-pathogen interactions and infectious diseases,[29][30] cancer,[31] to understanding better chronic and complex non-communicable diseases[32] and improving personalized medicine.[33]

Integrated Human Microbiome Project edit

The second phase of the $170 million Human Microbiome Project was focused on integrating patient data to different omic datasets, considering host genetics, clinical information and microbiome composition.[34][35] The phase one focused on characterization of communities in different body sites. Phase 2 focused in the integration of multiomic data from host & microbiome to human diseases. Specifically, the project used multiomics to improve the understanding of the interplay of gut and nasal microbiomes with type 2 diabetes,[36] gut microbiomes and inflammatory bowel disease[37] and vaginal microbiomes and pre-term birth.[38]

Systems Immunology edit

The complexity of interactions in the human immune system has prompted the generation of a wealth of immunology-related multi-scale omic data.[39] Multi-omic data analysis has been employed to gather novel insights about the immune response to infectious diseases, such as pediatric chikungunya,[40] as well as noncommunicable autoimmune diseases.[41] Integrative omics has also been employed strongly to understand effectiveness and side effects of vaccines, a field called systems vaccinology.[42] For example, multiomics was essential to uncover the association of changes in plasma metabolites and immune system transcriptome on response to vaccination against herpes zoster.[43]

List of softwares for multi-omic analysis edit

The Bioconductor project curates a variety of R packages aimed at integrating omic data:

  • omicade4, for multiple co-inertia analysis of multi omic datasets[44]
  • MultiAssayExperiment, offering a bioconductor interface for overlapping samples[45]
  • IMAS, a package focused on using multi omic data for evaluating alternative splicing[46]
  • bioCancer, a package for visualization of multiomic cancer data[47]
  • mixOmics, a suite of multivariate methods for data integration[23]
  • MultiDataSet, a package for encapsulating multiple data sets[48]

The RGCCA package implements a versatile framework for data integration. This package is freely available on the Comprehensive R Archive Network (CRAN).

The OmicTools[49] database further highlights R packages and othertools for multi omic data analysis:

  • PaintOmics, a web resource for visualization of multi-omics datasets[50][51]
  • SIGMA, a Java program focused on integrated analysis of cancer datasets[52]
  • iOmicsPASS, a tool in C++ for multiomic-based phenotype prediction[53]
  • Grimon, an R graphical interface for visualization of multiomic data[54]
  • Omics Pipe, a framework in Python for reproducibly automating multiomic data analysis[55]

Multiomic Databases edit

A major limitation of classical omic studies is the isolation of only one level of biological complexity. For example, transcriptomic studies may provide information at the transcript level, but many different entities contribute to the biological state of the sample (genomic variants, post-translational modifications, metabolic products, interacting organisms, among others). With the advent of high-throughput biology, it is becoming increasingly affordable to make multiple measurements, allowing transdomain (e.g. RNA and protein levels) correlations and inferences. These correlations aid the construction or more complete biological networks, filling gaps in our knowledge.

Integration of data, however, is not an easy task. To facilitate the process, groups have curated database and pipelines to systematically explore multiomic data:

See also edit

References edit

  1. ^ Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; Milanesi, Luciano (1 January 2016). "Methods for the integration of multi-omics data: mathematical aspects". BMC Bioinformatics. 17 (2): S15. doi:10.1186/s12859-015-0857-9. ISSN 1471-2105. PMC 4959355. PMID 26821531.
  2. ^ Bock, Christoph; Farlik, Matthias; Sheffield, Nathan C. (August 2016). "Multi-Omics of Single Cells: Strategies and Applications". Trends in Biotechnology. 34 (8): 605–608. doi:10.1016/j.tibtech.2016.04.004. PMC 4959511. PMID 27212022.
  3. ^ Vilanova, Cristina; Porcar, Manuel (26 July 2016). "Are multi-omics enough?". Nature Microbiology. 1 (8): 16101. doi:10.1038/nmicrobiol.2016.101. PMID 27573112. S2CID 3835720.
  4. ^ Tarazona, S., Balzano-Nogueira, L., & Conesa, A. (2018). Multiomics Data Integration in Time Series Experiments. doi:10.1016/bs.coac.2018.06.005
  5. ^ PSB'14 Cancer Panomics Session 2013-09-23 at the Wayback Machine
  6. ^ The Molecular Landscape of Cancer: Using Panomics to Drive Change 2013-11-09 at the Wayback Machine
  7. ^ "Glossary". Accelerating Progress Against Cancer: ASCO's blueprint for transforming clinical and translational cancer research (PDF). American Society of Clinical Oncology. 2011. p. 28. Retrieved 13 September 2013.
  8. ^ a b MacAulay, Iain C.; Ponting, Chris P.; Voet, Thierry (2017). "Single-Cell Multiomics: Multiple Measurements from Single Cells". Trends in Genetics. 33 (2): 155–168. doi:10.1016/j.tig.2016.12.003. PMC 5303816. PMID 28089370.
  9. ^ Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying (2018-04-20). "Single Cell Multi-Omics Technology: Methodology and Application". Frontiers in Cell and Developmental Biology. 6: 28. doi:10.3389/fcell.2018.00028. ISSN 2296-634X. PMC 5919954. PMID 29732369.
  10. ^ Kester, Lennart Spanjaard, Bastiaan Bienko, Magda van Oudenaarden, Alexander Dey, Siddharth S (2015). "Integrated genome and transcriptome sequencing of the same cell". Nature Biotechnology. 33 (3): 285–289. doi:10.1038/nbt.3129. OCLC 931063996. PMC 4374170. PMID 25599178.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry (2016-09-29). "Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq". Nature Protocols. 11 (11): 2081–2103. doi:10.1038/nprot.2016.138. hdl:20.500.11820/015ce29d-7e2d-42c8-82fa-cb1290b761c0. ISSN 1754-2189. PMID 27685099. S2CID 24351548.
  12. ^ Tang, Fuchou; Wen, Lu; Li, Xianlong; Wu, Xinglong; Zhu, Ping; Guo, Hongshan (2013-12-01). "Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing". Genome Research. 23 (12): 2126–2135. doi:10.1101/gr.161679.113. ISSN 1088-9051. PMC 3847781. PMID 24179143.
  13. ^ Kelsey, Gavin; Reik, Wolf; Stegle, Oliver; Andrews, Simon R.; Julian Peat; Saadeh, Heba; Krueger, Felix; Angermueller, Christof; Lee, Heather J. (August 2014). "Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity". Nature Methods. 11 (8): 817–820. doi:10.1038/nmeth.3035. ISSN 1548-7105. PMC 4117646. PMID 25042786.
  14. ^ Angermueller, Christof; Clark, Stephen J; Lee, Heather J; Macaulay, Iain C; Teng, Mabel J; Hu, Tim Xiaoming; Krueger, Felix; Smallwood, Sébastien A; Ponting, Chris P (2016-01-11). "Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity". Nature Methods. 13 (3): 229–232. doi:10.1038/nmeth.3728. ISSN 1548-7091. PMC 4770512. PMID 26752769.
  15. ^ Greenleaf, William J.; Chang, Howard Y.; Snyder, Michael P.; Michael L. Gonzales; Ruff, Dave; Litzenburger, Ulrike M.; Wu, Beijing; Buenrostro, Jason D. (July 2015). "Single-cell chromatin accessibility reveals principles of regulatory variation". Nature. 523 (7561): 486–490. Bibcode:2015Natur.523..486B. doi:10.1038/nature14590. ISSN 1476-4687. PMC 4685948. PMID 26083756.
  16. ^ Fraser, Peter; Tanay, Amos; Laue, Ernest D.; Dean, Wendy; Yaffe, Eitan; Schoenfelder, Stefan; Stevens, Tim J.; Lubling, Yaniv; Nagano, Takashi (October 2013). "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure". Nature. 502 (7469): 59–64. Bibcode:2013Natur.502...59N. doi:10.1038/nature12593. ISSN 1476-4687. PMC 3869051. PMID 24067610.
  17. ^ a b Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin (2016-01-12). "Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells". Cell Reports. 14 (2): 380–389. doi:10.1016/j.celrep.2015.12.021. ISSN 2211-1247. PMC 4713867. PMID 26748716.
  18. ^ a b Gherardini, Pier Federico; Nolan, Garry P.; Chen, Shih-Yu; Hsieh, Elena W. Y.; Zunder, Eli R.; Bava, Felice-Alessio; Frei, Andreas P. (March 2016). "Highly multiplexed simultaneous detection of RNAs and proteins in single cells". Nature Methods. 13 (3): 269–275. doi:10.1038/nmeth.3742. ISSN 1548-7105. PMC 4767631. PMID 26808670.
  19. ^ Assarsson, Erika; Lundberg, Martin; Holmquist, Göran; Björkesten, Johan; Bucht Thorsen, Stine; Ekman, Daniel; Eriksson, Anna; Rennel Dickens, Emma; Ohlsson, Sandra (2014-04-22). "Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability". PLOS ONE. 9 (4): e95192. Bibcode:2014PLoSO...995192A. doi:10.1371/journal.pone.0095192. ISSN 1932-6203. PMC 3995906. PMID 24755770.
  20. ^ Garmire, Lana X.; Chaudhary, Kumardeep; Huang, Sijia (2017). "More Is Better: Recent Progress in Multi-Omics Data Integration Methods". Frontiers in Genetics. 8: 84. doi:10.3389/fgene.2017.00084. ISSN 1664-8021. PMC 5472696. PMID 28670325.
  21. ^ Tagkopoulos, Ilias; Kim, Minseung (2018). "Data integration and predictive modeling methods for multi-omics datasets". Molecular Omics. 14 (1): 8–25. doi:10.1039/C7MO00051K. PMID 29725673.
  22. ^ Lin, Eugene; Lane, Hsien-Yuan (2017-01-20). "Machine learning and systems genomics approaches for multi-omics data". Biomarker Research. 5 (1): 2. doi:10.1186/s40364-017-0082-y. ISSN 2050-7771. PMC 5251341. PMID 28127429.
  23. ^ a b Rohart, Florian; Gautier, Benoît; Singh, Amrit; Lê Cao, Kim-Anh (2017-02-14). "mixOmics: an R package for 'omics feature selection and multiple data integration". PLOS Computational Biology. 13 (11): e1005752. Bibcode:2017PLSCB..13E5752R. bioRxiv 10.1101/108597. doi:10.1371/journal.pcbi.1005752. PMC 5687754. PMID 29099853.
  24. ^ Tenenhaus, Arthur; Tenenhaus, Michel (2011-03-17). "Regularized Generalized Canonical Correlation Analysis". Psychometrika. 76 (2): 257–284. doi:10.1007/s11336-011-9206-8. ISSN 0033-3123.
  25. ^ Tenenhaus, A.; Philippe, C.; Guillemot, V.; Le Cao, K.-A.; Grill, J.; Frouin, V. (2014-02-17). "Variable selection for generalized canonical correlation analysis". Biostatistics. 15 (3): 569–583. doi:10.1093/biostatistics/kxu001. ISSN 1465-4644.
  26. ^ Tenenhaus, Arthur; Philippe, Cathy; Frouin, Vincent (October 2015). "Kernel Generalized Canonical Correlation Analysis". Computational Statistics & Data Analysis. 90: 114–131. doi:10.1016/j.csda.2015.04.004. ISSN 0167-9473.
  27. ^ Tenenhaus, Michel; Tenenhaus, Arthur; Groenen, Patrick J. F. (2017-05-23). "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods". Psychometrika. 82 (3): 737–777. doi:10.1007/s11336-017-9573-x. ISSN 0033-3123.
  28. ^ Hasin, Yehudit; Seldin, Marcus; Lusis, Aldons (2017-05-05). "Multi-omics approaches to disease". Genome Biology. 18 (1): 83. doi:10.1186/s13059-017-1215-1. ISSN 1474-760X. PMC 5418815. PMID 28476144.
  29. ^ Khan, Mohd M.; Ernst, Orna; Manes, Nathan P.; Oyler, Benjamin L.; Fraser, Iain D. C.; Goodlett, David R.; Nita-Lazar, Aleksandra (2019-03-11). "Multi-Omics Strategies Uncover Host–Pathogen Interactions". ACS Infectious Diseases. 5 (4): 493–505. doi:10.1021/acsinfecdis.9b00080. ISSN 2373-8227. PMID 30857388. S2CID 75137107.
  30. ^ Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. Lynn; McDermott, Jason G.; Proll, Sean C. (2011-02-01). "A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm". mBio. 2 (1): e00325-10. doi:10.1128/mbio.00325-10. ISSN 2150-7511. PMC 3034460. PMID 21285433.
  31. ^ Mouchtouris, N; Smit, RD; Piper, K; Prashant, G; Evans, JJ; Karsy, M (4 March 2022). "A review of multiomics platforms in pituitary adenoma pathogenesis". Frontiers in Bioscience (Landmark Edition). 27 (3): 77. doi:10.31083/j.fbl2703077. PMID 35345309. S2CID 247560386.
  32. ^ Yan, Jingwen; Risacher, Shannon L; Shen, Li; Saykin, Andrew J. (2017-06-30). "Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data". Briefings in Bioinformatics. 19 (6): 1370–1381. doi:10.1093/bib/bbx066. ISSN 1467-5463. PMC 6454489. PMID 28679163.
  33. ^ He, Feng Q.; Ollert, Markus; Balling, Rudi; Bode, Sebastian F. N.; Delhalle, Sylvie (2018-02-06). "A roadmap towards personalized immunology". npj Systems Biology and Applications. 4 (1): 9. doi:10.1038/s41540-017-0045-9. ISSN 2056-7189. PMC 5802799. PMID 29423275.
  34. ^ Proctor, Lita M.; Creasy, Heather H.; Fettweis, Jennifer M.; Lloyd-Price, Jason; Mahurkar, Anup; Zhou, Wenyu; Buck, Gregory A.; Snyder, Michael P.; Strauss, Jerome F. (May 2019). "The Integrative Human Microbiome Project". Nature. 569 (7758): 641–648. Bibcode:2019Natur.569..641I. doi:10.1038/s41586-019-1238-8. ISSN 1476-4687. PMC 6784865. PMID 31142853.
  35. ^ "After the Integrative Human Microbiome Project, what's next for the microbiome community?". Nature. 569 (7758): 599. 2019-05-29. Bibcode:2019Natur.569Q.599.. doi:10.1038/d41586-019-01674-w. PMID 31142868. S2CID 169035865.
  36. ^ Snyder, Michael; Weinstock, George M.; Sodergren, Erica; McLaughlin, Tracey; Tse, David; Rost, Hannes; Piening, Brian; Kukurba, Kim; Rose, Sophia Miryam Schüssler-Fiorenza (May 2019). "Longitudinal multi-omics of host–microbe dynamics in prediabetes". Nature. 569 (7758): 663–671. Bibcode:2019Natur.569..663Z. doi:10.1038/s41586-019-1236-x. ISSN 1476-4687. PMC 6666404. PMID 31142858.
  37. ^ Huttenhower, Curtis; Xavier, Ramnik J.; Vlamakis, Hera; Franzosa, Eric A.; Clish, Clary B.; Winter, Harland S.; Stappenbeck, Thaddeus S.; Petrosino, Joseph F.; McGovern, Dermot P. B. (May 2019). "Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases". Nature. 569 (7758): 655–662. Bibcode:2019Natur.569..655L. doi:10.1038/s41586-019-1237-9. ISSN 1476-4687. PMC 6650278. PMID 31142855.
  38. ^ Buck, Gregory A.; Strauss, Jerome F.; Jefferson, Kimberly K.; Hendricks-Muñoz, Karen D.; Wijesooriya, N. Romesh; Rubens, Craig E.; Gravett, Michael G.; Sexton, Amber L.; Chaffin, Donald O. (June 2019). "The vaginal microbiome and preterm birth". Nature Medicine. 25 (6): 1012–1021. doi:10.1038/s41591-019-0450-2. ISSN 1546-170X. PMC 6750801. PMID 31142849.
  39. ^ Kidd, Brian A; Peters, Lauren A; Schadt, Eric E; Dudley, Joel T (2014-01-21). "Unifying immunology with informatics and multiscale biology". Nature Immunology. 15 (2): 118–127. doi:10.1038/ni.2787. ISSN 1529-2908. PMC 4345400. PMID 24448569.
  40. ^ Harris, Eva; Kasarskis, Andrew; Wolinsky, Steven M.; Suaréz‐Fariñas, Mayte; Zhu, Jun; Wang, Li; Balmaseda, Angel; Thomas, Guajira P.; Stewart, Michael G. (2018-08-01). "Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases". Molecular Systems Biology. 14 (8): e7862. doi:10.15252/msb.20177862. ISSN 1744-4292. PMC 6110311. PMID 30150281.
  41. ^ Firestein, Gary S.; Wang, Wei; Gay, Steffen; Ball, Scott T.; Bartok, Beatrix; Boyle, David L.; Whitaker, John W. (2015-04-22). "Integrative Omics Analysis of Rheumatoid Arthritis Identifies Non-Obvious Therapeutic Targets". PLOS ONE. 10 (4): e0124254. Bibcode:2015PLoSO..1024254W. doi:10.1371/journal.pone.0124254. ISSN 1932-6203. PMC 4406750. PMID 25901943.
  42. ^ Pulendran, Bali; Li, Shuzhao; Nakaya, Helder I. (2010-10-29). "Systems Vaccinology". Immunity. 33 (4): 516–529. doi:10.1016/j.immuni.2010.10.006. ISSN 1074-7613. PMC 3001343. PMID 21029962.
  43. ^ Li, Shuzhao; Sullivan, Nicole L.; Rouphael, Nadine; Yu, Tianwei; Banton, Sophia; Maddur, Mohan S.; McCausland, Megan; Chiu, Christopher; Canniff, Jennifer (2017-05-18). "Metabolic Phenotypes of Response to Vaccination in Humans". Cell. 169 (5): 862–877.e17. doi:10.1016/j.cell.2017.04.026. ISSN 0092-8674. PMC 5711477. PMID 28502771.
  44. ^ Meng, Chen; Kuster, Bernhard; Culhane, Aedín C; Gholami, Amin (2014). "A multivariate approach to the integration of multi-omics datasets". BMC Bioinformatics. 15 (1): 162. doi:10.1186/1471-2105-15-162. ISSN 1471-2105. PMC 4053266. PMID 24884486.
  45. ^ Ramos, Marcel; Schiffer, Lucas; Re, Angela; Azhar, Rimsha; Basunia, Azfar; Rodriguez, Carmen; Chan, Tiffany; Chapman, Phil; Davis, Sean R.; Gomez-Cabrero, David; Culhane, Aedin C.; Haibe-Kains, Benjamin; Hansen, Kasper D.; Kodali, Hanish; Louis, Marie S.; Mer, Arvind S.; Riester, Markus; Morgan, Martin; Carey, Vince; Waldron, Levi (1 November 2017). "Software for the Integration of Multiomics Experiments in Bioconductor". Cancer Research. 77 (21): e39–e42. doi:10.1158/0008-5472.CAN-17-0344. PMC 5679241. PMID 29092936.
  46. ^ Seonggyun Han, Younghee Lee (2017), IMAS, Bioconductor, doi:10.18129/b9.bioc.imas, retrieved 2019-06-28
  47. ^ Karim Mezhoud [Aut, Cre] (2017), bioCancer, Bioconductor, doi:10.18129/b9.bioc.biocancer, retrieved 2019-06-28
  48. ^ Hernandez-Ferrer, Carles; Ruiz-Arenas, Carlos; Beltran-Gomila, Alba; González, Juan R. (2017-01-17). "MultiDataSet: an R package for encapsulating multiple data sets with application to omic data integration". BMC Bioinformatics. 18 (1): 36. doi:10.1186/s12859-016-1455-1. ISSN 1471-2105. PMC 5240259. PMID 28095799.
  49. ^ "Reap the rewards of a biological insight engine". omicX. Retrieved 2019-06-26.
  50. ^ Conesa, Ana; Dopazo, Joaquín; García-López, Federico; García-Alcalde, Fernando (2011-01-01). "Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data". Bioinformatics. 27 (1): 137–139. doi:10.1093/bioinformatics/btq594. ISSN 1367-4803. PMC 3008637. PMID 21098431.
  51. ^ Conesa, Ana; Pappas, Georgios J.; Furió-Tarí, Pedro; Balzano-Nogueira, Leandro; Martínez-Mira, Carlos; Tarazona, Sonia; Hernández-de-Diego, Rafael (2018-07-02). "PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data". Nucleic Acids Research. 46 (W1): W503–W509. doi:10.1093/nar/gky466. ISSN 0305-1048. PMC 6030972. PMID 29800320.
  52. ^ Chari, Raj; Coe, Bradley P.; Wedseltoft, Craig; Benetti, Marie; Wilson, Ian M.; Vucic, Emily A.; MacAulay, Calum; Ng, Raymond T.; Lam, Wan L. (2008-10-07). "SIGMA2: A system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes". BMC Bioinformatics. 9 (1): 422. doi:10.1186/1471-2105-9-422. ISSN 1471-2105. PMC 2571113. PMID 18840289.
  53. ^ Choi, Hyungwon; Ewing, Rob; Choi, Kwok Pui; Fermin, Damian; Koh, Hiromi W. L. (2018-07-23). "iOmicsPASS: a novel method for integration of multi-omics data over biological networks and discovery of predictive subnetworks". bioRxiv: 374520. doi:10.1101/374520. S2CID 92157115.
  54. ^ Kanai, Masahiro; Maeda, Yuichi; Okada, Yukinori (2018-06-19). "Grimon: graphical interface to visualize multi-omics networks". Bioinformatics. 34 (22): 3934–3936. doi:10.1093/bioinformatics/bty488. ISSN 1367-4803. PMC 6223372. PMID 29931190.
  55. ^ Su, Andrew I.; Loguercio, Salvatore; Carland, Tristan M.; Ducom, Jean-Christophe; Gioia, Louis; Meißner, Tobias; Fisch, Kathleen M. (2015-06-01). "Omics Pipe: a community-based framework for reproducible multi-omics data analysis". Bioinformatics. 31 (11): 1724–1728. doi:10.1093/bioinformatics/btv061. ISSN 1367-4803. PMC 4443682. PMID 25637560.
  56. ^ Montague, Elizabeth; Stanberry, Larissa; Higdon, Roger; Janko, Imre; Lee, Elaine; Anderson, Nathaniel; Choiniere, John; Stewart, Elizabeth; Yandl, Gregory (June 2014). "MOPED 2.5—An Integrated Multi-Omics Resource: Multi-Omics Profiling Expression Database Now Includes Transcriptomics Data". OMICS: A Journal of Integrative Biology. 18 (6): 335–343. doi:10.1089/omi.2014.0061. ISSN 1536-2310. PMC 4048574. PMID 24910945.
  57. ^ Zhang, Bing; Wang, Jing; Straub, Peter; Vasaikar, Suhas V. (2018-01-04). "LinkedOmics: analyzing multi-omics data within and across 32 cancer types". Nucleic Acids Research. 46 (D1): D956–D963. doi:10.1093/nar/gkx1090. ISSN 0305-1048. PMC 5753188. PMID 29136207.
  58. ^ "LinkedOmics :: Login". www.linkedomics.org. Retrieved 2019-06-26.
  59. ^ Kan, Zhengyan; Rejto, Paul A.; Roberts, Peter; Ding, Ying; AChing, Keith; Wang, Kai; Deng, Shibing; Schefzick, Sabine; Estrella, Heather (January 2016). "OASIS: web-based platform for exploring cancer multi-omics data". Nature Methods. 13 (1): 9–10. doi:10.1038/nmeth.3692. ISSN 1548-7105. PMID 26716558. S2CID 38621277.
  60. ^ Wu, Jiaqi; Hu, Shuofeng; Chen, Yaowen; Li, Zongcheng; Zhang, Jian; Yuan, Hanyu; Shi, Qiang; Shao, Ningsheng; Ying, Xiaomin (May 2017). "BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer". Scientific Reports. 7 (1): 45235. Bibcode:2017NatSR...745235W. doi:10.1038/srep45235. ISSN 2045-2322. PMC 5361122. PMID 28327601.
  61. ^ Husi, Holger; Patel, Alisha; Fernandes, Marco (2018-11-12). "C/VDdb: A multi-omics expression profiling database for a knowledge-driven approach in cardiovascular disease (CVD)". PLOS ONE. 13 (11): e0207371. Bibcode:2018PLoSO..1307371F. doi:10.1371/journal.pone.0207371. ISSN 1932-6203. PMC 6231654. PMID 30419069.
  62. ^ Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep (2016-09-16). "ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis". Scientific Reports. 6 (1): 32713. Bibcode:2016NatSR...632713G. doi:10.1038/srep32713. ISSN 2045-2322. PMC 5025660. PMID 27633273.
  63. ^ Tagkopoulos, Ilias; Violeta Zorraquino; Rai, Navneet; Kim, Minseung (2016-10-07). "Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli". Nature Communications. 7: 13090. Bibcode:2016NatCo...713090K. doi:10.1038/ncomms13090. ISSN 2041-1723. PMC 5059772. PMID 27713404.
  64. ^ Li, Guojing; Lu, Zhongfu; Lin, Jiandong; Hu, Yaowen; Yunping Huang; Wang, Baogen; Wu, Xinyi; Wu, Xiaohua; Xu, Pei (2018-02-26). "GourdBase: a genome-centered multi-omics database for the bottle gourd ( Lagenaria siceraria ), an economically important cucurbit crop". Scientific Reports. 8 (1): 3604. Bibcode:2018NatSR...8.3604W. doi:10.1038/s41598-018-22007-3. ISSN 2045-2322. PMC 5827520. PMID 29483591.
  65. ^ Liu, Haijun; Wang, Fan; Xiao, Yingjie; Tian, Zonglin; Wen, Weiwei; Zhang, Xuehai; Chen, Xi; Liu, Nannan; Li, Wenqiang (2016). "MODEM: multi-omics data envelopment and mining in maize". Database. 2016: baw117. doi:10.1093/database/baw117. ISSN 1758-0463. PMC 4976297. PMID 27504011.
  66. ^ Xu, Dong; Nguyen, Henry T.; Stacey, Gary; Gaudiello, Eric C.; Endacott, Ryan Z.; Zhang, Hongxin; Liu, Yang; Chen, Shiyuan; Fitzpatrick, Michael R. (2014-01-01). "Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding". Nucleic Acids Research. 42 (D1): D1245–D1252. doi:10.1093/nar/gkt905. ISSN 0305-1048. PMC 3965117. PMID 24136998.
  67. ^ Samaras, Patroklos; Schmidt, Tobias; Frejno, Martin; Gessulat, Siegfried; Reinecke, Maria; Jarzab, Anna; Zecha, Jana; Mergner, Julia; Giansanti, Piero; Ehrlich, Hans-Christian; Aiche, Stephan (2020-01-08). "ProteomicsDB: a multi-omics and multi-organism resource for life science research". Nucleic Acids Research. 48 (D1): D1153–D1163. doi:10.1093/nar/gkz974. ISSN 0305-1048. PMC 7145565. PMID 31665479.

multiomics, help, expand, this, article, with, text, translated, from, corresponding, article, french, august, 2021, click, show, important, translation, instructions, view, machine, translated, version, french, article, machine, translation, like, deepl, goog. You can help expand this article with text translated from the corresponding article in French August 2021 Click show for important translation instructions View a machine translated version of the French article Machine translation like DeepL or Google Translate is a useful starting point for translations but translators must revise errors as necessary and confirm that the translation is accurate rather than simply copy pasting machine translated text into the English Wikipedia Consider adding a topic to this template there are already 5 990 articles in the main category and specifying topic will aid in categorization Do not translate text that appears unreliable or low quality If possible verify the text with references provided in the foreign language article You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation A model attribution edit summary is Content in this edit is translated from the existing French Wikipedia article at fr Multiomique see its history for attribution You should also add the template Translated fr Multiomique to the talk page For more guidance see Wikipedia Translation Multiomics multi omics integrative omics panomics or pan omics is a biological analysis approach in which the data sets are multiple omes such as the genome proteome transcriptome epigenome metabolome and microbiome i e a meta genome and or meta transcriptome depending upon how it is sequenced 1 2 3 in other words the use of multiple omics technologies to study life in a concerted way By combining these omes scientists can analyze complex biological big data to find novel associations between biological entities pinpoint relevant biomarkers and build elaborate markers of disease and physiology In doing so multiomics integrates diverse omics data to find a coherently matching geno pheno envirotype relationship or association 4 The OmicTools service lists more than 99 softwares related to multiomic data analysis as well as more than 99 databases on the topic Number of citations of the terms Multiomics and Multi omics in PubMed until the 31st December 2021 Systems biology approaches are often based upon the use of panomic analysis data 5 6 The American Society of Clinical Oncology ASCO defines panomics as referring to the interaction of all biological functions within a cell and with other body functions combining data collected by targeted tests and global assays such as genome sequencing with other patient specific information 7 Contents 1 Single cell multiomics 2 Multiomics and machine learning 3 Multiomics in health and disease 3 1 Integrated Human Microbiome Project 3 2 Systems Immunology 4 List of softwares for multi omic analysis 5 Multiomic Databases 6 See also 7 ReferencesSingle cell multiomics editA branch of the field of multiomics is the analysis of multilevel single cell data called single cell multiomics 8 9 This approach gives us an unprecedent resolution to look at multilevel transitions in health and disease at the single cell level An advantage in relation to bulk analysis is to mitigate confounding factors derived from cell to cell variation allowing the uncovering of heterogeneous tissue architectures 8 Methods for parallel single cell genomic and transcriptomic analysis can be based on simultaneous amplification 10 or physical separation of RNA and genomic DNA 11 They allow insights that cannot be gathered solely from transcriptomic analysis as RNA data do not contain non coding genomic regions and information regarding copy number variation for example An extension of this methodology is the integration of single cell transcriptomes to single cell methylomes combining single cell bisulfite sequencing 12 13 to single cell RNA Seq 14 Other techniques to query the epigenome as single cell ATAC Seq 15 and single cell Hi C 16 also exist A different but related challenge is the integration of proteomic and transcriptomic data 17 18 One approach to perform such measurement is to physically separate single cell lysates in two processing half for RNA and half for proteins 17 The protein content of lysates can be measured by proximity extension assays PEA for example which use DNA barcoded antibodies 19 A different approach uses a combination of heavy metal RNA probes and protein antibodies to adapt mass cytometry for multiomic analysis 18 Multiomics and machine learning editIn parallel to the advances in highthroughput biology machine learning applications to biomedical data analysis are flourishing The integration of multi omics data analysis and machine learning has led to the discovery of new biomarkers 20 21 22 For example one of the methods of the mixOmics project implements a method based on sparse Partial Least Squares regression for selection of features putative biomarkers 23 A unified and flexible statistical framewok for heterogeneous data integration called Regularized Generalized Canonical Correlation Analysis RGCCA 24 25 26 27 enables identifying such putative biomarkers This framework is implemented and made freely avalaible within the RGCCA R package Multiomics in health and disease edit nbsp Overview of phases 1 and 2 of the human microbiome project Multiomics currently holds a promise to fill gaps in the understanding of human health and disease and many researchers are working on ways to generate and analyze disease related data 28 The applications range from understanding host pathogen interactions and infectious diseases 29 30 cancer 31 to understanding better chronic and complex non communicable diseases 32 and improving personalized medicine 33 Integrated Human Microbiome Project edit The second phase of the 170 million Human Microbiome Project was focused on integrating patient data to different omic datasets considering host genetics clinical information and microbiome composition 34 35 The phase one focused on characterization of communities in different body sites Phase 2 focused in the integration of multiomic data from host amp microbiome to human diseases Specifically the project used multiomics to improve the understanding of the interplay of gut and nasal microbiomes with type 2 diabetes 36 gut microbiomes and inflammatory bowel disease 37 and vaginal microbiomes and pre term birth 38 Systems Immunology edit The complexity of interactions in the human immune system has prompted the generation of a wealth of immunology related multi scale omic data 39 Multi omic data analysis has been employed to gather novel insights about the immune response to infectious diseases such as pediatric chikungunya 40 as well as noncommunicable autoimmune diseases 41 Integrative omics has also been employed strongly to understand effectiveness and side effects of vaccines a field called systems vaccinology 42 For example multiomics was essential to uncover the association of changes in plasma metabolites and immune system transcriptome on response to vaccination against herpes zoster 43 List of softwares for multi omic analysis editThe Bioconductor project curates a variety of R packages aimed at integrating omic data omicade4 for multiple co inertia analysis of multi omic datasets 44 MultiAssayExperiment offering a bioconductor interface for overlapping samples 45 IMAS a package focused on using multi omic data for evaluating alternative splicing 46 bioCancer a package for visualization of multiomic cancer data 47 mixOmics a suite of multivariate methods for data integration 23 MultiDataSet a package for encapsulating multiple data sets 48 The RGCCA package implements a versatile framework for data integration This package is freely available on the Comprehensive R Archive Network CRAN The OmicTools 49 database further highlights R packages and othertools for multi omic data analysis PaintOmics a web resource for visualization of multi omics datasets 50 51 SIGMA a Java program focused on integrated analysis of cancer datasets 52 iOmicsPASS a tool in C for multiomic based phenotype prediction 53 Grimon an R graphical interface for visualization of multiomic data 54 Omics Pipe a framework in Python for reproducibly automating multiomic data analysis 55 Multiomic Databases editA major limitation of classical omic studies is the isolation of only one level of biological complexity For example transcriptomic studies may provide information at the transcript level but many different entities contribute to the biological state of the sample genomic variants post translational modifications metabolic products interacting organisms among others With the advent of high throughput biology it is becoming increasingly affordable to make multiple measurements allowing transdomain e g RNA and protein levels correlations and inferences These correlations aid the construction or more complete biological networks filling gaps in our knowledge Integration of data however is not an easy task To facilitate the process groups have curated database and pipelines to systematically explore multiomic data Multi Omics Profiling Expression Database MOPED 56 integrating diverse animal models The Pancreatic Expression Database integrating data related to pancreatic tissue LinkedOmics 57 58 connecting data from TCGA cancer datasets OASIS 59 a web based resource for general cancer studies BCIP 60 a platform for breast cancer studies C VDdb 61 connecting data from several cardiovascular disease studies ZikaVR 62 a multiomic resource for Zika virus data Ecomics 63 a normalized multi omic database for Escherichia coli data GourdBase 64 integrating data from studies with gourd MODEM 65 a database for multilevel maize data SoyKB 66 a database for multilevel soybean data ProteomicsDB 67 a multi omics and multi organism resource for life science researchSee also editDisGeNET Pangenomics Hologenomics Omics List of omics topics in biology Systems Biology Network MedicineReferences edit Bersanelli Matteo Mosca Ettore Remondini Daniel Giampieri Enrico Sala Claudia Castellani Gastone Milanesi Luciano 1 January 2016 Methods for the integration of multi omics data mathematical aspects BMC Bioinformatics 17 2 S15 doi 10 1186 s12859 015 0857 9 ISSN 1471 2105 PMC 4959355 PMID 26821531 Bock Christoph Farlik Matthias Sheffield Nathan C August 2016 Multi Omics of Single Cells Strategies and Applications Trends in Biotechnology 34 8 605 608 doi 10 1016 j tibtech 2016 04 004 PMC 4959511 PMID 27212022 Vilanova Cristina Porcar Manuel 26 July 2016 Are multi omics enough Nature Microbiology 1 8 16101 doi 10 1038 nmicrobiol 2016 101 PMID 27573112 S2CID 3835720 Tarazona S Balzano Nogueira L amp Conesa A 2018 Multiomics Data Integration in Time Series Experiments doi 10 1016 bs coac 2018 06 005 PSB 14 Cancer Panomics Session Archived 2013 09 23 at the Wayback Machine The Molecular Landscape of Cancer Using Panomics to Drive Change Archived 2013 11 09 at the Wayback Machine Glossary Accelerating Progress Against Cancer ASCO s blueprint for transforming clinical and translational cancer research PDF American Society of Clinical Oncology 2011 p 28 Retrieved 13 September 2013 a b MacAulay Iain C Ponting Chris P Voet Thierry 2017 Single Cell Multiomics Multiple Measurements from Single Cells Trends in Genetics 33 2 155 168 doi 10 1016 j tig 2016 12 003 PMC 5303816 PMID 28089370 Hu Youjin An Qin Sheu Katherine Trejo Brandon Fan Shuxin Guo Ying 2018 04 20 Single Cell Multi Omics Technology Methodology and Application Frontiers in Cell and Developmental Biology 6 28 doi 10 3389 fcell 2018 00028 ISSN 2296 634X PMC 5919954 PMID 29732369 Kester Lennart Spanjaard Bastiaan Bienko Magda van Oudenaarden Alexander Dey Siddharth S 2015 Integrated genome and transcriptome sequencing of the same cell Nature Biotechnology 33 3 285 289 doi 10 1038 nbt 3129 OCLC 931063996 PMC 4374170 PMID 25599178 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Macaulay Iain C Teng Mabel J Haerty Wilfried Kumar Parveen Ponting Chris P Voet Thierry 2016 09 29 Separation and parallel sequencing of the genomes and transcriptomes of single cells using G amp T seq Nature Protocols 11 11 2081 2103 doi 10 1038 nprot 2016 138 hdl 20 500 11820 015ce29d 7e2d 42c8 82fa cb1290b761c0 ISSN 1754 2189 PMID 27685099 S2CID 24351548 Tang Fuchou Wen Lu Li Xianlong Wu Xinglong Zhu Ping Guo Hongshan 2013 12 01 Single cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing Genome Research 23 12 2126 2135 doi 10 1101 gr 161679 113 ISSN 1088 9051 PMC 3847781 PMID 24179143 Kelsey Gavin Reik Wolf Stegle Oliver Andrews Simon R Julian Peat Saadeh Heba Krueger Felix Angermueller Christof Lee Heather J August 2014 Single cell genome wide bisulfite sequencing for assessing epigenetic heterogeneity Nature Methods 11 8 817 820 doi 10 1038 nmeth 3035 ISSN 1548 7105 PMC 4117646 PMID 25042786 Angermueller Christof Clark Stephen J Lee Heather J Macaulay Iain C Teng Mabel J Hu Tim Xiaoming Krueger Felix Smallwood Sebastien A Ponting Chris P 2016 01 11 Parallel single cell sequencing links transcriptional and epigenetic heterogeneity Nature Methods 13 3 229 232 doi 10 1038 nmeth 3728 ISSN 1548 7091 PMC 4770512 PMID 26752769 Greenleaf William J Chang Howard Y Snyder Michael P Michael L Gonzales Ruff Dave Litzenburger Ulrike M Wu Beijing Buenrostro Jason D July 2015 Single cell chromatin accessibility reveals principles of regulatory variation Nature 523 7561 486 490 Bibcode 2015Natur 523 486B doi 10 1038 nature14590 ISSN 1476 4687 PMC 4685948 PMID 26083756 Fraser Peter Tanay Amos Laue Ernest D Dean Wendy Yaffe Eitan Schoenfelder Stefan Stevens Tim J Lubling Yaniv Nagano Takashi October 2013 Single cell Hi C reveals cell to cell variability in chromosome structure Nature 502 7469 59 64 Bibcode 2013Natur 502 59N doi 10 1038 nature12593 ISSN 1476 4687 PMC 3869051 PMID 24067610 a b Darmanis Spyros Gallant Caroline Julie Marinescu Voichita Dana Niklasson Mia Segerman Anna Flamourakis Georgios Fredriksson Simon Assarsson Erika Lundberg Martin 2016 01 12 Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells Cell Reports 14 2 380 389 doi 10 1016 j celrep 2015 12 021 ISSN 2211 1247 PMC 4713867 PMID 26748716 a b Gherardini Pier Federico Nolan Garry P Chen Shih Yu Hsieh Elena W Y Zunder Eli R Bava Felice Alessio Frei Andreas P March 2016 Highly multiplexed simultaneous detection of RNAs and proteins in single cells Nature Methods 13 3 269 275 doi 10 1038 nmeth 3742 ISSN 1548 7105 PMC 4767631 PMID 26808670 Assarsson Erika Lundberg Martin Holmquist Goran Bjorkesten Johan Bucht Thorsen Stine Ekman Daniel Eriksson Anna Rennel Dickens Emma Ohlsson Sandra 2014 04 22 Homogenous 96 Plex PEA Immunoassay Exhibiting High Sensitivity Specificity and Excellent Scalability PLOS ONE 9 4 e95192 Bibcode 2014PLoSO 995192A doi 10 1371 journal pone 0095192 ISSN 1932 6203 PMC 3995906 PMID 24755770 Garmire Lana X Chaudhary Kumardeep Huang Sijia 2017 More Is Better Recent Progress in Multi Omics Data Integration Methods Frontiers in Genetics 8 84 doi 10 3389 fgene 2017 00084 ISSN 1664 8021 PMC 5472696 PMID 28670325 Tagkopoulos Ilias Kim Minseung 2018 Data integration and predictive modeling methods for multi omics datasets Molecular Omics 14 1 8 25 doi 10 1039 C7MO00051K PMID 29725673 Lin Eugene Lane Hsien Yuan 2017 01 20 Machine learning and systems genomics approaches for multi omics data Biomarker Research 5 1 2 doi 10 1186 s40364 017 0082 y ISSN 2050 7771 PMC 5251341 PMID 28127429 a b Rohart Florian Gautier Benoit Singh Amrit Le Cao Kim Anh 2017 02 14 mixOmics an R package for omics feature selection and multiple data integration PLOS Computational Biology 13 11 e1005752 Bibcode 2017PLSCB 13E5752R bioRxiv 10 1101 108597 doi 10 1371 journal pcbi 1005752 PMC 5687754 PMID 29099853 Tenenhaus Arthur Tenenhaus Michel 2011 03 17 Regularized Generalized Canonical Correlation Analysis Psychometrika 76 2 257 284 doi 10 1007 s11336 011 9206 8 ISSN 0033 3123 Tenenhaus A Philippe C Guillemot V Le Cao K A Grill J Frouin V 2014 02 17 Variable selection for generalized canonical correlation analysis Biostatistics 15 3 569 583 doi 10 1093 biostatistics kxu001 ISSN 1465 4644 Tenenhaus Arthur Philippe Cathy Frouin Vincent October 2015 Kernel Generalized Canonical Correlation Analysis Computational Statistics amp Data Analysis 90 114 131 doi 10 1016 j csda 2015 04 004 ISSN 0167 9473 Tenenhaus Michel Tenenhaus Arthur Groenen Patrick J F 2017 05 23 Regularized Generalized Canonical Correlation Analysis A Framework for Sequential Multiblock Component Methods Psychometrika 82 3 737 777 doi 10 1007 s11336 017 9573 x ISSN 0033 3123 Hasin Yehudit Seldin Marcus Lusis Aldons 2017 05 05 Multi omics approaches to disease Genome Biology 18 1 83 doi 10 1186 s13059 017 1215 1 ISSN 1474 760X PMC 5418815 PMID 28476144 Khan Mohd M Ernst Orna Manes Nathan P Oyler Benjamin L Fraser Iain D C Goodlett David R Nita Lazar Aleksandra 2019 03 11 Multi Omics Strategies Uncover Host Pathogen Interactions ACS Infectious Diseases 5 4 493 505 doi 10 1021 acsinfecdis 9b00080 ISSN 2373 8227 PMID 30857388 S2CID 75137107 Aderem Alan Adkins Joshua N Ansong Charles Galagan James Kaiser Shari Korth Marcus J Law G Lynn McDermott Jason G Proll Sean C 2011 02 01 A Systems Biology Approach to Infectious Disease Research Innovating the Pathogen Host Research Paradigm mBio 2 1 e00325 10 doi 10 1128 mbio 00325 10 ISSN 2150 7511 PMC 3034460 PMID 21285433 Mouchtouris N Smit RD Piper K Prashant G Evans JJ Karsy M 4 March 2022 A review of multiomics platforms in pituitary adenoma pathogenesis Frontiers in Bioscience Landmark Edition 27 3 77 doi 10 31083 j fbl2703077 PMID 35345309 S2CID 247560386 Yan Jingwen Risacher Shannon L Shen Li Saykin Andrew J 2017 06 30 Network approaches to systems biology analysis of complex disease integrative methods for multi omics data Briefings in Bioinformatics 19 6 1370 1381 doi 10 1093 bib bbx066 ISSN 1467 5463 PMC 6454489 PMID 28679163 He Feng Q Ollert Markus Balling Rudi Bode Sebastian F N Delhalle Sylvie 2018 02 06 A roadmap towards personalized immunology npj Systems Biology and Applications 4 1 9 doi 10 1038 s41540 017 0045 9 ISSN 2056 7189 PMC 5802799 PMID 29423275 Proctor Lita M Creasy Heather H Fettweis Jennifer M Lloyd Price Jason Mahurkar Anup Zhou Wenyu Buck Gregory A Snyder Michael P Strauss Jerome F May 2019 The Integrative Human Microbiome Project Nature 569 7758 641 648 Bibcode 2019Natur 569 641I doi 10 1038 s41586 019 1238 8 ISSN 1476 4687 PMC 6784865 PMID 31142853 After the Integrative Human Microbiome Project what s next for the microbiome community Nature 569 7758 599 2019 05 29 Bibcode 2019Natur 569Q 599 doi 10 1038 d41586 019 01674 w PMID 31142868 S2CID 169035865 Snyder Michael Weinstock George M Sodergren Erica McLaughlin Tracey Tse David Rost Hannes Piening Brian Kukurba Kim Rose Sophia Miryam Schussler Fiorenza May 2019 Longitudinal multi omics of host microbe dynamics in prediabetes Nature 569 7758 663 671 Bibcode 2019Natur 569 663Z doi 10 1038 s41586 019 1236 x ISSN 1476 4687 PMC 6666404 PMID 31142858 Huttenhower Curtis Xavier Ramnik J Vlamakis Hera Franzosa Eric A Clish Clary B Winter Harland S Stappenbeck Thaddeus S Petrosino Joseph F McGovern Dermot P B May 2019 Multi omics of the gut microbial ecosystem in inflammatory bowel diseases Nature 569 7758 655 662 Bibcode 2019Natur 569 655L doi 10 1038 s41586 019 1237 9 ISSN 1476 4687 PMC 6650278 PMID 31142855 Buck Gregory A Strauss Jerome F Jefferson Kimberly K Hendricks Munoz Karen D Wijesooriya N Romesh Rubens Craig E Gravett Michael G Sexton Amber L Chaffin Donald O June 2019 The vaginal microbiome and preterm birth Nature Medicine 25 6 1012 1021 doi 10 1038 s41591 019 0450 2 ISSN 1546 170X PMC 6750801 PMID 31142849 Kidd Brian A Peters Lauren A Schadt Eric E Dudley Joel T 2014 01 21 Unifying immunology with informatics and multiscale biology Nature Immunology 15 2 118 127 doi 10 1038 ni 2787 ISSN 1529 2908 PMC 4345400 PMID 24448569 Harris Eva Kasarskis Andrew Wolinsky Steven M Suarez Farinas Mayte Zhu Jun Wang Li Balmaseda Angel Thomas Guajira P Stewart Michael G 2018 08 01 Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases Molecular Systems Biology 14 8 e7862 doi 10 15252 msb 20177862 ISSN 1744 4292 PMC 6110311 PMID 30150281 Firestein Gary S Wang Wei Gay Steffen Ball Scott T Bartok Beatrix Boyle David L Whitaker John W 2015 04 22 Integrative Omics Analysis of Rheumatoid Arthritis Identifies Non Obvious Therapeutic Targets PLOS ONE 10 4 e0124254 Bibcode 2015PLoSO 1024254W doi 10 1371 journal pone 0124254 ISSN 1932 6203 PMC 4406750 PMID 25901943 Pulendran Bali Li Shuzhao Nakaya Helder I 2010 10 29 Systems Vaccinology Immunity 33 4 516 529 doi 10 1016 j immuni 2010 10 006 ISSN 1074 7613 PMC 3001343 PMID 21029962 Li Shuzhao Sullivan Nicole L Rouphael Nadine Yu Tianwei Banton Sophia Maddur Mohan S McCausland Megan Chiu Christopher Canniff Jennifer 2017 05 18 Metabolic Phenotypes of Response to Vaccination in Humans Cell 169 5 862 877 e17 doi 10 1016 j cell 2017 04 026 ISSN 0092 8674 PMC 5711477 PMID 28502771 Meng Chen Kuster Bernhard Culhane Aedin C Gholami Amin 2014 A multivariate approach to the integration of multi omics datasets BMC Bioinformatics 15 1 162 doi 10 1186 1471 2105 15 162 ISSN 1471 2105 PMC 4053266 PMID 24884486 Ramos Marcel Schiffer Lucas Re Angela Azhar Rimsha Basunia Azfar Rodriguez Carmen Chan Tiffany Chapman Phil Davis Sean R Gomez Cabrero David Culhane Aedin C Haibe Kains Benjamin Hansen Kasper D Kodali Hanish Louis Marie S Mer Arvind S Riester Markus Morgan Martin Carey Vince Waldron Levi 1 November 2017 Software for the Integration of Multiomics Experiments in Bioconductor Cancer Research 77 21 e39 e42 doi 10 1158 0008 5472 CAN 17 0344 PMC 5679241 PMID 29092936 Seonggyun Han Younghee Lee 2017 IMAS Bioconductor doi 10 18129 b9 bioc imas retrieved 2019 06 28 Karim Mezhoud Aut Cre 2017 bioCancer Bioconductor doi 10 18129 b9 bioc biocancer retrieved 2019 06 28 Hernandez Ferrer Carles Ruiz Arenas Carlos Beltran Gomila Alba Gonzalez Juan R 2017 01 17 MultiDataSet an R package for encapsulating multiple data sets with application to omic data integration BMC Bioinformatics 18 1 36 doi 10 1186 s12859 016 1455 1 ISSN 1471 2105 PMC 5240259 PMID 28095799 Reap the rewards of a biological insight engine omicX Retrieved 2019 06 26 Conesa Ana Dopazo Joaquin Garcia Lopez Federico Garcia Alcalde Fernando 2011 01 01 Paintomics a web based tool for the joint visualization of transcriptomics and metabolomics data Bioinformatics 27 1 137 139 doi 10 1093 bioinformatics btq594 ISSN 1367 4803 PMC 3008637 PMID 21098431 Conesa Ana Pappas Georgios J Furio Tari Pedro Balzano Nogueira Leandro Martinez Mira Carlos Tarazona Sonia Hernandez de Diego Rafael 2018 07 02 PaintOmics 3 a web resource for the pathway analysis and visualization of multi omics data Nucleic Acids Research 46 W1 W503 W509 doi 10 1093 nar gky466 ISSN 0305 1048 PMC 6030972 PMID 29800320 Chari Raj Coe Bradley P Wedseltoft Craig Benetti Marie Wilson Ian M Vucic Emily A MacAulay Calum Ng Raymond T Lam Wan L 2008 10 07 SIGMA2 A system for the integrative genomic multi dimensional analysis of cancer genomes epigenomes and transcriptomes BMC Bioinformatics 9 1 422 doi 10 1186 1471 2105 9 422 ISSN 1471 2105 PMC 2571113 PMID 18840289 Choi Hyungwon Ewing Rob Choi Kwok Pui Fermin Damian Koh Hiromi W L 2018 07 23 iOmicsPASS a novel method for integration of multi omics data over biological networks and discovery of predictive subnetworks bioRxiv 374520 doi 10 1101 374520 S2CID 92157115 Kanai Masahiro Maeda Yuichi Okada Yukinori 2018 06 19 Grimon graphical interface to visualize multi omics networks Bioinformatics 34 22 3934 3936 doi 10 1093 bioinformatics bty488 ISSN 1367 4803 PMC 6223372 PMID 29931190 Su Andrew I Loguercio Salvatore Carland Tristan M Ducom Jean Christophe Gioia Louis Meissner Tobias Fisch Kathleen M 2015 06 01 Omics Pipe a community based framework for reproducible multi omics data analysis Bioinformatics 31 11 1724 1728 doi 10 1093 bioinformatics btv061 ISSN 1367 4803 PMC 4443682 PMID 25637560 Montague Elizabeth Stanberry Larissa Higdon Roger Janko Imre Lee Elaine Anderson Nathaniel Choiniere John Stewart Elizabeth Yandl Gregory June 2014 MOPED 2 5 An Integrated Multi Omics Resource Multi Omics Profiling Expression Database Now Includes Transcriptomics Data OMICS A Journal of Integrative Biology 18 6 335 343 doi 10 1089 omi 2014 0061 ISSN 1536 2310 PMC 4048574 PMID 24910945 Zhang Bing Wang Jing Straub Peter Vasaikar Suhas V 2018 01 04 LinkedOmics analyzing multi omics data within and across 32 cancer types Nucleic Acids Research 46 D1 D956 D963 doi 10 1093 nar gkx1090 ISSN 0305 1048 PMC 5753188 PMID 29136207 LinkedOmics Login www linkedomics org Retrieved 2019 06 26 Kan Zhengyan Rejto Paul A Roberts Peter Ding Ying AChing Keith Wang Kai Deng Shibing Schefzick Sabine Estrella Heather January 2016 OASIS web based platform for exploring cancer multi omics data Nature Methods 13 1 9 10 doi 10 1038 nmeth 3692 ISSN 1548 7105 PMID 26716558 S2CID 38621277 Wu Jiaqi Hu Shuofeng Chen Yaowen Li Zongcheng Zhang Jian Yuan Hanyu Shi Qiang Shao Ningsheng Ying Xiaomin May 2017 BCIP a gene centered platform for identifying potential regulatory genes in breast cancer Scientific Reports 7 1 45235 Bibcode 2017NatSR 745235W doi 10 1038 srep45235 ISSN 2045 2322 PMC 5361122 PMID 28327601 Husi Holger Patel Alisha Fernandes Marco 2018 11 12 C VDdb A multi omics expression profiling database for a knowledge driven approach in cardiovascular disease CVD PLOS ONE 13 11 e0207371 Bibcode 2018PLoSO 1307371F doi 10 1371 journal pone 0207371 ISSN 1932 6203 PMC 6231654 PMID 30419069 Gupta Amit Kumar Kaur Karambir Rajput Akanksha Dhanda Sandeep Kumar Sehgal Manika Khan Md Shoaib Monga Isha Dar Showkat Ahmad Singh Sandeep 2016 09 16 ZikaVR An Integrated Zika Virus Resource for Genomics Proteomics Phylogenetic and Therapeutic Analysis Scientific Reports 6 1 32713 Bibcode 2016NatSR 632713G doi 10 1038 srep32713 ISSN 2045 2322 PMC 5025660 PMID 27633273 Tagkopoulos Ilias Violeta Zorraquino Rai Navneet Kim Minseung 2016 10 07 Multi omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli Nature Communications 7 13090 Bibcode 2016NatCo 713090K doi 10 1038 ncomms13090 ISSN 2041 1723 PMC 5059772 PMID 27713404 Li Guojing Lu Zhongfu Lin Jiandong Hu Yaowen Yunping Huang Wang Baogen Wu Xinyi Wu Xiaohua Xu Pei 2018 02 26 GourdBase a genome centered multi omics database for the bottle gourd Lagenaria siceraria an economically important cucurbit crop Scientific Reports 8 1 3604 Bibcode 2018NatSR 8 3604W doi 10 1038 s41598 018 22007 3 ISSN 2045 2322 PMC 5827520 PMID 29483591 Liu Haijun Wang Fan Xiao Yingjie Tian Zonglin Wen Weiwei Zhang Xuehai Chen Xi Liu Nannan Li Wenqiang 2016 MODEM multi omics data envelopment and mining in maize Database 2016 baw117 doi 10 1093 database baw117 ISSN 1758 0463 PMC 4976297 PMID 27504011 Xu Dong Nguyen Henry T Stacey Gary Gaudiello Eric C Endacott Ryan Z Zhang Hongxin Liu Yang Chen Shiyuan Fitzpatrick Michael R 2014 01 01 Soybean knowledge base SoyKB a web resource for integration of soybean translational genomics and molecular breeding Nucleic Acids Research 42 D1 D1245 D1252 doi 10 1093 nar gkt905 ISSN 0305 1048 PMC 3965117 PMID 24136998 Samaras Patroklos Schmidt Tobias Frejno Martin Gessulat Siegfried Reinecke Maria Jarzab Anna Zecha Jana Mergner Julia Giansanti Piero Ehrlich Hans Christian Aiche Stephan 2020 01 08 ProteomicsDB a multi omics and multi organism resource for life science research Nucleic Acids Research 48 D1 D1153 D1163 doi 10 1093 nar gkz974 ISSN 0305 1048 PMC 7145565 PMID 31665479 Retrieved from https en wikipedia org w index php title Multiomics amp oldid 1200258699, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.