fbpx
Wikipedia

Monocarboxylate transporter 8

Monocarboxylate transporter 8 (MCT8) is an active transporter protein that in humans is encoded by the SLC16A2 gene.[5][6][7][8]

SLC16A2
Identifiers
AliasesSLC16A2, DXS128, DXS128E, MCT 7, MCT 8, MCT7, MCT8, MRX22, XPCT, AHDS, solute carrier family 16 member 2
External IDsOMIM: 300095 MGI: 1203732 HomoloGene: 39495 GeneCards: SLC16A2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006517

NM_009197

RefSeq (protein)

NP_006508

NP_033223

Location (UCSC)Chr X: 74.42 – 74.53 MbChr X: 102.74 – 102.87 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

MCT8 actively transports a variety of iodo-thyronines including the thyroid hormones T3 and T4.[6]

Clinical significance

A genetic disorder (discovered in 2003[6] and 2004[9]) is caused by mutation in the transporter of thyroid hormone, MCT8, also known as SLC16A2, is believed to be account for a significant fraction of the undiagnosed neurological disorders (usually resulting in hypotonic/floppy infants with delayed milestones). This genetic defect was known as Allan–Herndon–Dudley syndrome (since 1944) without knowing its actual cause. It has been shown mutated in cases of X-linked leukoencephalopathy.[10] Some of the symptoms for this disorder as are follows: normal to slightly elevated TSH, elevated T3 and reduced T4 (ratio of T3/T4 is about double its normal value). Normal looking at birth and for the first few years, hypotonic (floppy), in particular difficulty to hold the head, possibly difficulty to thrive, possibly with delayed myelination (if so, some cases are reported with an MRI pattern similar to Pelizaeus–Merzbacher disease, known as PMD[11]), possibly with decreased mitochondrial enzyme activities, possibly with fluctuating lactate level. Patients have an alert face, a limited IQ, patients may never talk/walk, 50% need feeding tube, patients have a normal life span. This disease can be ruled out with a simple TSH/T4/T3 thyroid test.

Model organisms

Mice

A conditional knockout mouse line, called Slc16a2tm1a(KOMP)Wtsi[18][19] was generated as part of the International Knockout Mouse Consortium program—a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[20][21][22]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[16][23] Twenty one tests were carried out on mutant mice and three significant abnormalities were observed.[16] Female homozygote mutants had decreased circulating glucose levels. Male hemizygous mutants had an increased susceptibility to bacterial infection. Both sexes had various abnormal plasma chemistry parameters.[16]

Zebrafish

A knockout zebrafish line was generated in 2014 using the zinc-finger nuclease (ZFN)-mediated targeted gene editing system.[24] Similar to human patients, the zebrafish larvae exhibited neurological and behavioral deficiencies. They demonstrated reduced locomotor activity, altered myelin-related genes and neuron-specific deficiencies in circuit formation.[25]

Xenopus

Expression of mct8 has been characterised in Xenopus laevis[26] and Xenopus tropicalis.[27]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000147100 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000033965 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Lafrenière RG, Carrel L, Willard HF (Jul 1994). "A novel transmembrane transporter encoded by the XPCT gene in Xq13.2". Human Molecular Genetics. 3 (7): 1133–9. doi:10.1093/hmg/3.7.1133. PMID 7981683.
  6. ^ a b c Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (Oct 2003). "Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter". The Journal of Biological Chemistry. 278 (41): 40128–35. doi:10.1074/jbc.M300909200. PMID 12871948.
  7. ^ Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA, Echeverri R, Lubs HA, Voeller K, Simensen RJ, Stevenson RE (Jul 2005). "Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene". American Journal of Human Genetics. 77 (1): 41–53. doi:10.1086/431313. PMC 1226193. PMID 15889350.
  8. ^ "Entrez Gene: SLC16A2 solute carrier family 16, member 2 (monocarboxylic acid transporter 8)".
  9. ^ Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S (Jan 2004). "A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene". American Journal of Human Genetics. 74 (1): 168–75. doi:10.1086/380999. PMC 1181904. PMID 14661163.
  10. ^ Tsurusaki Y, Osaka H, Hamanoue H, Shimbo H, Tsuji M, Doi H, Saitsu H, Matsumoto N, Miyake N (Sep 2011). "Rapid detection of a mutation causing X-linked leucoencephalopathy by exome sequencing". Journal of Medical Genetics. 48 (9): 606–9. doi:10.1136/jmg.2010.083535. PMID 21415082. S2CID 1157351.
  11. ^ Vaurs-Barrière C, Deville M, Sarret C, Giraud G, Des Portes V, Prats-Viñas JM, De Michele G, Dan B, Brady AF, Boespflug-Tanguy O, Touraine R (Jan 2009). "Pelizaeus-Merzbacher-Like disease presentation of MCT8 mutated male subjects". Annals of Neurology. 65 (1): 114–8. doi:10.1002/ana.21579. PMID 19194886. S2CID 27740314.
  12. ^ "Glucose tolerance test data for Slc16a2". Wellcome Trust Sanger Institute.
  13. ^ "Clinical chemistry data for Slc16a2". Wellcome Trust Sanger Institute.
  14. ^ "Salmonella infection data for Slc16a2". Wellcome Trust Sanger Institute.
  15. ^ "Citrobacter infection data for Slc16a2". Wellcome Trust Sanger Institute.
  16. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  17. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  18. ^ "International Knockout Mouse Consortium".
  19. ^ "Mouse Genome Informatics".
  20. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  21. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  22. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  23. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  24. ^ Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L (Sep 2014). "Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation". PLOS Genetics. 10 (9): e1004615. doi:10.1371/journal.pgen.1004615. PMC 4177677. PMID 25255244.
  25. ^ Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L (Sep 2014). "Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation". PLOS Genetics. 10 (9): e1004615. doi:10.1371/journal.pgen.1004615. PMC 4177677. PMID 25255244.
  26. ^ Mughal, Bilal B.; Leemans, Michelle; Lima de Souza, Elaine C.; le Mevel, Sébastien; Spirhanzlova, Petra; Visser, Theo J.; Fini, Jean-Baptiste; Demeneix, Barbara A. (2017-08-01). "Functional Characterization of Xenopus Thyroid Hormone Transporters mct8 and oatp1c1". Endocrinology. 158 (8): 2694–2705. doi:10.1210/en.2017-00108. ISSN 1945-7170. PMID 28591769.
  27. ^ Connors, Kristin A.; Korte, Joseph J.; Anderson, Grant W.; Degitz, Sigmund J. (2010-08-01). "Characterization of thyroid hormone transporter expression during tissue-specific metamorphic events in Xenopus tropicalis". General and Comparative Endocrinology. 168 (1): 149–159. doi:10.1016/j.ygcen.2010.04.015. ISSN 1095-6840. PMID 20417208.

Further reading

  • Halestrap AP, Meredith D (Feb 2004). "The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond". Pflügers Archiv. 447 (5): 619–28. doi:10.1007/s00424-003-1067-2. PMID 12739169. S2CID 15498611.
  • Friesema EC, Jansen J, Heuer H, Trajkovic M, Bauer K, Visser TJ (Sep 2006). "Mechanisms of disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8". Nature Clinical Practice Endocrinology & Metabolism. 2 (9): 512–23. doi:10.1038/ncpendmet0262. PMID 16957765. S2CID 25232696.
  • Grüters A (2007). "Thyroid hormone transporter defects". Endocrine Development. 10: 118–26. doi:10.1159/000106823. ISBN 978-3-8055-8296-4. PMID 17684393.
  • Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (Apr 1996). "A "double adaptor" method for improved shotgun library construction". Analytical Biochemistry. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
  • Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (Apr 1997). "Large-scale concatenation cDNA sequencing". Genome Research. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
  • Price NT, Jackson VN, Halestrap AP (Jan 1998). "Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past". The Biochemical Journal. 329 (2): 321–8. doi:10.1042/bj3290321. PMC 1219047. PMID 9425115.
  • Debrand E, Heard E, Avner P (Mar 1998). "Cloning and localization of the murine Xpct gene: evidence for complex rearrangements during the evolution of the region around the Xist gene". Genomics. 48 (3): 296–303. doi:10.1006/geno.1997.5173. PMID 9545634.
  • Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S (Jan 2004). "A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene". American Journal of Human Genetics. 74 (1): 168–75. doi:10.1086/380999. PMC 1181904. PMID 14661163.
  • Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, Barrett TG, Mancilla EE, Svensson J, Kester MH, Kuiper GG, Balkassmi S, Uitterlinden AG, Koehrle J, Rodien P, Halestrap AP, Visser TJ (2004). "Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation". Lancet. 364 (9443): 1435–7. doi:10.1016/S0140-6736(04)17226-7. PMID 15488219. S2CID 37520843.
  • Heuer H, Maier MK, Iden S, Mittag J, Friesema EC, Visser TJ, Bauer K (Apr 2005). "The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations". Endocrinology. 146 (4): 1701–6. doi:10.1210/en.2004-1179. PMID 15661862.
  • Brockmann K, Dumitrescu AM, Best TT, Hanefeld F, Refetoff S (Jun 2005). "X-linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene". Journal of Neurology. 252 (6): 663–6. doi:10.1007/s00415-005-0713-3. PMID 15834651. S2CID 31994320.
  • Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH (Nov 2006). "Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism". Molecular Endocrinology. 20 (11): 2761–72. doi:10.1210/me.2005-0256. PMID 16887882.
  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (Nov 2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983. S2CID 7827573.
  • Jansen J, Friesema EC, Kester MH, Milici C, Reeser M, Grüters A, Barrett TG, Mancilla EE, Svensson J, Wemeau JL, Busi da Silva Canalli MH, Lundgren J, McEntagart ME, Hopper N, Arts WF, Visser TJ (Jun 2007). "Functional analysis of monocarboxylate transporter 8 mutations identified in patients with X-linked psychomotor retardation and elevated serum triiodothyronine". The Journal of Clinical Endocrinology and Metabolism. 92 (6): 2378–81. doi:10.1210/jc.2006-2570. PMID 17356046.

monocarboxylate, transporter, mct8, active, transporter, protein, that, humans, encoded, slc16a2, gene, slc16a2identifiersaliasesslc16a2, dxs128, dxs128e, mct7, mct8, mrx22, xpct, ahds, solute, carrier, family, member, 2external, idsomim, 300095, 1203732, homo. Monocarboxylate transporter 8 MCT8 is an active transporter protein that in humans is encoded by the SLC16A2 gene 5 6 7 8 SLC16A2IdentifiersAliasesSLC16A2 DXS128 DXS128E MCT 7 MCT 8 MCT7 MCT8 MRX22 XPCT AHDS solute carrier family 16 member 2External IDsOMIM 300095 MGI 1203732 HomoloGene 39495 GeneCards SLC16A2Gene location Human Chr X chromosome human 1 BandXq13 2Start74 421 493 bp 1 End74 533 917 bp 1 Gene location Mouse Chr X chromosome mouse 2 BandX D X 46 29 cMStart102 741 020 bp 2 End102 865 589 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inRight adrenal glandright lobe of liverLeft adrenal glandganglionic eminenceanterior pituitarystromal cell of endometriumgallbladderright coronary arteryleft uterine tuberight lobe of thyroid glandTop expressed inleft lobe of liverligamentkidneyinternal carotid arteryproximal tubulespiral ligamentexternal carotid arteryvas deferensankleciliary bodyMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionsymporter activity monocarboxylic acid transmembrane transporter activity transporter activity thyroid hormone transmembrane transporter activityCellular componentintegral component of membrane integral component of plasma membrane membrane plasma membraneBiological processmonocarboxylic acid transport thyroid hormone transport transmembrane transport sodium independent organic anion transportSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez656720502EnsemblENSG00000147100ENSMUSG00000033965UniProtP36021O70324RefSeq mRNA NM 006517NM 009197RefSeq protein NP 006508NP 033223Location UCSC Chr X 74 42 74 53 MbChr X 102 74 102 87 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Function 2 Clinical significance 3 Model organisms 3 1 Mice 3 2 Zebrafish 3 3 Xenopus 4 See also 5 References 6 Further readingFunction EditMCT8 actively transports a variety of iodo thyronines including the thyroid hormones T3 and T4 6 Clinical significance EditA genetic disorder discovered in 2003 6 and 2004 9 is caused by mutation in the transporter of thyroid hormone MCT8 also known as SLC16A2 is believed to be account for a significant fraction of the undiagnosed neurological disorders usually resulting in hypotonic floppy infants with delayed milestones This genetic defect was known as Allan Herndon Dudley syndrome since 1944 without knowing its actual cause It has been shown mutated in cases of X linked leukoencephalopathy 10 Some of the symptoms for this disorder as are follows normal to slightly elevated TSH elevated T3 and reduced T4 ratio of T3 T4 is about double its normal value Normal looking at birth and for the first few years hypotonic floppy in particular difficulty to hold the head possibly difficulty to thrive possibly with delayed myelination if so some cases are reported with an MRI pattern similar to Pelizaeus Merzbacher disease known as PMD 11 possibly with decreased mitochondrial enzyme activities possibly with fluctuating lactate level Patients have an alert face a limited IQ patients may never talk walk 50 need feeding tube patients have a normal life span This disease can be ruled out with a simple TSH T4 T3 thyroid test Model organisms EditSlc16a2 knockout mouse phenotype Characteristic PhenotypeHomozygote viability NormalFertility NormalBody weight NormalAnxiety NormalNeurological assessment NormalGrip strength NormalHot plate NormalDysmorphology NormalIndirect calorimetry NormalGlucose tolerance test Abnormal 12 Auditory brainstem response NormalDEXA NormalRadiography NormalBody temperature NormalEye morphology NormalClinical chemistry Abnormal 13 Haematology NormalMicronucleus test NormalHeart weight NormalSalmonella infection Abnormal 14 Citrobacter infection Normal 15 All tests and analysis from 16 17 Mice Edit A conditional knockout mouse line called Slc16a2tm1a KOMP Wtsi 18 19 was generated as part of the International Knockout Mouse Consortium program a high throughput mutagenesis project to generate and distribute animal models of disease to interested scientists 20 21 22 Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion 16 23 Twenty one tests were carried out on mutant mice and three significant abnormalities were observed 16 Female homozygote mutants had decreased circulating glucose levels Male hemizygous mutants had an increased susceptibility to bacterial infection Both sexes had various abnormal plasma chemistry parameters 16 Zebrafish Edit A knockout zebrafish line was generated in 2014 using the zinc finger nuclease ZFN mediated targeted gene editing system 24 Similar to human patients the zebrafish larvae exhibited neurological and behavioral deficiencies They demonstrated reduced locomotor activity altered myelin related genes and neuron specific deficiencies in circuit formation 25 Xenopus Edit Expression of mct8 has been characterised in Xenopus laevis 26 and Xenopus tropicalis 27 See also EditSolute carrier familyReferences Edit a b c GRCh38 Ensembl release 89 ENSG00000147100 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000033965 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Lafreniere RG Carrel L Willard HF Jul 1994 A novel transmembrane transporter encoded by the XPCT gene in Xq13 2 Human Molecular Genetics 3 7 1133 9 doi 10 1093 hmg 3 7 1133 PMID 7981683 a b c Friesema EC Ganguly S Abdalla A Manning Fox JE Halestrap AP Visser TJ Oct 2003 Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter The Journal of Biological Chemistry 278 41 40128 35 doi 10 1074 jbc M300909200 PMID 12871948 Schwartz CE May MM Carpenter NJ Rogers RC Martin J Bialer MG Ward J Sanabria J Marsa S Lewis JA Echeverri R Lubs HA Voeller K Simensen RJ Stevenson RE Jul 2005 Allan Herndon Dudley syndrome and the monocarboxylate transporter 8 MCT8 gene American Journal of Human Genetics 77 1 41 53 doi 10 1086 431313 PMC 1226193 PMID 15889350 Entrez Gene SLC16A2 solute carrier family 16 member 2 monocarboxylic acid transporter 8 Dumitrescu AM Liao XH Best TB Brockmann K Refetoff S Jan 2004 A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene American Journal of Human Genetics 74 1 168 75 doi 10 1086 380999 PMC 1181904 PMID 14661163 Tsurusaki Y Osaka H Hamanoue H Shimbo H Tsuji M Doi H Saitsu H Matsumoto N Miyake N Sep 2011 Rapid detection of a mutation causing X linked leucoencephalopathy by exome sequencing Journal of Medical Genetics 48 9 606 9 doi 10 1136 jmg 2010 083535 PMID 21415082 S2CID 1157351 Vaurs Barriere C Deville M Sarret C Giraud G Des Portes V Prats Vinas JM De Michele G Dan B Brady AF Boespflug Tanguy O Touraine R Jan 2009 Pelizaeus Merzbacher Like disease presentation of MCT8 mutated male subjects Annals of Neurology 65 1 114 8 doi 10 1002 ana 21579 PMID 19194886 S2CID 27740314 Glucose tolerance test data for Slc16a2 Wellcome Trust Sanger Institute Clinical chemistry data for Slc16a2 Wellcome Trust Sanger Institute Salmonella infection data for Slc16a2 Wellcome Trust Sanger Institute Citrobacter infection data for Slc16a2 Wellcome Trust Sanger Institute a b c d Gerdin AK 2010 The Sanger Mouse Genetics Programme High throughput characterisation of knockout mice Acta Ophthalmologica 88 925 7 doi 10 1111 j 1755 3768 2010 4142 x S2CID 85911512 Mouse Resources Portal Wellcome Trust Sanger Institute International Knockout Mouse Consortium Mouse Genome Informatics Skarnes WC Rosen B West AP Koutsourakis M Bushell W Iyer V Mujica AO Thomas M Harrow J Cox T Jackson D Severin J Biggs P Fu J Nefedov M de Jong PJ Stewart AF Bradley A Jun 2011 A conditional knockout resource for the genome wide study of mouse gene function Nature 474 7351 337 42 doi 10 1038 nature10163 PMC 3572410 PMID 21677750 Dolgin E Jun 2011 Mouse library set to be knockout Nature 474 7351 262 3 doi 10 1038 474262a PMID 21677718 Collins FS Rossant J Wurst W Jan 2007 A mouse for all reasons Cell 128 1 9 13 doi 10 1016 j cell 2006 12 018 PMID 17218247 S2CID 18872015 van der Weyden L White JK Adams DJ Logan DW 2011 The mouse genetics toolkit revealing function and mechanism Genome Biology 12 6 224 doi 10 1186 gb 2011 12 6 224 PMC 3218837 PMID 21722353 Zada D Tovin A Lerer Goldshtein T Vatine GD Appelbaum L Sep 2014 Altered behavioral performance and live imaging of circuit specific neural deficiencies in a zebrafish model for psychomotor retardation PLOS Genetics 10 9 e1004615 doi 10 1371 journal pgen 1004615 PMC 4177677 PMID 25255244 Zada D Tovin A Lerer Goldshtein T Vatine GD Appelbaum L Sep 2014 Altered behavioral performance and live imaging of circuit specific neural deficiencies in a zebrafish model for psychomotor retardation PLOS Genetics 10 9 e1004615 doi 10 1371 journal pgen 1004615 PMC 4177677 PMID 25255244 Mughal Bilal B Leemans Michelle Lima de Souza Elaine C le Mevel Sebastien Spirhanzlova Petra Visser Theo J Fini Jean Baptiste Demeneix Barbara A 2017 08 01 Functional Characterization of Xenopus Thyroid Hormone Transporters mct8 and oatp1c1 Endocrinology 158 8 2694 2705 doi 10 1210 en 2017 00108 ISSN 1945 7170 PMID 28591769 Connors Kristin A Korte Joseph J Anderson Grant W Degitz Sigmund J 2010 08 01 Characterization of thyroid hormone transporter expression during tissue specific metamorphic events in Xenopus tropicalis General and Comparative Endocrinology 168 1 149 159 doi 10 1016 j ygcen 2010 04 015 ISSN 1095 6840 PMID 20417208 Further reading EditHalestrap AP Meredith D Feb 2004 The SLC16 gene family from monocarboxylate transporters MCTs to aromatic amino acid transporters and beyond Pflugers Archiv 447 5 619 28 doi 10 1007 s00424 003 1067 2 PMID 12739169 S2CID 15498611 Friesema EC Jansen J Heuer H Trajkovic M Bauer K Visser TJ Sep 2006 Mechanisms of disease psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8 Nature Clinical Practice Endocrinology amp Metabolism 2 9 512 23 doi 10 1038 ncpendmet0262 PMID 16957765 S2CID 25232696 Gruters A 2007 Thyroid hormone transporter defects Endocrine Development 10 118 26 doi 10 1159 000106823 ISBN 978 3 8055 8296 4 PMID 17684393 Andersson B Wentland MA Ricafrente JY Liu W Gibbs RA Apr 1996 A double adaptor method for improved shotgun library construction Analytical Biochemistry 236 1 107 13 doi 10 1006 abio 1996 0138 PMID 8619474 Yu W Andersson B Worley KC Muzny DM Ding Y Liu W Ricafrente JY Wentland MA Lennon G Gibbs RA Apr 1997 Large scale concatenation cDNA sequencing Genome Research 7 4 353 8 doi 10 1101 gr 7 4 353 PMC 139146 PMID 9110174 Price NT Jackson VN Halestrap AP Jan 1998 Cloning and sequencing of four new mammalian monocarboxylate transporter MCT homologues confirms the existence of a transporter family with an ancient past The Biochemical Journal 329 2 321 8 doi 10 1042 bj3290321 PMC 1219047 PMID 9425115 Debrand E Heard E Avner P Mar 1998 Cloning and localization of the murine Xpct gene evidence for complex rearrangements during the evolution of the region around the Xist gene Genomics 48 3 296 303 doi 10 1006 geno 1997 5173 PMID 9545634 Dumitrescu AM Liao XH Best TB Brockmann K Refetoff S Jan 2004 A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene American Journal of Human Genetics 74 1 168 75 doi 10 1086 380999 PMC 1181904 PMID 14661163 Friesema EC Grueters A Biebermann H Krude H von Moers A Reeser M Barrett TG Mancilla EE Svensson J Kester MH Kuiper GG Balkassmi S Uitterlinden AG Koehrle J Rodien P Halestrap AP Visser TJ 2004 Association between mutations in a thyroid hormone transporter and severe X linked psychomotor retardation Lancet 364 9443 1435 7 doi 10 1016 S0140 6736 04 17226 7 PMID 15488219 S2CID 37520843 Heuer H Maier MK Iden S Mittag J Friesema EC Visser TJ Bauer K Apr 2005 The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone sensitive neuron populations Endocrinology 146 4 1701 6 doi 10 1210 en 2004 1179 PMID 15661862 Brockmann K Dumitrescu AM Best TT Hanefeld F Refetoff S Jun 2005 X linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene Journal of Neurology 252 6 663 6 doi 10 1007 s00415 005 0713 3 PMID 15834651 S2CID 31994320 Friesema EC Kuiper GG Jansen J Visser TJ Kester MH Nov 2006 Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate limiting role in intracellular metabolism Molecular Endocrinology 20 11 2761 72 doi 10 1210 me 2005 0256 PMID 16887882 Olsen JV Blagoev B Gnad F Macek B Kumar C Mortensen P Mann M Nov 2006 Global in vivo and site specific phosphorylation dynamics in signaling networks Cell 127 3 635 48 doi 10 1016 j cell 2006 09 026 PMID 17081983 S2CID 7827573 Jansen J Friesema EC Kester MH Milici C Reeser M Gruters A Barrett TG Mancilla EE Svensson J Wemeau JL Busi da Silva Canalli MH Lundgren J McEntagart ME Hopper N Arts WF Visser TJ Jun 2007 Functional analysis of monocarboxylate transporter 8 mutations identified in patients with X linked psychomotor retardation and elevated serum triiodothyronine The Journal of Clinical Endocrinology and Metabolism 92 6 2378 81 doi 10 1210 jc 2006 2570 PMID 17356046 Retrieved from https en wikipedia org w index php title Monocarboxylate transporter 8 amp oldid 1079536725, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.