fbpx
Wikipedia

Modulus (algebraic number theory)

In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle,[1] or extended ideal[2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.

Definition edit

Let K be a global field with ring of integers R. A modulus is a formal product[3][4]

 

where p runs over all places of K, finite or infinite, the exponents ν(p) are zero except for finitely many p. If K is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If K is a function field, ν(p) = 0 for all infinite places.

In the function field case, a modulus is the same thing as an effective divisor,[5] and in the number field case, a modulus can be considered as special form of Arakelov divisor.[6]

The notion of congruence can be extended to the setting of moduli. If a and b are elements of K×, the definition of a ≡b (mod pν) depends on what type of prime p is:[7][8]

  • if it is finite, then
 
where ordp is the normalized valuation associated to p;
  • if it is a real place (of a number field) and ν = 1, then
 
under the real embedding associated to p.
  • if it is any other infinite place, there is no condition.

Then, given a modulus m, a ≡b (mod m) if a ≡b (mod pν(p)) for all p such that ν(p) > 0.

Ray class group edit

The ray modulo m is[9][10][11]

 

A modulus m can be split into two parts, mf and m, the product over the finite and infinite places, respectively. Let Im to be one of the following:

In both case, there is a group homomorphism i : Km,1Im obtained by sending a to the principal ideal (resp. divisor) (a).

The ray class group modulo m is the quotient Cm = Im / i(Km,1).[14][15] A coset of i(Km,1) is called a ray class modulo m.

Erich Hecke's original definition of Hecke characters may be interpreted in terms of characters of the ray class group with respect to some modulus m.[16]

Properties edit

When K is a number field, the following properties hold.[17]

  • When m = 1, the ray class group is just the ideal class group.
  • The ray class group is finite. Its order is the ray class number.
  • The ray class number is divisible by the class number of K.

Notes edit

  1. ^ Lang 1994, §VI.1
  2. ^ Cohn 1985, definition 7.2.1
  3. ^ Janusz 1996, §IV.1
  4. ^ Serre 1988, §III.1
  5. ^ Serre 1988, §III.1
  6. ^ Neukirch 1999, §III.1
  7. ^ Janusz 1996, §IV.1
  8. ^ Serre 1988, §III.1
  9. ^ Milne 2008, §V.1
  10. ^ Janusz 1996, §IV.1
  11. ^ Serre 1988, §VI.6
  12. ^ Janusz 1996, §IV.1
  13. ^ Serre 1988, §V.1
  14. ^ Janusz 1996, §IV.1
  15. ^ Serre 1988, §VI.6
  16. ^ Neukirch 1999, §VII.6
  17. ^ Janusz 1996, §4.1

References edit

  • Cohn, Harvey (1985), Introduction to the construction of class fields, Cambridge studies in advanced mathematics, vol. 6, Cambridge University Press, ISBN 978-0-521-24762-7
  • Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7, American Mathematical Society, ISBN 978-0-8218-0429-2
  • Lang, Serge (1994), Algebraic number theory, Graduate Texts in Mathematics, vol. 110 (2 ed.), New York: Springer-Verlag, ISBN 978-0-387-94225-4, MR 1282723
  • Milne, James (2008), Class field theory (v4.0 ed.), retrieved 2010-02-22
  • Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.
  • Serre, Jean-Pierre (1988), Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 978-0-387-96648-9

modulus, algebraic, number, theory, operation, that, gives, number, remainder, modulo, operation, mathematics, field, algebraic, number, theory, modulus, plural, moduli, cycle, extended, ideal, formal, product, places, global, field, algebraic, number, field, . For the operation that gives a number s remainder see Modulo operation In mathematics in the field of algebraic number theory a modulus plural moduli or cycle 1 or extended ideal 2 is a formal product of places of a global field i e an algebraic number field or a global function field It is used to encode ramification data for abelian extensions of a global field Contents 1 Definition 2 Ray class group 2 1 Properties 3 Notes 4 ReferencesDefinition editLet K be a global field with ring of integers R A modulus is a formal product 3 4 m p p n p n p 0 displaystyle mathbf m prod mathbf p mathbf p nu mathbf p nu mathbf p geq 0 nbsp where p runs over all places of K finite or infinite the exponents n p are zero except for finitely many p If K is a number field n p 0 or 1 for real places and n p 0 for complex places If K is a function field n p 0 for all infinite places In the function field case a modulus is the same thing as an effective divisor 5 and in the number field case a modulus can be considered as special form of Arakelov divisor 6 The notion of congruence can be extended to the setting of moduli If a and b are elements of K the definition of a b mod pn depends on what type of prime p is 7 8 if it is finite thena b m o d p n o r d p a b 1 n displaystyle a equiv ast b mathrm mod mathbf p nu Leftrightarrow mathrm ord mathbf p left frac a b 1 right geq nu nbsp dd where ordp is the normalized valuation associated to p if it is a real place of a number field and n 1 thena b m o d p a b gt 0 displaystyle a equiv ast b mathrm mod mathbf p Leftrightarrow frac a b gt 0 nbsp dd under the real embedding associated to p if it is any other infinite place there is no condition Then given a modulus m a b mod m if a b mod pn p for all p such that n p gt 0 Ray class group editMain article Ray class group The ray modulo m is 9 10 11 K m 1 a K a 1 m o d m displaystyle K mathbf m 1 left a in K times a equiv ast 1 mathrm mod mathbf m right nbsp A modulus m can be split into two parts mf and m the product over the finite and infinite places respectively Let Im to be one of the following if K is a number field the subgroup of the group of fractional ideals generated by ideals coprime to mf 12 if K is a function field of an algebraic curve over k the group of divisors rational over k with support away from m 13 In both case there is a group homomorphism i Km 1 Im obtained by sending a to the principal ideal resp divisor a The ray class group modulo m is the quotient Cm Im i Km 1 14 15 A coset of i Km 1 is called a ray class modulo m Erich Hecke s original definition of Hecke characters may be interpreted in terms of characters of the ray class group with respect to some modulus m 16 Properties edit When K is a number field the following properties hold 17 When m 1 the ray class group is just the ideal class group The ray class group is finite Its order is the ray class number The ray class number is divisible by the class number of K Notes edit Lang 1994 VI 1 Cohn 1985 definition 7 2 1 Janusz 1996 IV 1 Serre 1988 III 1 Serre 1988 III 1 Neukirch 1999 III 1 Janusz 1996 IV 1 Serre 1988 III 1 Milne 2008 V 1 Janusz 1996 IV 1 Serre 1988 VI 6 Janusz 1996 IV 1 Serre 1988 V 1 Janusz 1996 IV 1 Serre 1988 VI 6 Neukirch 1999 VII 6 Janusz 1996 4 1References editCohn Harvey 1985 Introduction to the construction of class fields Cambridge studies in advanced mathematics vol 6 Cambridge University Press ISBN 978 0 521 24762 7 Janusz Gerald J 1996 Algebraic number fields Graduate Studies in Mathematics vol 7 American Mathematical Society ISBN 978 0 8218 0429 2 Lang Serge 1994 Algebraic number theory Graduate Texts in Mathematics vol 110 2 ed New York Springer Verlag ISBN 978 0 387 94225 4 MR 1282723 Milne James 2008 Class field theory v4 0 ed retrieved 2010 02 22 Neukirch Jurgen 1999 Algebraische Zahlentheorie Grundlehren der mathematischen Wissenschaften Vol 322 Berlin Springer Verlag ISBN 978 3 540 65399 8 MR 1697859 Zbl 0956 11021 Serre Jean Pierre 1988 Algebraic groups and class fields Graduate Texts in Mathematics vol 117 New York Springer Verlag ISBN 978 0 387 96648 9 Retrieved from https en wikipedia org w index php title Modulus algebraic number theory amp oldid 968701129, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.